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Abstract

The meta-modelling approach based on an adaptive sparse grid interpolator has been studied for tackling the identifi-
cation problem of parametric hysteresis models for steels with different microstructures. Two parametric models have
been considered for the construction of the meta-model: the Jiles-Atherton model and the Mel’gui relation. The main
advantage of the present approach is the separation of the calculation procedure in a computationally demanding off-line
phase, which has to be carried out only once, and a very fast on-line evaluation. This decomposition is particularly
interesting when a large amount of successive evaluations has to be carried out. Especially in the case that we are
interested in a particular family of ferromagnetic materials (e.g. steels subjected to different treatments), where the
sought parameters are lying in a specific interval, a single meta-model may be sufficient to be used for the study of a
wide range of specimens. The steel samples considered in this study have been obtained from industrially produced low
carbon steel, 84% cold rolled, and isothermally annealed in laboratory.
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1. Introduction

The application of parametric hysteresis models like the
Jiles-Atherton model [1] or the Mel’gui model [2], among
others, is preceded by the so-called identification phase,
where the input parameters of the model have to be deter-
mined based on a set of experimentally obtained curves.
The most commonly used experimental sets for the model
identification are the first order reversal curves (which are
best-suited for the Preisach model) or symmetric minor
loops with the reversal points lying on the first magneti-
zation curve.

The usual practice for identifying the model parame-
ters is to carry out an iterative optimization procedure,
where the best fit between the theoretical curves and the
measured ones is obtained via minimization of an ad-hoc
discrepancy metric. Yet, in addition to the simple esti-
mation of the parameters values, it is often desirable to
assess the sensitivity or impact of these to the B(H) curve,
and to compare different models in terms of correlation
with other physical characteristics of the material, which
stacks another iterative task on top of the identification
procedure.

Such calculations imply intensive use of models and can
rapidly prove cumbersome. The solution proposed in this
paper consists to replace the hysteresis model by a meta-
model, exploiting a database of simulation results. Ac-
cording to this approach, the original problem is separated
into an off-line phase, linked with the construction of the

representative database, and an on-line one, where the out-
put is derived from the stored data by means of an effi-
cient interpolator. The advantages of this approach are
the almost real-time evaluation, enabling the use of global
optimization techniques and of statistical tools for confi-
dence intervals estimation, sensitivity analysis and corre-
lation calculations.

The aforementioned separation concept is particularly
well suited in situations where one is interested in the
study of a specific family of materials, given that the
sought parameters are lying in a specific interval. This
is the case of the present work, where the meta-modelling
approach has been applied for the characterization of steels
with different microstructures. Steel samples from indus-
trially produced low carbon steel, 84% cold rolled, and
isothermally annealed at low temperature (400◦) in lab-
oratory [3, 4] have been considered. The microstructural
difference between these samples is the dislocation den-
sity, high in the heavily cold rolled sample, and lower in
the annealed sample after recovery processes, have taken
place.

The parametric models that are considered are the Jiles-
Atherton model and the Mel’gui relation. The off-line con-
struction of the meta-model is based on adaptive sparse
grid algorithm [5]. The identification problem will be
solved for two distinct steel samples of the above men-
tioned class and the results will be compared with the
experimental curves.
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2. The meta-modelling approach

2.1. Describing the hysteresis operator as an interpolator

In the context of this work we shall restrict ourselves
to the scalar case, i.e. we shall assume that the magnetic
behaviour of the material is isotropic. For such materials,
the magnetic constitutive relation can be written as follows

M = M(H,H0, H−1, . . .) (1)

where H is the applied magnetic field at time t, and
H−i, i = 0, 1, . . . stand for the field reversal points (i.e.
the points where the time derivative of H changes sign) at
previous instances t−i < t. For symmetric loops, however,
only H0 is needed to provide a unique description of the
branch1.

We seek to establish the following non-linear mapping
(H,H0)→M from the input space (H,H0) to the magne-
tization values. There is a number of parametric models
in the literature that has been proposed for the calculation
of M like the Preisach model [6], the Jiles-Atherton model
[1], the energetic model [7], the chemical model [8], the
Mel’gui relation [2], just to cite some of them. Their com-
mon point is that they realize the above mapping based
on an operational relation (they usually provide a differ-
ential equation for the magnetization) controlled by a set
of parameters x, which are model dependent and they are
characteristic of the material. We can thus write formally

M = M(H,H0,x) : H,H0,x→M. (2)

M being a non-linear operator.
The main idea of the meta-model is to replace the above

relation with an approximation of the direct model opera-
tor M , which is now defined in the input parametric space
x and performs the linear mapping

M(H,H0) = M̂H,H0
(x) : x→M(H,H0) (3)

where M̂H,H0
is the approximation of the original operator

for a given trajectory in the(H,H0) space.
The formal notation of (2),(3) reveals the key idea of

the meta-model formalism. The operational relation of
the original model is replaced by a linear functional, and
hence evaluations using (3) can be computationally very
efficient (in fact the computations reduce to mere inter-
polations). The calculations are thus decomposed in two
steps: the creation of the approximation functional (also
called as off-line phase), which is the computationally in-
tensive step yet has to be carried out only once, and the
evaluation (on-line phase), which is in general very cheap.
This indirect calculation procedure via the use of the meta-
model can be very interesting in cases where a large budget

1It should be noticed here that hysteresis models with local mem-
ory can take into account only the last reversal point regardless the
form of the excitation, which also complies the Madelung’s rules.
The Preisach’s model, on the contrary, has non-local memory and
hence an infinite number of reversal points has to be considered.

of successive calls to the model is required, as for exam-
ple during optimization or for the calculation of statistical
indices.

There is a number of different methods for the construc-
tion of the meta-model. The one examined in this work is
based on the sparse grid approach, which will be presented
in more detail in the following paragraph.

2.2. Hierarchical adaptive sparse grid methods

The use of sparse grid as numerical approach for the con-
struction of the meta-model is motivated by the fact that it
allows to overcome the curse of dimensionality which typ-
ically plagues the classical full-grid discretization schema
once the parameter space overcome the four dimensions.
The sparse grid method is based on the Smolyak algorithm
[9] that allows to built a suitable interpolation function
employing a minimum number of collocation points over
a multi-dimensional space. The main idea of Smolyak al-
gorithm is that only some elements produced by tensor
product rules are important for properly representing the
ground truth function. The set of points are known a-
priori and are arranged on a level-wise grid.

In this work, we employ a hierarchical Adaptive Sparse
Grid (ASG) aiming at improving the computational bur-
den through a parsimonious selection of the SG points to
be simulated. In the following, for sake of brevity and
simplicity, we will present the ASG algorithm for an uni-
variate scalar function. The extension to the multivariate
functional case is quite straightforward. More details on
this extension can be found in [10, 5].

Let us suppose to deal with a costly-to-evaluate function
f(x) ∈ C of a vector variable x ∈ Ω | Ω ∈ R1×N for which
we want to find a suitable cheap-to-evaluate sparse grid
interpolation f̂(x) : f̂(x) ≈ f(x),∀x ∈ Ω. Thus, we de-
fine the hierarchical structure of basis function employed
starting from the lower level (l = 1) up to the highest
level l = D for a univariate problem (i.e., N = 1). The
hierarchical structure is defined through a set level-wise

basis functions ψ
(i)
l (x) with x ∈ [0, 1]. For each basis

function is associated a supported node(s) x
(i)
l , which is

defined through a recursive nested algorithm. The evalu-
ation of the basis function onto the collocation node leads
to ψ

(i)
l

(
x
(i)
l

)
= δij where δij being the Kronecker delta.

In this paper we will employ a Newton-Cotes grid (some-
times known as Clanshow-Curtis) with equidistant nodes
and linear basis function [10, 5]. The one-dimensional set
of collocation points and the associated linear basis is given
for the first three levels in Fig. 1a. Starting from the level
3 basis functions are all of the same kind, whereas level 1
and level 2 basis behaves of special kind. The sparse grid
interpolant at the depth d is defined as

f̂d(x) = f̂d−1(x) +

nd∑
i=1

ψ
(i)
d (x) v

(i)
d , (4)

where nd represents the number of basis function at level

d, v
(i)
d is the so-called hierarchical surplus for the i-th node
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(a)

(b)

Figure 1: (a) Hierarchical basis function ψ
(i)
l

(
x
(i)
l

)
with the associ-

ated support nodes x
(i)
l until l = 3. (b) One dimensional toy-function

approximation by means of the above basis.

and it is defined as v
(i)
d =

[
f(x

(i)
d )− f̂d−1(x

(i)
d )
]
. Looking

at equation (4), we notice that the hierarchical surplus

“weights” the contribution of the i-th basis ψ
(i)
d (x) func-

tion on the interpolation process. This process is schemat-
ically shown in Fig. 1b.

Considering the definition of hierarchical surpluses, we
can observe that they embed the information on the vari-
ation of the accuracy of the interpolation between two ad-
jacent sparse grid levels. This information can be seen as
a measure of the interpolation accuracy. In this frame-
work, it can be exploited in order to adaptively refine the
hierarchical sparse grid and therefore obtain an even more
“sparse” set of samples. That is, when the underlying
function behaves “smooth enough” on a sub region of the
domain Ω, then the time consuming evaluation of the func-
tion is avoided. We can quantitatively define a kind of
measure of the degree of smoothness by defining a suit-
able error and a tolerance associated to it. We define the
estimation of the interpolation error as

εd(x) =
∥∥∥f̂(x)− f(x)

∥∥∥
2
,

where ‖·‖2 stands for the L2-norm. Therefore, by compar-
ing the above equation with the definition of hierarchical
surplus, we have that the error at the depth d − 1 i.e.,

εd−1(x), is equal to magnitude of the surplus v
(i)
d , thus it

can be considered as local estimation of the error at the
depth d. This adaptive refinement strategy, has been ap-
plied with success on electromagnetic problems, where ac-
curate databases and metamodels with many parameters

have been generated and tested.

3. Acquisition of the experimental curves

3.1. Sample description

Samples from extra low carbon steel, with com-
position 0.03%C-0.19%Mn-0.13%Al-0.0035%N-0.012%P-
0.01%Si, that had been industrially produced and cold
rolled to a final thickness of 0.3 mm through a reduction
of 84% were used in this study. A sample in the cold rolled
state and a sample after having been isothermally annealed
in the laboratory for 1000 s at 400◦ C have been used. The
microstructure of the steel sample only experiences recov-
ery processes at this low temperature, and hence, the only
microstructural feature changing between these samples is
the dislocation density and their configurations [3, 4].

3.2. Experimental B-H hysteresis loops

Major and minor magnetic B-H hysteresis loop determi-
nation was made using a single sheet tester system avail-
able at CEIT [11]. This is a completely digital, config-
urable and computer-aided system for measurements of
magnetic hysteresis loops in a wide range of excitation fre-
quencies for the purpose of material properties character-
ization. Major and minor hysteresis loops were recorded
at 0.1 Hz using an encircling coil wound around the sam-
ples for each steel sample varying the maximum amplitude
of the intensity of the magnetic field applied from around
200 A/m to 20 000 A/m in 10 steps.

4. Identification

The proposed meta-modelling approach has been ap-
plied for the identification of the Jiles-Atherton model and
the Mel’gui relation for two steel samples subjected to dif-
ferent treatments: a cold rolled sample and a thermally
annealed sample.

A single meta-model has been built for each parametric
model and the experimental curves have been identified by
minimizing the following cost function

f(Mmeta,Mexp) =

∫
H

|Mmeta(H)−Mexp(H)| dH∫
H

|Mexp(H)| dH
(5)

where Mexp(H) are the experimental data as function of
the applied field (for both external descending and ascend-
ing branches) and standing for the element of the meta-
model Mmeta(H). The numerical values for the models
parameters obtained via the optimization are given in Ta-
ble 1 and Table 2. The curves that correspond to these
parameters are compared with the experimental ones in
Fig. 2. It can be observed that the Jiles-Atherton model
fits better to the general shape of the curve, while the Mel-
gui model provides a worse fitting in the knee region of the
loops.
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Spec. Ms α a k c
CR 1.428 106 0.924 10−3 600 650 0
TA 1.5 106 1.169 10−3 600 500 9.429 10−6

Table 1: Identified parameters of the Jiles-Atherton model for the
cold rolled (CR) and the thermally annealed (TA) specimens.

Spec. Ms Hc Mr Mc χin

CR 1.428 106 700 0.815 106 0.272 106 33
TA 1.41 106 450 1.051 106 0.351 106 84

Table 2: Identified parameters of the Mel’gui model for the cold
rolled (CR) and the thermally annealed (TA) specimens.

The thermally annealed sample after having experienced
the recovery processes shows a much lower coercive field
value Hc [3, 4] and higher remanent magnetization, Mr

[12]. These two experimental parameters are reflected in
Hc and Mr parameters of the Melgui model, as well as
in the pinning parameter k of the Jiles-Atherton model,
which is a measure of the width of the hysteresis loop and
is proportional therefore to the coercive field Hc [13].

Conclusions

The meta-modelling approach has been applied for the
identification of the hysteresis curves for steels that have
undergone different treatments. Two meta-models, based
on the Jiles-Atherton parametric model and the Mel’gui
relation, have been constructed and used for the identifi-
cation of both steel samples.

Identification, parametric studies and calculation of sta-
tistical indices can be performed by using a properly pre-
calculated meta-model for entire families of materials. Fu-
ture work will concentrate on the use of meta-models for
studying the influence of different microstructural param-
eters in the hysteresis characteristics.
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