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Abstract: Automatic human action annotation is a challenging problem, which overlaps with many computer vision
fields such as video-surveillance, human-computer interaction or video mining. In this work, we offer a
skeleton based algorithm to classify segmented human-action sequences. Our contribution is twofold. First,
we offer and evaluate different trajectory descriptors on skeleton datasets. Six short term trajectory features
based on position, speed or acceleration are first introduced. The last descriptor is the most original since it
extends the well-known bag-of-words approach to the bag-of-gestures ones for 3D position of articulations.
All these descriptors are evaluated on two public databaseswith state-of-the art machine learning algorithms.
The second contribution is to measure the influence of missing data on algorithms based on skeleton. Indeed
skeleton extraction algorithms commonly fail on real sequences, with side or back views and very complex
postures. Thus on these real data, we offer to compare recognition methods based on image and those based
on skeleton with many missing data.

1 INTRODUCTION

Human activity recognition is becoming a major re-
search topic (see (Aggarwal and Ryoo, 2011) for a
review). The ability to recognize human activities
would enable the development of several applications.
One is intelligent video surveillance in a medical con-
text to monitor, at home, people with a limited auton-
omy (elderly or disabled person). Such systems could
detect, in a non-invasive way, events affecting peo-
ple safety such as falls or fainting and warn automat-
ically the medical assistance. Human activity recog-
nition could also lead to the construction of gesture-
based human computer interface and vision-based in-
telligent environment.

During the last decade, the analyse of natural
and unconstrained videos has known many improve-
ments, such as (Laptev et al., 2008; Liu et al., 2009;
Rodriguez et al., 2008). These improvements were
driven by recent progresses in object recognition in
static image. In this field, most of the state-of-the-art
approaches are based on the standard bag-of-words
pipeline (Sivic and Zisserman, 2003) that couples
low-level features like (Heikkilä et al., 2009; Lazeb-

nik et al., 2005; Lowe, 1999) with semantic under-
standing.

Besides, some works taking place in a video-
surveillance setting, with a constrained environment,
explore the characterization of human activities us-
ing 3D features (Li et al., 2010; Ni et al., 2011), or,
middle-level information related to person poses. 3D
features based methods mainly involve bag-of-words
pipeline and extends low-level features by adding 3D
information provided by depth-map.

Skeleton based methods rely on the extraction
of the body-part positions in each frame of a video
or motion capture sequence. Despite having a suit-
able accuracy when based on markers like in pio-
neer works (Campbell and Bobick, 1995), focused
on specific body parts in (Just et al., 2004) or being
adapted to dedicated applications such as human sign
language recognition (Bashir et al., 2007), skeleton
based methods were first not suited to the recogni-
tion of various natural actions. But, recent devices
like low-cost accelerometers (Parsa et al., 2004) or
KINECT allow the use of skeleton information to
characterize general activities.

In this work, we take advantage of these recent
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Figure 1: RGBD-HuDaAct dataset (Ni et al., 2011).

progresses and present an algorithm for human-action
sequence recognition. This algorithm is based on
skeleton data, and on trajectory descriptors. Trajec-
tory of each skeleton articulation is associated with
a descriptor. This descriptor is invariant to rota-
tions (toward the vertical axis) and translations of
the body, and, captures both trajectory short-term
information (throw an extension to 3D of (Ballas
et al., 2011) state-of-the-art descriptors) and trajec-
tory middle-term information (throw elementary ges-
ture recognition). These descriptors (one for each
skeleton articulation) form the sequence signatures
which are analysed by a Multiple-Kernel Learning
(MKL).

In addition, we study the effect of missing skele-
ton on our pipeline: despite large academic efforts to
deal with general pose estimation (Baak et al., 2011;
Girshick et al., 2011; Shotton et al., 2011), local fail-
ures in skeleton extraction are common in real-life
color-depth-videos (RGBD-video). Hence, we ex-
tend works of (Yao et al., 2011) where effects of
noise on joint positions on detection results is studied,
by focusing on our classification results according to
the degree of failures in skeleton extraction on the
daily-life sequences provided in the RGBD-HuDaAct
dataset (figure 1).

In this paper, related works are first reviewed in
section 2. Studied trajectory descriptors are presented
in section 3 and tested in section 4 on public datasets
(figure 2) where complete skeleton data are provided
(as part of the dataset). Then, impact of non-artificial
failures in skeleton extraction on the classification
performance of our algorithm is presented in section
5.

cooking lowering an object

drinking opening a drawer

using a computer closing a drawer

Figure 2: CUHA dataset (first column-(Sung et al., 2011))
and TUM dataset (second column-(Tenorth et al., 2009)).

2 RELATED WORKS

Trajectory features have been introduced in the con-
text of human action recognition to capture video
motion patterns through long-term analysis. In
(Matikainen et al., 2010), trajectory motion vectors
form directly non-fixed-length trajectory descriptors.
In (Raptis and Soatto, 2010), the average of descrip-
tors of points composing the track over time is taken
as the trajectory descriptor, resulting in a fixed-size
descriptor. However, this approach discards the tem-
poral information of the trajectory. To tackle this is-
sue, a Markov process is used in (Messing et al., 2009;
Sun et al., 2009): elementary motions are quantized
and transitions between motions words are modelled
through a Markov model to represent trajectory. In
(Mezaris et al., 2010), Multiple Haar filters extract
motion information at different time-scales, and, in
(Ballas et al., 2011), motion and velocity information
are combined to form trajectory descriptor.

After the descriptors extraction, an aggregation
scheme transforms the local descriptors into a global
video signature. In (Ballas et al., 2011; Raptis and
Soatto, 2010; Sun et al., 2009), this aggregation relies
on the bag-of-words model, while in (Messing et al.,
2009), the aggregation is obtained through a Gaussian
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Mixture Model.
All these approaches rely on numerous salient

patches with low semantic meaning to construct the
video signature. However, it has been noticed by
the well-known moving light experiment (Johansson,
1973) that a human is able to recognize a human ac-
tion only from the set of skeleton articulations. This
experiment, coupled with the recent success in skele-
ton extraction based on depth map provided by ac-
tive captor, invites to explore the idea of human action
analysis based on skeleton data.

Previous works have explored human skeleton-
based features for human action recognition. In (Yao
et al., 2011), distances between skeleton articulation
are used as weak features and Hough-forests frame-
work as detector. They prove that Hough-forests us-
ing both skeleton and image features achieve better
performance than forests using only image features.
In (Raptis et al., 2011), a system based on skeleton
pose estimation is presented. The system considers
120 frames-long skeleton trajectories and applies the
maximum normalized cross correlation framework to
recognize dance gestures. In (Sung et al., 2011) a two-
layered maximum entropy Markov model (MEMM)
is built on pose based features, while in (Tenorth
et al., 2009), pose based features are considered in
a conditional random field (CFR) context. Finally in
(Barnachon et al., 2012), activities are represented as
words on a gesture alphabet, this allows to use an au-
tomaton to recognize activity languages. Those previ-
ous works have proven the relevancy of the skeleton-
based features for human activity recognition.

In this work, we apply trajectory descriptors to
skeleton data to form sequence signatures, invariant
both in rotation and translation. These signatures
are then used to classify sequences throw a machine
learning algorithm. The offered algorithm is tested
on both CUHA dataset (Sung et al., 2011) and TUM
dataset (Tenorth et al., 2009).

In addition, we study the impact of skeleton ex-
traction failure on our classification results. In every
previous works on human action recognition based on
skeleton data, skeleton extraction failure is rarely con-
sidered. In (Yao et al., 2011), the correct-detection
rate is evaluated when adding noise on joint positions.
The offered algorithm provides a Gaussian noise ro-
bustness on detection performance up to a standard
deviation of 0.27m. Following this work, we present
the performances of our system when skeleton extrac-
tion is only intermittent as frequently observed in nat-
ural sequences.

3 SKELETON DATA BASED
SEQUENCE SIGNATURE

The computation of our sequence-signature based on
skeleton data is divided into several steps. First, tra-
jectories are normalized in order to be invariant ac-
cording to rotation around the vertical axis and trans-
lations. Then, one descriptor capturing the trajectory
information is computed for each articulation. These
descriptors handle intermittent data to manage cases
where skeleton extraction failed. Finally, this set of
trajectory descriptors forms the final sequence signa-
ture.

3.1 Pose Extraction and Normalization

In order to be independent of the skeleton data across
datasets and existing systems (such as NITE), we
choose to use only trajectories of feet, knees, hips,
shoulders, head, elbows and hands articulations as in-
put trajectories.

In these trajectories, the 3D coordinates of the
skeleton articulations are expressed in a system of co-
ordinates which is linked to the camera position. To
recognize activity under various viewpoints, a nor-
malization scheme has to be applied resulting in ar-
ticulation coordinates invariant to geometric transfor-
mations. For instance, translation, and rotation invari-
ance is achieved in (Raptis et al., 2011; Yao et al.,
2011). In (Yao et al., 2011), skeleton information is
reduced to a set of features based on distances be-
tween articulations. In (Raptis et al., 2011), the skele-
ton articulation coordinates are expressed in a new
system of coordinates defined by the principal axis of
torso points. However, with complete rotation invari-
ance, some activities such aslie-downandstanding
become indistinguishable. To ensure the discrimina-
tive power of our final descriptor, we choose to be
invariant only toward skeleton rotations around the
vertical-axis and to skeleton global translations. To
reach this invariance, articulation coordinates are ex-
pressed in a new system of coordinates (O,ux,uy,uz)
where the origin is the center of the shoulders,uz is an
estimation of the vertical vector (built using the video
vertical vector),uy is the orthogonal projection of the
vector connecting the left shoulder to the right shoul-
der on the horizontal plane determined byuz, andux is
set so that(ux,uy,uz) defines an orthonormal system
(figure 3).

Using these new coordinates, we define 6 short-
term descriptors which model one frame information
and a middle-term descriptor which models elemen-
tary gestures.
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Figure 3: Schema of skeleton normalization:uz = ez, uy is
the vector between the two shoulders projected on the plane
z= 0 and the 0 is the center of the two shoulders.

3.2 Short-term Descriptors

Short-term modelling focuses on capturing the distri-
bution of instantaneous information in the sequence
represented as(v1, ...,vI ): vi (i ∈ {1, ..., I} where I
is the length of the sequence) is a vector of position,
velocity (difference of position between two consecu-
tive frames) or acceleration (difference of velocity be-
tween two consecutive frames). To achieve scale in-
variance, vectors are normalized according to the tra-
jectory maximum vector magnitudemaxi=1..I ||vi ||2.
Then, the vectorsvi are quantified to estimate their
distributions. We propose a 3D extension of the quan-
tification from (Sun et al., 2009) where polar grid is
used to quantize both vector direction and vector mag-
nitude. As final classification performances are em-
pirically stable relatively to this quantification, we in-
troduce the least change from (Sun et al., 2009) quan-
tification. Hence, we use spherical coordinates with
3 equal bins for vector magnitude and respectively 2
and 4 uniform bins for inclination and polar angles.
An additional bin is added to represent the null vector
resulting in a 25 bins quantification as in (Sun et al.,
2009).

Two kinds of models are considered for the trajec-
tories. First, a simple histogram is estimated resulting
in a 25 dimensional vector.

As an histogram is an orderless representation, it
does not take into account the temporal relation be-
tween the elementary vectors. To complete the previ-
ous representation, we also consider the Markov Sta-
tionary Features (Ni et al., 2009; Sun et al., 2009) that
enforces the temporal consistency by considering the
temporal co-occurrence statistics. The stochastic ma-
trix counting the co-occurrences of successive bins is
computed. As this matrix belongs to a high dimen-
sional space (25×25), it can not be directly used as

descriptor and the stationary distribution associated to
the Markov process (Breiman, 1992) is used instead.

Both representations areL1 normalized in order to
be invariant to the action duration.

It results in 6 different descriptors for each ar-
ticulation: Short Term Position, Short Term Motion,
Short Term Acceleration, Short Term Markov Posi-
tion, Short Term Markov Motion, Short Term Markov
Acceleration. In addition to these descriptors, a de-
scriptor based on middle-term modelling is also in-
troduced.

3.3 Gesture based Descriptor

An activity can be described as a succession of ele-
mentary gestures, defined by several frames of the se-
quence. Contrary to (Barnachon et al., 2012) where a
rough segmentation is performed based on trajectory
discontinuities to extract non-overlapping gestures,
we choose to adopt a dense and overlapping approach
to be independent from ad-hoc gesture-segmentation
algorithm, and, to ensure that all discriminative ges-
tures are extracted (figure 4.a). We consider each
window (with different allowed sizes) of each tra-
jectory as a gesture. In this work, the set of al-
lowed sizes is{0.2,0.4,0.6,0.8} second. Hence, let
(v1, ...,vI ) be the sequence of positions measured at
frequencyf , then for all sizes∈ {0.2,0.4,0.6,0.8}
and for all offseti ∈ {1, ..., I − s f} the sub-trajectory
vi ,vi+1, ...,vi+s f is a gesture (when skeleton is avail-
able in all frames of the window).

A bag-of-words model (Sivic and Zisserman,
2003) is then used to capture the gesture distribution
contained in a trajectory. A vocabulary of gestures is
learned through an unsupervised clustering performed
by the K-means algorithm (figure 4.b). K-means is
done for each gesture size and articulation separately.
Then, each articulation trajectory is described with
the corresponding histogram (figure 4.c) which forms
our bag-of-gestures descriptor (BOG).

3.4 Classification based Multiple Kernel
Learning

Our sequence signatures are composed by 13 trajec-
tory descriptors - one for each skeleton articulation.
To exploit this multiple channels representation, a
Multiple-Kernels support machine is used along with
a χ2 kernel. Theχ2 distance between two vectorsu,v
of sizeN is given by

DN(u,v) =
1
2

N

∑
n=1

(un− vn)
2

un+ vn

Let A andB be two sequence signatures and letH be
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(a) overlapping gesture extraction

(b) gesture quantification

(c) BOG trajectory descriptor

Figure 4: Bag-of-gesture descriptor for a trajectory.

the size of the corresponding trajectory descriptor,
then the kernel value forA,B is

K(A,B) = exp(−
13

∑
s=1

βsDH(As,Bs))

whereβs is the weight associated to the channels (a
specific articulation here).

Optimal βs are automatically determined us-
ing training samples through MKL implemented by
SHOGUN library (Sonnenburg et al., 2010).

4 EVALUATION ON TUM AND
CUHA DATASETS

We evaluate all introduced trajectory-based sequences
signatures on two public datasets using the same
MKL algorithm for classification. In addition, we also
evaluate combination of trajectory descriptors.

4.1 Datasets

The CUHA dataset (for Cornell University Human
Activity) is presented in (Sung et al., 2011). It deals
with 14 classes of daily-life activities performed by
four people (figure 2). It contains 68 sequences

around 30 seconds each. The evaluation process con-
sists in a leave-one-subject-out cross validation in
precision-recall terms.

The TUM dataset is presented in (Tenorth et al.,
2009). It deals with 10 action classes occurring when
setting a table (figure 2). It contains 19 realistic se-
quences around 2 minutes each, performed by 5 peo-
ple. Evaluation from (Yao et al., 2011) consists to
split data between training and testing, and to out-
put result in correct-classification rate term. In this
dataset, each frame is associated to one action label.
As our system expects segmented data (contrary to
those from (Tenorth et al., 2009; Yao et al., 2011)),
we split each sequence each time the action label
changes. this gives around 1000 sub-sequences with
homogeneous label which are used as input.

4.2 Results

The evaluation of our trajectory signatures are pre-
sented in table 1 (in percentage). These results are
completed by the results of 3 well-known methods of
the literature:

• The first one (MEMM) proposed by (Sung et al.,
2011) uses a two-layered maximum entropy
Markov Model on pose-based features.

• The second one (Yao et al., 2010; Yao et al., 2011)
uses the Hough forests to classify actions asso-
ciated to weak classifiers based on distances be-
tween skeleton or visual feature.

• Finally, a Dynamic Time Wrapping (DTW) algo-
rithm combined with the nearest neighbour clas-
sification approach (Fengjun et al., 2005; Müller
and Röder, 2006) has also been evaluated on these
datasets.

Only the four best short-term descriptors are pre-
sented (Short Term Position, Short Term Motion,
Short Term Acceleration, Short Term Markov Mo-
tion). The number of centroids for K-means algo-
rithm which provides the best trade-off on all experi-
ments is 60 for BOG. As we do not see any improve-
ment by using multiple windows in the BOG descrip-
tor, we use only 0.4 second windows for gesture ex-
traction.

One result of this experiment is that the intro-
duced descriptors provide complementary results de-
pending on the databases. Short Term Position has
the best performances among other Short Term de-
scriptors on the CUHA dataset which deals with sev-
eral static actions (standing still, relaxing on a couch)
whereas Short Term Motion performs better on the
TUM dataset, which contains dynamic actions (open-
ing a door, closing a door). Bag-of-gestures (BOG),
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Table 1: Results on CUHA and TUM datasets.

CUHA Dataset TUM Dataset
Precision Recall F0.5 correct-classification rate

MEMM (Sung et al., 2011) 69 57.3 64.2
Hough forest based visual fea-
tures (Yao et al., 2010)

69,5

Hough forest based skeleton fea-
tures (Yao et al., 2011)

81,5

DTW baseline 83.7 74.5 77.2 76.3

Short Term Position 80.2 86.3 81.4 76.6
Short Term Motion 72.2 75.6 72.9 84.4
Short Term Acceleration 67.9 74.2 69.1 68.35
Short Term Markov 79.4 84.5 80.4 81.7

Bag-of-Gestures 90.1 84.5 88.9 84.5
Short Term Combination 70.5 71.4 70.7 90.8

which combines pose and movement on a middle-
term duration, has better results than any individual
short term descriptor on CUHA and TUM datasets. It
can also be noted that both short-term descriptors and
bag-of-gestures lead to results similar or better than
those of the literature on the two databases.

The size of short-term descriptor and bag-of-
gesture descriptor are really different since the first
vector size is 25× 13 = 325 while the second one
is 60× 13= 780. Moreover, as the best short-term
descriptor depends on the database, we propose to
combine these short-term descriptors into a single one
with size 325×4= 1300. As shown in Figure 1, this
new descriptor called short-term combination leads to
better results on the TUM database and is less effec-
tive on the CUHA database. As its size is much larger,
a good compromise is to use the bag-of-gesture de-
scriptor which leads to better results than the state-of-
the-art methods, regardless of the test database.

As it has been noticed by previous work, skele-
ton based approaches provided high performances. In
this work, we show that on datasets where skeleton is
provided (CUHA, TUM), our approach leads to high
results and outperforms the state-of-the-art. However
if skeleton based approaches seem to be robust, one
may wonder what happens on real sequences where
the skeleton is obtained only intermittently.

Indeed, some algorithms such as DTW combined
with the nearest neighbour classification framework
which relies directly on comparison between skele-
ton articulations positions can not deal with missing
observation. In the last section, we describe the be-
haviour of our algorithm on intermittent data. More
precisely, we show that the BOG descriptor is flexible
enough to adapt to missing data and provides results
comparable to state-of-the-art ones.

5 BEHAVIOUR OF THE METHOD
ON INTERMITTENT DATA

In order to evaluate the performance of our system
in presence of missing skeleton data, incomplete se-
quences could be generated from complete ones by
removing data. However real-life failure can be cor-
related with specific part of the action and in the worst
cases, with the most discriminative parts of the action.
Hence, we decide to study the performance of our sys-
tem on real intermittent data instead of artificial ones.
In that purpose, we use the NITE software suite to
extract skeleton from RGBD-HuDaAct dataset. As
this database is not designed for skeleton extraction,
some problems occur with side or back views of peo-
ple, or when the subject has very specific postures that
does not allow skeleton extraction. This provides in-
complete sequences, and, we evaluate our algorithm
according to various percentages of missing data.

5.1 Dataset

The RGBD-HuDaAct dataset is presented in (Ni
et al., 2011). It deals with 12 classes (+ one ran-
dom class) of daily-life activities performed by 30
people. It is composed by 1189 RGBD-video se-
quences, around 1 minute each. Contrary to other
datasets like (Tenorth et al., 2009; Sung et al., 2011),
RGBD-HuDaAct is not designed for skeleton extrac-
tion. In TUM dataset (Tenorth et al., 2009), skele-
ton stream is provided by a body-part tracker which
is manually helped when tracking failures occur. In
CUHA dataset (Sung et al., 2011), skeleton stream is
provided by the general public NITE software suite,
but there is no skeleton extraction failures, maybe be-

6



Figure 5: Number of sequences with a given SER.

cause actions are fronto-parallel to the camera and rel-
atively constrained. In RGBD-HuDaAct, sequences
seem more natural (actions are not fronto-parallel to
the camera...) and skeleton extraction based on NITE
software suite suffers from many failures.

NITE software provides for each skeleton articu-
lation, a boolean describing if the position is consid-
ered as reliable by the system. Hence, we consider
that the skeleton is correctly estimated in a frame, if
and only if, one skeleton only is extracted from the
frame and for all body-parts of interest (feet, knees,
hips, shoulders, head, elbows and hands) the corre-
sponding booleans are true.

In order to measure the intensity of failures in
skeleton extraction, the ratio between the number of
frames where skeleton is correctly estimated and the
total number of frames is computed for each sequence
of the dataset. This ratio expressed in percentage is
called, in this work, SER for Skeleton Extraction Ra-
tio, and is used as a measure of the sequence validity.

The histogram corresponding to the number of se-
quences versus SER is presented in figure 5.

We can already notice that for more than ten per-
cents of the sequences, the skeleton is never extracted
during the entire sequence.

Figure 6 shows the average SER for each action of
the database. It varies between 51.3% forstand up (T)
and 82.3% forput on jacket (D). It can be noticed that
the sequences where the skeleton is not well extracted
do not rely on the performed actions.

The large range of SER presented in figure 5 al-
lows us to evaluate our action classification system
with different levels of skeleton extraction failures.
For this purpose, we extract all sequences with a SER
greater thanλ% (whereλ is an integer varying from 0

Class labels are designed by a code letter:

go to bed (B), put on jacket (D), exit the room (E), get up from bed

(G), sit down (I), drink water (K), enter room (L), eat meal (M),

take off jacket (N), mop floor (O), make a phone call (P),

background activities (R), stand up (T).

Figure 6: SER averages for each action class.

to 100) and evaluate our algorithm on this subset us-
ing the leave-one-subject-out scheme as in (Ni et al.,
2011).

5.2 Classification

As the number of sequences vary with the level of
SER, we have to deal sometimes with classes hav-
ing a small number of sequences. Hence, we use a
multiple-C-SVM framework (as suggested in (He and
Ghodsi, 2010)) instead of MKL to perform classifica-
tion.

Basically, in binary C-SVM, data are mapped to
point in some vector space and a plane is designed
to minimize the number of misclassification between
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Figure 7: Evolution of accuracy versus minimal SER.

positive and negative points. But, it has been empha-
sized in (He and Ghodsi, 2010) that SVM classifiers
efficiency decreases when positive and negative mis-
classification rates (number of misclassifications over
number of points) are too different, which is common
when data are not balanced. Hence, in binary 2C-
SVM, a plane is designed to minimize both the num-
ber of misclassifications and the difference between
positive and negative misclassification rates.

In practice, this is performed by dividing the mis-
classification cost of a point by the number of points
of the corresponding class. The standard multiple-
classes classifier built on the poll of one-vs-one bi-
nary 2C-SVM is then used to perform classification
(Hsu and Lin, 2002). Linear-SVM implementation is
provided by LIBSVM (Chang and Lin, 2011).

5.3 Results on Intermittent Data

The evolution of the correct-classification rate versus
λ (minimal SER allowed) is presented in figure 7. We
do not evaluate the system forλ greater than 88 as
only 10% of sequences from RGBD-HuDaAct have a
SER greater than 88%. The correct-classification rate
is low both when there are too few data (λ close to 88)
or when data contains some heavily corrupted sam-
ples (λ close to 0). However, forλ = 69 (correspond-
ing to 442 sequences) a good compromise is found be-
tween the number of sequences and their quality: the
algorithm has 82.41% of correct-classification rate.

In order to link these results to the state-of-the-art,
let us remind that the best known results (Ni et al.,
2011) on this dataset is a correct-classification rate of
81.5% on 59% of all sequences (655 sequences ran-

domly sampled). Two multi-modal strategies, com-
bining color and depth information, have been de-
veloped: spatio-temporal interest points (STIPs) and
motion history images (MHIs). These two methods
do not use skeleton and thus are not sensitive to the
failure problems during skeleton extraction. It is not
easy to predict their results on the complete dataset,
or, on the 442 sequences leading to our 82.41% of
correct-classification rate. Moreover, as the 655 used
sequences were randomly selected, it is not possible
to build their testing database in order to compare
both results. However, our algorithm is competitive
with their method as the recognition rates are simi-
lar. Hence, we can conclude that skeleton based ap-
proaches like our algorithm provide state-of-the-art
results even on intermittent data and thus can be used
for action recognition in real-life.

6 CONCLUSIONS

In this paper, we evaluate 7 trajectory descriptors in
context of human action recognition based on skele-
ton trajectory. We first presented 6 short term trajec-
tories descriptors based on position, speed or accel-
eration. The last descriptor is more original since it
extends the well-known bag-of-words approach to the
bag-of-gestures ones, defined only on 3D position of
articulations. To our knowledge, this is the first time
that bag-of-gestures are defined using 3D points.

Performances of each descriptor and combina-
tion of them associated with a same MKL classifier
have been evaluated on the public CUHA and TUM
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datasets, for which skeleton stream is provided. The
main result is that the descriptor based on bag-of-
gestures outperforms three very recent methods of the
state-of-the-art on the two databases : 88.9% of F0.5
measure on CUHA database and 84.5% of correct
classification on TUM dataset.

We also study the proposed algorithm on a more
difficult database not designed to extract skeleton: the
public RGBD-HuDaAct database. During the skele-
ton estimation performed with NITE software, some
problems occurred with side or back views of peo-
ple, or when the person has very specific postures that
do not allow skeleton extraction. Even if the RGBD-
HuDaAct database is really challenging to perform
action recognition based on skeletons, it has been con-
sidered here to represent some conditions of video
surveillance system at home. The main result of these
tests if that even in these conditions, and with a signif-
icant amount of missing data, our descriptor achieves
the state-of-the-art performance of 82% of recogni-
tion rate. To our knowledge, it is the first time that
failures in skeleton extraction are considered during
action recognition.

In future works, we will continue to explore the
links between high-level human actions and elemen-
tary gestures and design a framework to learn middle-
semantic gestures which are the most relevant for hu-
man action recognition. Such framework will allow
us to recognize an action from a small number of
middle-semantic gestures whereas the algorithm pre-
sented in this work recognizes actions from the set of
all gestures. Hence, such framework is likely to both
speed up and increase accuracy of the system. In addi-
tion, we will extend current bag-of-gestures descrip-
tor by taking into account the co-occurrence relation
of different articulations and co-occurrence relation of
pairs of successive gestures of a given articulation.
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