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Abstract. The Doubly Regularized SVM (DrSVM) is an extension of
SVM using a mixture of L2 and L1 norm penalties. This kind of penalty,
sometimes referred as the elastic net, allows to perform variable selection
while taking into account correlations between variables. Introduced by
Wang [1], an e�cient algorithm to compute the whole DrSVM solution
path has been proposed. Unfortunately, in some cases, this path is discon-
tinuous, and thus not piecewise linear. To solve this problem, we propose
here a new sub gradient formulation of the DrSVM problem. This led
us to propose an alternative L1 regularization path algorithm. This re-
formulation e�ciently addresses the aforementioned problem and makes
the initialization step more generic. The results show the validity of our
sub-gradient formulation and the e�ciency compared to the initial formu-
lation.

1 Introduction

The Support Vector Machine (SVM) has been extensively used over years for
classi�cation tasks, thanks to its high-rated performances and its robustness.
However SVM is not a sparse model since the number of support vectors increases
linearly with data. To address this issue, the SVM L1 [2], replaces the L2 norm
by L1 norm as penalty to induce more sparsity. One drawback of the L1 norm
resides in its property to keep only one element among a correlated variable set,
even if all the variables are relevant. Indeed in some high dimensional problems
where p � n, it can be interesting to keep all the variables of interest (even if
they are correlated) and discard the other ones. The elastic net penalty, a mix
of (L1, L2) penalties, addresses this compromise between sparsity and variable
selection and has been applied for regression tasks [3]. The L2 penalization
term balances the e�ect of L1 norm penalization by reducing the di�erence of
coe�cients associated with correlated variables. Wang [1] studied an elastic
net equivalent formulation for classi�cation problems called Doubly Regularized
SVM (DrSVM) and proposed an algorithm to solve it via a regularization path
method. The DrSVM problem is stated as follows, for some given regularization
parameters λ1 and λ2:

min
β0,β

J(β0, β) =
n∑
i=1

max
(
0, 1− yi(β0 + βTxi)

)
+ 1

2λ2 ‖β‖
2
2 + λ1 ‖β‖1 (1)
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The main issue is that the initial problem (1) is not di�erentiable due to the
Hinge function and L1 norm. Wang chose to cast it into an equivalent con-
strained problem and built a regularization path according to a parameter that
controls the L1 constraint. Since the regularization path is not directly built
from λ1, the λ1-regularization path has to be deduced afterwards. Moreover,
for very sparse con�guration (λ2 � 1), the algorithm su�ers from a lack of sta-
bility. However we decided to solve the initial problem via sub-gradient theory
and built a regularization path directly from λ1. This path construction im-
proves the robustness of DrSVM for sparse models. In this paper, we introduce
the initial DrSVM formulation and detail the novel formulation using the sub-
gradient theory. Then, in order to improve the robustness and validity of this
new formulation, we propose to apply it on both toy dataset and real data.

2 DrSVM algorithm

Here we detail the initial DrSVM resolution and introduce some notations: let
X = (xi)1≤i≤n be the learning database and Y = (yi)1≤i≤n the label vec-
tor, (λ1,λ2) the regularization parameters associated respectively to L1 and L2

norms, f(x) = β0 + βTx a linear classi�er, ri = 1− yif(xi) the residual error at
point xi. Due to the non di�erentiability of the hinge loss and the L1 norm, the
de�nition of the following sets arises naturally: R = {i, ri < 0}, E = {i, ri = 0},
L = {i, ri > 0}, Vβ = {j, βj 6= 0}, V0 = {j, βj = 0}. We note βVβ the vector β
projected on the subscript set Vβ and |Vβ | the cardinal of Vβ . Wang proposed
a regularization path algorithm to solve the DrSVM problem (1). To this end,
the initial DrSVM problem (1) has been recast as: min

β0,β,ε
J2(β0, β, ε) =

n∑
i=1

εi + 1
2λ2 ‖β‖

2
2

with ∀i, ri ≤ εi ; ∀i, εi ≥ 0 ; ‖β‖1 ≤ s,
(2)

where the parameter s controls the in�uence of the L1 constraint, and ε is
the slack variable vector. The regularization path proposed by Wang is built
according to s and will be called the s-path algorithm. The Lagrangian function
is de�ned by: L(β0, β, α, η) = J2(β, ε)+

∑n
i=1 αi(ri-εi)+η(‖β‖1−s)+

∑n
i=1 µiεi,

where α, η and µ are the Lagrangian coe�cients. Writing the KKT conditions
of (2) leads to the following |E|+|Vβ |+2 unknowns/equations system:



∀j ∈ Vβ , λ2
∆βj
∆s
−
∑
i∈E

∆αi
∆s

yixij +
∆η

∆s
sign(βj) = 0 (a)∑

i∈E

∆αi
∆s

yi = 0 (b)

∀i ∈ E ,
∆β0
∆s

+
∑
j∈Vβ

∆βj
∆s

xij = 0 (c)

∑
j∈Vβ

sign(βj)
∆βj
∆s

= 1 (d)

(3)
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The s-path algorithm proceeds into two steps. First step is the computation of
(αE , β0, βVβ , η) derivatives by inverting 3. Second step is break points detection
(changes of the system 3). The breaking points are computed by considering all
the events that could occur: a point leaves the set E , a point hits the set E , a
variable becomes inactive, a variable becomes active or η = 0 (stopping condi-
tion). During each iteration, α and η are updated, the Lagrangian parameter η
can be assimilated to the parameter λ1 of the problem (1). The regularization
path according to λ1 can be easily deduced from the s regularization path.
An helpful property of the DrSVM is its ability to approximate the L1 SVM for
relatively lows values of λ2. So, if (β0,β) are piecewise linear according to the
threshold parameter s, this is not generally the case for the Lagrangian coe�-
cients α, especially for low values of λ2. Low λ2 values tend to prevent points
to leave E and variable activation which is likely to lead to |E |>|V|+1 and over-
determination of (β0,βVβ ). In this situation it is necessary to update α and η
while keeping s constant in order to reach a state where the regularization path
can be continued. To overcome this problem, we studied the initial problem (1)
via the sub-gradient theory and decided to build the regularization path accord-
ing to λ1 rather than s, which is more e�cient. Moreover we will demonstrate
that it automatically avoids the over determination of (β0,βVβ ). Note that the
Lagrange formulation and associated KKT conditions could have been used to
derive equations but at the price of more tedious computations.

3 Formulation of DrSVM via sub-gradient theory

The sub-gradient theory extends the concept of gradient in the case of non dif-
ferentiability. More precisely, for some vector space X, if h : X → R is a
convex function, its sub-gradient ∂h(a) at the point a is de�ned by ∂h(a) =
{g ∈ X, ∀x ∈ X, f(x) ≥ h(a) + gT (x − a)}. By de�nition, a sub-gradient
is a set of vectors that respects some constraints but can be taken for an un-
known constrained parameter. We will keep this assimilation for the rest of
the paper. The non di�erentiable problem (1) involved only real convex func-
tions so the sub-gradient is well de�ned. The sub-gradient of L according to
respectively β0 and β, are calculated by composition using the formula of the
sub-gradient of max and absolute functions: ∂β0

J(β0, β, η) = −
∑n
i=1 yiαi and

∂βJ(β0, β, η) = −
∑n
i=1 yiαixi+λ2β+λ1γ, with γ and α the sub-gradients asso-

ciated respectively with the hinge loss and the L1 norm. They ful�l the following
conditions: αR = 0, αE ∈ [0, 1], αL = 1 and γVβ = sign(β)Vβ , γV0 ∈ [−1, 1].
Note also that α is proportional to Lagrange coe�cients of (2). The di�erentia-
tion with respect to λ1 of the optimality conditions and ri = 0 gives a |E|+|Vβ |+1
unknowns/equations system:
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

∀j ∈ Vβ , λ2
∆βj
∆λ1

−
∑
i∈E

∆αi
∆λ1

yixij = −sign(βj) (a)∑
i∈E

∆αi
∆λ1

yi = 0 (b)

∀i ∈ E ,
∆β0
∆λ1

+
∑
j∈Vβ

∆βj
∆λ1

xij = 0 (c)

(4)

Parameters (αE ,β0,βVβ ) are piecewise linear according to λ1 and thus a λ1-
regularization path algorithm can be derived. As seen before, the computation
of the whole λ1-path is a two steps procedure. The computation of (αE , β0,
βVβ ) derivatives with respect to λ1 are given by inverting (4) and break points
detection (changes of the system (4)). The possible events are the same than as
those for the s-path but the detection's conditions are di�erent. Let's study the
case of sparse models which leads naturally to |E|=|V|+1. In this situation (a,b)
implies ∆αE/∆λ1 6= 0 (variation) while (c) implies ∆β0/∆λ1 = ∆βVβ/∆λ1 = 0,
which prevents the following events: a variable becomes inactive or a point hits
E . The only events possible are: a point leaves from E or a variable becomes
active which leads to |E|<|V|+1 so the λ1 path automatically avoids the problem
of over determination of (β0,βVβ ).

The initialization of the λ1-path algorithm requires a particular attention.
Initially λ1 = +∞, all variables are inactive. Two cases have to be considered,
depending on the balanced or unbalanced nature of the classes.

Balanced case: the mathematical analysis shows that any value of β0 ∈ [−1, 1]
is solution, though the R, E and L might not be the same. The choice β0 = 0
⇒ R = E = ∅, L = [1, n], α = 1, γ = 0 and avoids to solve a linear problem to
start the main procedure. Then we decrease λ1 until a sub-gradient component
γj = 1

λ1

∑n
i=1 yiαixij violates the constraint: −1 ≤ γj ≤ 1. This leads to:

λ01 = max
j∈V0

|
n∑
i=1

yiαixij | ; j0 = arg max
j∈V0

|
n∑
i=1

yiαixij |

The �rst activated variable is βj0 , λ1 is set to λ01 and the main procedure can
be started.

Unbalanced case: lets I+ and I− be the plus and minus classes. We suppose
|I+| > |I−| (the other case is symmetric). The solution is unique: β0 = 1,
R = ∅, E = I+ and L = I−. The value λ1 is in�nite and decreases to λ01
evaluated as follows:


min

λ1,αi∈E
λ1

n∑
i=1

yiαi = 0 ; ∀i ∈ E , 0 ≤ αi ≤ 1 ; ∀j ∈ V0 ; − λ1 ≤ |
n∑
i=1

αiyixij | ≤ λ1
(5)
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Once (5) is solved, the main procedure can start. One can note that Wang
proposed a di�erent way by solving a linear system depending on s > 0, to
determine the state of R, E and L. Although this initialization is valid, s has
to be chosen appropriately. This can be problematic if no prior is known for
the dynamic of the regularization path. Indeed if the value of s is too high a
large part of the regularization path can be skipped, which can be prejudicial to
sparse models building.

4 Experiments

To demonstrate the validity of our λ1 regularization path, we reproduced some
results provided by Wang [1] on a toy data protocol and real MNIST data. Then,
we show an exemple of discontinuous behavior of the s-path, while our λ1-path
algorithm provides the whole set of solutions.

4.1 Toy data

This dataset is composed of two balanced classes of dimension p. The n− points
of minus class are drawn from a normal distribution of mean µ− = (−15,1,0p−5,1)
with covariance matrix Σ. The n+ points of plus class are drawn from a normal
distribution of mean µ+ = (15,1,0p−5,1) with the same covariance matrix Σ. A
sub part of Σ called Σ∗ �ts the covariance between the �ve variables. As Wang
proposed we test three con�gurations: Σ∗1, Σ∗2 and Σ∗3. We use a validation set of
20000 points to �nd the optimal parameters and a test set of 20000 points. The
analysis of table (1) shows that the two algorithms provide the same results.

Σ∗ n p p0 DrSVM(s) DrSVM(λ1)
Σ∗1 100 10 5 0.1410 0.1413

50 300 5 0.1658 0.1655
Σ∗2 100 10 5 0.140 0.140

50 300 5 0.144 0.145
Σ∗3 100 10 5 0.1175 0.1175

50 300 5 0.1220 0.125

Table 1: Comparison of the test error of the s-path with our λ1-path algorithm.

4.2 MNIST data

The MNIST data set is composed of 28 × 28 pixels images. We have selected
the 6 and 9 digits images. Then for each class, we choose 250 images for the
learning data, 750 images for the validation data and 1000 images for the test
data. Note that Wang used some characteristics for the classi�cation which
are not described so we decided to ignore them and to work with the linear
discriminant functions, so that p = 784. We retained for each regularization
formulation the optimal set (λ1,λ2) which are very closed and both test errors
are equal to 0.5%.
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4.3 An example of discontinuous s-path

This toy data is used to highlight our choice to build a regularization λ1 path.
The minus and plus distributions are generated respectively from normal distri-
butions of respective mean µ− = −15,1, µ+ = 15,1, with Σ = (σi,j)1≤i,j≤5, for
i 6= j: σi,j = 0.8 and for i = j: σi,j = 1. The value of λ2 is set to 10−3. This is
a low value, so the case |E| = |V| + 1 happened naturally. We have plotted the
path of α coe�cients for both s and λ1 regularization path. The discontinuous
points represent the part of the path that keeps s constant while decreasing λ1.

Figure 1: Zoom of regularization paths with respect to s (left) and λ1 (right).
On the s path some solutions α show discontinuities. The discontinuous point
s0 in the s-path corresponds to a segment in the λ1-path

5 Conclusion

The study of the initial DrSVM problem (1) via the sub-gradient theory led us to
build a regularization path directly from L1 regularization parameter: λ1. This
reformulation of DrSVM problem makes the regularization path more robust to
sparse models which makes the DrSVM more generic.
The DrSVM problem, by its own nature (the ability to keep all the pertinent
variables), is suited to interpretable models. So it may be interesting to merge
the DrSVM with a kernel approach. The last issue would be to determine some
early stopping conditions, in order to choose the most appropriate model.
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