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A robust regularization path for the Doubly Regularized Support Vector Machine

The Doubly Regularized SVM (DrSVM) is an extension of SVM using a mixture of L2 and L1 norm penalties. This kind of penalty, sometimes referred as the elastic net, allows to perform variable selection while taking into account correlations between variables. Introduced by Wang [1], an ecient algorithm to compute the whole DrSVM solution path has been proposed. Unfortunately, in some cases, this path is discontinuous, and thus not piecewise linear. To solve this problem, we propose here a new sub gradient formulation of the DrSVM problem. This led us to propose an alternative L1 regularization path algorithm. This reformulation eciently addresses the aforementioned problem and makes the initialization step more generic. The results show the validity of our sub-gradient formulation and the eciency compared to the initial formulation.

Introduction

The Support Vector Machine (SVM) has been extensively used over years for classication tasks, thanks to its high-rated performances and its robustness. However SVM is not a sparse model since the number of support vectors increases linearly with data. To address this issue, the SVM L 1 [START_REF] Paul | Feature selection via concave minimization and support vector machines[END_REF], replaces the L 2 norm by L 1 norm as penalty to induce more sparsity. One drawback of the L 1 norm resides in its property to keep only one element among a correlated variable set, even if all the variables are relevant. Indeed in some high dimensional problems where p n, it can be interesting to keep all the variables of interest (even if they are correlated) and discard the other ones. The elastic net penalty, a mix of (L 1 , L 2 ) penalties, addresses this compromise between sparsity and variable selection and has been applied for regression tasks [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF]. The L 2 penalization term balances the eect of L 1 norm penalization by reducing the dierence of coecients associated with correlated variables. Wang [START_REF] Wang | The doubly regularized support vector machine[END_REF] studied an elastic net equivalent formulation for classication problems called Doubly Regularized SVM (DrSVM) and proposed an algorithm to solve it via a regularization path method. The DrSVM problem is stated as follows, for some given regularization parameters λ 1 and λ 2 :

min β0,β J(β 0 , β) = n i=1 max 0, 1 -y i (β 0 + β T x i ) + 1 2 λ 2 β 2 2 + λ 1 β 1
The main issue is that the initial problem (1) is not dierentiable due to the Hinge function and L 1 norm. Wang chose to cast it into an equivalent constrained problem and built a regularization path according to a parameter that controls the L 1 constraint. Since the regularization path is not directly built from λ 1 , the λ 1 -regularization path has to be deduced afterwards. Moreover, for very sparse conguration (λ 2 1), the algorithm suers from a lack of stability. However we decided to solve the initial problem via sub-gradient theory and built a regularization path directly from λ 1 . This path construction improves the robustness of DrSVM for sparse models. In this paper, we introduce the initial DrSVM formulation and detail the novel formulation using the subgradient theory. Then, in order to improve the robustness and validity of this new formulation, we propose to apply it on both toy dataset and real data. Here we detail the initial DrSVM resolution and introduce some notations: let X = (x i ) 1≤i≤n be the learning database and Y = (y i ) 1≤i≤n the label vector, (λ 1 ,λ 2 ) the regularization parameters associated respectively to L 1 and L 2 norms, f (x) = β 0 + β T x a linear classier, r i = 1 -y i f (x i ) the residual error at point x i . Due to the non dierentiability of the hinge loss and the L 1 norm, the denition of the following sets arises naturally: R = {i,

r i < 0}, E = {i, r i = 0}, L = {i, r i > 0}, V β = {j, β j = 0}, V 0 = {j, β j = 0}.
We note β V β the vector β projected on the subscript set V β and |V β | the cardinal of V β . Wang proposed a regularization path algorithm to solve the DrSVM problem [START_REF] Wang | The doubly regularized support vector machine[END_REF]. To this end, the initial DrSVM problem (1) has been recast as:

     min β0,β, J 2 (β 0 , β, ) = n i=1 i + 1 2 λ 2 β 2 2
with ∀i, r i ≤ i ; ∀i, i ≥ 0 ;

β 1 ≤ s, (2) 
where the parameter s controls the inuence of the L 1 constraint, and is the slack variable vector. The regularization path proposed by Wang is built according to s and will be called the s-path algorithm. The Lagrangian function is dened by:

L(β 0 , β, α, η) = J 2 (β, ) + n i=1 α i (r i -i ) + η( β 1 -s) + n i=1 µ i i
, where α, η and µ are the Lagrangian coecients. Writing the KKT conditions of (2) leads to the following |E|+|V β |+2 unknowns/equations system:

                           ∀j ∈ V β , λ 2 ∆β j ∆s - i∈E ∆α i ∆s y i x ij + ∆η ∆s sign(β j ) = 0 (a) i∈E ∆α i ∆s y i = 0 (b) ∀i ∈ E , ∆β 0 ∆s + j∈V β ∆β j ∆s x ij = 0 (c) j∈V β sign(β j ) ∆β j ∆s = 1 (d) (3) 
The s-path algorithm proceeds into two steps. First step is the computation of (α E , β 0 , β V β , η) derivatives by inverting 3. Second step is break points detection (changes of the system 3). The breaking points are computed by considering all the events that could occur: a point leaves the set E, a point hits the set E, a variable becomes inactive, a variable becomes active or η = 0 (stopping condition). During each iteration, α and η are updated, the Lagrangian parameter η can be assimilated to the parameter λ 1 of the problem (1). The regularization path according to λ 1 can be easily deduced from the s regularization path.

An helpful property of the DrSVM is its ability to approximate the L 1 SVM for relatively lows values of λ 2 . So, if (β 0 ,β) are piecewise linear according to the threshold parameter s, this is not generally the case for the Lagrangian coecients α, especially for low values of λ 2 . Low λ 2 values tend to prevent points to leave E and variable activation which is likely to lead to |E|>|V|+1 and overdetermination of (β 0 ,β V β ). In this situation it is necessary to update α and η while keeping s constant in order to reach a state where the regularization path can be continued. To overcome this problem, we studied the initial problem (1) via the sub-gradient theory and decided to build the regularization path according to λ 1 rather than s, which is more ecient. Moreover we will demonstrate that it automatically avoids the over determination of (β 0 ,β V β ). Note that the Lagrange formulation and associated KKT conditions could have been used to derive equations but at the price of more tedious computations.

3 Formulation of DrSVM via sub-gradient theory

The sub-gradient theory extends the concept of gradient in the case of non differentiability. More precisely, for some vector space X, if h : X → R is a convex function, its sub-gradient ∂h(a) at the point a is dened by ∂h(a) = {g ∈ X, ∀x ∈ X, f (x) ≥ h(a) + g T (x -a)}. By denition, a sub-gradient is a set of vectors that respects some constraints but can be taken for an unknown constrained parameter. We will keep this assimilation for the rest of the paper. The non dierentiable problem (1) involved only real convex functions so the sub-gradient is well dened. The sub-gradient of L according to respectively β 0 and β, are calculated by composition using the formula of the sub-gradient of max and absolute functions:

∂ β0 J(β 0 , β, η) = -n i=1 y i α i and ∂ β J(β 0 , β, η) = - n i=1 y i α i x i + λ 2 β + λ 1 γ
, with γ and α the sub-gradients associated respectively with the hinge loss and the L 1 norm. They full the following conditions:

α R = 0, α E ∈ [0, 1], α L = 1 and γ V β = sign(β) V β , γ V0 ∈ [-1, 1].
Note also that α is proportional to Lagrange coecients of (2). The dierentiation with respect to λ 1 of the optimality conditions and r i = 0 gives a |E|+|V β |+1 unknowns/equations system:

                 ∀j ∈ V β , λ 2 ∆β j ∆λ 1 - i∈E ∆α i ∆λ 1 y i x ij = -sign(β j ) (a) i∈E ∆α i ∆λ 1 y i = 0 (b) ∀i ∈ E , ∆β 0 ∆λ 1 + j∈V β ∆β j ∆λ 1 x ij = 0 (c) (4) 
Parameters (α E ,β 0 ,β V β ) are piecewise linear according to λ 1 and thus a λ 1regularization path algorithm can be derived. As seen before, the computation of the whole λ 1 -path is a two steps procedure. The computation of (α E , β 0 , β V β ) derivatives with respect to λ 1 are given by inverting (4) and break points detection (changes of the system (4)). The possible events are the same than as those for the s-path but the detection's conditions are dierent. Let's study the case of sparse models which leads naturally to |E|=|V|+1. In this situation (a,b) implies ∆α E /∆λ 1 = 0 (variation) while (c) implies ∆β 0 /∆λ 1 = ∆β V β /∆λ 1 = 0, which prevents the following events: a variable becomes inactive or a point hits E. The only events possible are: a point leaves from E or a variable becomes active which leads to |E|<|V|+1 so the λ 1 path automatically avoids the problem of over determination of (β 0 ,β V β ).

The initialization of the λ 1 -path algorithm requires a particular attention. Initially λ 1 = +∞, all variables are inactive. Two cases have to be considered, depending on the balanced or unbalanced nature of the classes.

Balanced case:

the mathematical analysis shows that any value of β 0 ∈ [-1, 1] is solution, though the R, E and L might not be the same. The choice β 0 = 0 ⇒ R = E = ∅, L = [1, n], α = 1, γ = 0 and avoids to solve a linear problem to start the main procedure. Then we decrease λ 1 until a sub-gradient component

γ j = 1 λ1 n i=1 y i α i x ij violates the constraint: -1 ≤ γ j ≤ 1.
This leads to:

λ 0 1 = max j∈V0 | n i=1 y i α i x ij | ; j 0 = arg max j∈V0 | n i=1 y i α i x ij |
The rst activated variable is β j0 , λ 1 is set to λ 0 1 and the main procedure can be started.

Unbalanced case: lets I + and I -be the plus and minus classes. We suppose |I + | > |I -| (the other case is symmetric). The solution is unique:

β 0 = 1, R = ∅, E = I + and L = I -.
The value λ 1 is innite and decreases to λ 0 1 evaluated as follows:

       min λ1,αi∈E λ 1 n i=1 y i α i = 0 ; ∀i ∈ E , 0 ≤ α i ≤ 1 ; ∀j ∈ V 0 ; -λ 1 ≤ | n i=1 α i y i x ij | ≤ λ 1 (5)
Once ( 5) is solved, the main procedure can start. One can note that Wang proposed a dierent way by solving a linear system depending on s > 0, to determine the state of R, E and L. Although this initialization is valid, s has to be chosen appropriately. This can be problematic if no prior is known for the dynamic of the regularization path. Indeed if the value of s is too high a large part of the regularization path can be skipped, which can be prejudicial to sparse models building.

Experiments

To demonstrate the validity of our λ 1 regularization path, we reproduced some results provided by Wang [START_REF] Wang | The doubly regularized support vector machine[END_REF] on a toy data protocol and real MNIST data. Then, we show an exemple of discontinuous behavior of the s-path, while our λ 1 -path algorithm provides the whole set of solutions.

Toy data

This dataset is composed of two balanced classes of dimension p. The n -points of minus class are drawn from a normal distribution of mean µ -= (-1 5,1 , 0 p-5,1 ) with covariance matrix Σ. The n + points of plus class are drawn from a normal distribution of mean µ + = (1 5,1 , 0 p-5,1 ) with the same covariance matrix Σ. A sub part of Σ called Σ * ts the covariance between the ve variables. As Wang proposed we test three congurations: Σ * 1 , Σ * 2 and Σ * 3 . We use a validation set of 20000 points to nd the optimal parameters and a test set of 20000 points. The analysis of table [START_REF] Wang | The doubly regularized support vector machine[END_REF] shows that the two algorithms provide the same results. 

MNIST data

The MNIST data set is composed of 28 × 28 pixels images. We have selected the 6 and 9 digits images. Then for each class, we choose 250 images for the learning data, 750 images for the validation data and 1000 images for the test data. Note that Wang used some characteristics for the classication which are not described so we decided to ignore them and to work with the linear discriminant functions, so that p = 784. We retained for each regularization formulation the optimal set (λ 1 ,λ 2 ) which are very closed and both test errors are equal to 0.5%.

4.3

An example of discontinuous s-path

This toy data is used to highlight our choice to build a regularization λ 1 path. The minus and plus distributions are generated respectively from normal distributions of respective mean µ -= -1 5,1 , µ + = 1 5,1 , with Σ = (σ i,j ) 1≤i,j≤5 , for i = j: σ i,j = 0.8 and for i = j: σ i,j = 1. The value of λ 2 is set to 10 -3 . This is a low value, so the case |E| = |V| + 1 happened naturally. We have plotted the path of α coecients for both s and λ 1 regularization path. The discontinuous points represent the part of the path that keeps s constant while decreasing λ 1 .

Figure 1: Zoom of regularization paths with respect to s (left) and λ 1 (right). On the s path some solutions α show discontinuities. The discontinuous point s 0 in the s-path corresponds to a segment in the λ 1 -path 5 Conclusion

The study of the initial DrSVM problem (1) via the sub-gradient theory led us to build a regularization path directly from L 1 regularization parameter: λ 1 . This reformulation of DrSVM problem makes the regularization path more robust to sparse models which makes the DrSVM more generic. The DrSVM problem, by its own nature (the ability to keep all the pertinent variables), is suited to interpretable models. So it may be interesting to merge the DrSVM with a kernel approach. The last issue would be to determine some early stopping conditions, in order to choose the most appropriate model.

Table 1 :

 1 Comparison of the test error of the s-path with our λ 1 -path algorithm.

	Σ *	n	p	p 0 DrSVM(s) DrSVM(λ 1 )
	Σ * 1	100 10 5 50 300 5	0.1410 0.1658	0.1413 0.1655
	Σ * 2	100 10 5 50 300 5	0.140 0.144	0.140 0.145
	Σ * 3	100 10 5 50 300 5	0.1175 0.1220	0.1175 0.125
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