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ABSTRACT

In this paper, we propose a Bayesian approach for multivari-
ate time series segmentation. A robust non-parametric test,
based on rank statistics, is derived in a Bayesian framework
to yield robust distribution-independent segmentations of
piecewise constant multivariate time series for which mutual
dependencies are unknown. By modelling rank-test p-values,
a pseudo-likelihood is proposed to favour change-points de-
tection for significant p-values. A vague prior is chosen for
dependency structure between time series, and a MCMC
method is applied to the resulting posterior distribution. The
Gibbs sampling strategy makes the method computation-
ally efficient. The algorithm is illustrated on simulated and
real signals in two practical settings. It is demonstrated that
change-points are robustly detected and localized, through
implicit dependency structure learning or explicit structural
prior introduction.

Index Terms— Rank statistics, joint segmentation, de-
pendency structure learning, Bayesian inference, MCMC
methods, Gibbs sampling

1. INTRODUCTION

Detecting change-points in multivariate data is a classical
but major issue in many fields, like bioinformatics, industrial
monitoring, finance, or genomics. The literature in signal
processing suggests different approaches for the multiple
change-point detection problem. Existing monovariate meth-
ods (as presented in [1–3]) can be extended to the multivariate
case. A fused lasso latent feature model has been proposed,
for example in genomics [4]. Other approaches introduce
a hierarchical Bayesian model [5]. Our framework is the
off-line joint segmentation of piecewise constant time se-
ries: the events are abrupt changes in the distribution of the
observations, their number and localizations are unknown.

We consider a matrix X of K time series of N points:
xj,i is the observation of sensor j at time i, and is a change-
point if a change occurs at t ∈]i, i + 1], then xj,i is the last
point of a segment. The nature of these points is represented

by an indicator variable rj,i, element of the matrix R:

rj,i =

{
1 if xj,i is a change-point,
0 otherwise, (1)

with the convention that rj,1 = rj,N = 1,∀j ∈ {1, ...,K}.
R denotes the segmentation of X by the change-points in
each signal, it is the parameter to estimate. Another parameter
of interest is the implicit dependency structure that express
the links between the signals, assuming that if a change-point
appears in a signal j, it occurs simultaneously on the signals
that depend of j. Then the probabilities that a change-point is
shared across several signals is represented in the vector P .
Following the Bayes’ rule, we get the posterior for R and P :

f(R,P |X) ∝ L∗(X|R)f(R|P )f(P ). (2)

We propose to combine a non-parametric test to Bayesian
inference to express this statistical model. We chose the
Wilcoxon signed-rank test, that is often presented as robust to
several non-normal distributions, and makes the model free
of strong prior. Its power is discussed in [6], the test is shown
to be optimum for various alternatives in hypothesis testing.

This paper is organised as follows. The methodology is
described in section 2. First, we explain how the Wilcoxon
test is applied to define the pseudo-likelihood L∗(X|R).
Then the choice of priors for R and P is detailed to model
the dependency structure between time series. Finally a
marginalized posterior density for the parameter R is ex-
pressed, and the procedure to estimate the maximum a pos-
teriori (MAP), with a Markov Chain Monte Carlo (MCMC)
method and a Gibbs sampling strategy, is given. In section 3,
we present the results of the application on synthetic and real
data. The discussion about the model is in section 4.

2. BERNOULLI DETECTOR MODEL

The parameters to estimate are the change-points configura-
tions at each time index i ∈ {1, ..., N}: they are modelled by
the vectors of indicators defined in (1): Ri = (r1,i, ..., rK,i)

T ,
for signals 1 to K, where configuration Ri ∈ {0, 1}K .
This leads to consider the parameter R = (R1, ..., RN ) ∈
{0, 1}K×N , which is inferred within a Bayesian framework.



Here the data term is derived from the rank statistics, and
a prior on P is chosen to infer the dependencies between
signals. All observations in X are assumed to be mutually
independent, but have similar statistical properties within a
segment, like the median. In the following parts, we derive
the joint probability distribution for R, P and other hyperpa-
rameters given the data X .

2.1. Change-point model

Each change-point probability is computed by the Wilcoxon
rank sum (aka Mann-Whitney) test. In [7], the authors present
a statistic inspired by this test on multivariate time series
to detect multiple change-points, but they are supposed to
occur simultaneously on all time series, assuming a fully
connected structure. In our model, the Wilcoxon test is ap-
plied on each observation xj,i, for a given segmentation in
R, between the two samples defined by the segments s1 =
{xj,i−+1, ..., xj,i}, of length n1, and s2 = {xj,i+1, ..., xj,i+},
of length n2, where i− and i+ denotes the previous and next
change positions respectively in signal j. The Wilcoxon
statistic is defined from the sum of the ranks, denoted R1

and R2 for the observations of s1 and s2 respectively, in the
global segment s = (s1, s2):

U = min(U1, U2) with Uk = nknl+
nk(nk + 1)

2
−Rk, (3)

where (k, l) = (1, 2) or (2, 1). For small n1 and n2, the re-
sulting p-values are tabulated, otherwise they are computed
from a normal approximation of a standardized value of U . It
yields a statistical test to reject the null hypothesisH0 that the
difference between the observations of each segment is sym-
metrically distributed around zero; this is for instance the case
when the samples of both segments are identically distributed.

The key-point of our approach is to define the observation
model on the p-values statistics derived from the Wilcoxon
test and considered as random variables, rather than on the
samples X or the statistic U . A classical result (see [8] for
instance) is that the p-value is uniformly distributed on [0, 1]
under the null hypothesis H0, i.e. when xj,i is not a change-
point. We have to specify now a model for the alternative
hypothesis H1, i.e. when xj,i is a change-point. In this case,
the p-value can be viewed as an outlier with respect to its null
distribution. Several authors proposed some distributions or
approximations for some alternatives hypotheses, see for in-
stance [9–12]. To be precise, the alternative hypothesis must
support the largest values of the test statistic U , i.e. the small-
est p-values. This leads to consider families of distributions
whose densities are decreasing in p. Inspired by [11], we as-
sume that the p-value is distributed under H1 according to a
Beta B(γ, 1) distribution where the parameter γ is in [0, 1].
This is a specific case of a general class of distribution for
the choice of the distribution of p-values under the alterna-
tive hypothesis, for which a lower bound on Bayes factor is

given [11]. It yields the following density:

f(pj,i|R) =

{
1[0,1](pj,i) if rj,i = 0 (H0),
γpγ−1j,i 1[0,1](pj,i) if rj,i = 1 (H1).

(4)

Note that when γ = 1, the alternative distribution reduces
to the uniform distribution, i.e. the null distribution. An-
other example of use of a Beta-Uniform model can be found
in [12]. In this work, we propose to calibrate the alternative
distribution with respect to a frequentist significance level.
Then, the Beta parameter γ is defined after the acceptance
level α ∈ [0, e−1] (for brevity reason, the notation γ(α) is
omitted) such that γ is the unique solution on [0, 1] of the fol-
lowing equation

f(α|r = 1) = 1 ⇔ γαγ−1 = 1. (5)

This calibration is discussed in more details in section 2.3.
Finally, the Wilcoxon test is applied on each observation

xj,i, and following (4), the data term for our model is formed
by the inference function

L∗(X|R) =

K∏
j=1

N∏
i=1

f(pj,i|R) =

K∏
j=1

N∏
i=1

(
γpγ−1j,i

)rj,i
. (6)

It is important to note that this inference function is a com-
posite marginal likelihood based on the univariate distribu-
tions of the (pj,i)1≤j≤K,1≤i≤N . In particular, the dependen-
cies between the (pj,i)1≤i≤N in signal j are not taken into
account. As a consequence, this is not a proper likelihood as
defined in [13] and the coverage probabilities induced by this
model should differ from the real ones. However L∗(X|R)
depends on the data through the marginal distributions of the
p-values of the Wilcoxon statistics and is calibrated up to a
significance level α. The impact this level on the detection
will be discussed in a future work. As a consequence, this
inference function acts like a data term, and can be used as
a pseudo-likelihood in the Bayesian framework. We refer to
this model as the Bernoulli detector model. It differs from
classical Bernoulli Gaussian models where the likelihood is
directly derived from the parametric Gaussian assumption of
the samples.

2.2. Prior on configurations Ri

The vectors (Ri)1≤i≤N are assumed to be a priori indepen-
dent. Thus the prior distribution can be written:

f(R) =

N∏
i=1

f(Ri). (7)

Following the approach presented in [5], where vague prior on
the dependency structure is chosen, the vector P = (Pε)ε∈E
represents the dependency structure. Here Pε denotes the
probability of having Ri = ε, where ε is a K × 1 vector



of zeros and ones, called a configuration, and E is the subset
of {0, 1}K of all configurations for Ri. This notation means
that if the probability Pε is high, ε is more likely to appear in
R, then changes tend to be simultaneous in all signals j such
that ε(j) = 1. Then (7) becomes

f(R|P ) =
∏
ε∈E

PSε(R)
ε (8)

where Sε(R) is the number of times that ε is found in R. The
parameter P follows a Dirichlet distribution:

P |d ∼ DL(d) (9)

with the hyperparameter vector d = (dε)ε∈E and where L
is the cardinal of E . As in [5], all the dε are set to the same
deterministic value dε ≡ d = 1, so distribution (9) is uniform.

2.3. Posterior distribution

The unnormalised posterior distribution (2) of the change-
points indicators and the hyperparameters expresses as fol-
lows:

f(R,P |X) ∝

 K∏
j=1

N∏
i=1

(γpγ−1j,i )rj,i

(∏
ε∈E

PSε(R)+dε−1
ε

)
.

(10)
Based on this posterior, it is now possible to express some

properties of the classical Bayesian estimates of a change-
point for a given location (j, i) under some simple hypothesis.
We assume in the following proposition that there is no other
change-point in the signals. We denote as R

\(j,i)
0 the void

configuration event such that rl,k = 0 for all (l, k) 6= (j, i),
and ε0 and ε1 stand for the configurations of the column Rj
when rj,i = 0 and rj,i = 1 respectively.

Proposition 2.1 MAP and MMSE estimators given R
\(j,i)
0 ,

Pε0 and Pε1 . Under the previous hypothesis, if Pε0 = Pε1
and for a chosen significance level α:
• the conditional MAP estimate is 1 iff the p-value is lower

than α, according to (4) and (5),

• the conditional MMSE estimate is larger than 1/2 iff the
p-value is lower than α.

The proofs are directly derived from the definition of
these estimators and the expression of the posterior distri-
bution (10). These properties illustrate the influence of the
significance level α chosen in (5) to calibrate the distribution
(4) under H1 for the single change-point problem. If the
priors on the configurations are equivalent then the presence
of a change-point is favoured when the support against the
null hypothesis is significant for the level α.

Finally, based on (10), one can see that the posterior of
the hyperparameter P reduces to a Dirichlet distribution

P |R, d ∼ DL(Sε(R) + dε), (11)

in agreement with the equation (22) of [5]. Thus, the Pε can
be easily integrated out in (10) as nuisance parameters, yield-
ing the following marginalized posterior

f(R|X) ∝

 K∏
j=1

N∏
i=1

(γpγ−1j,i )rj,i

× ∏ε∈E Γ(Sε(R) + dε)

Γ(N + L)
.

(12)

2.4. Algorithm

The problem of estimating R is solved by a MCMC method,
where samples are drawn according to distribution (12). At
each step, all vectors Ri are simulated, following a Gibbs
sampling strategy. At each modification of rj,i, the segmen-
tation changes and the p-values of the previous and the next
change-point in the signal j have to be updated. However an
approximation is done the reduce the number of steps in the
algorithm, and only the current p-value pj,i is computed for
the new segmentation. For brevity reason, the empirical vali-
dation is not presented here. The main steps of the algorithm
are detailed below in Alg. 1, for M MCMC iterations.

Algorithm 1: Bernoulli detector

require E = {ε0, ..., εl, ..., εL} ⊂ {0, 1}K , α
initialize R(0), Sε(R(0))
for m← 1 to M do

initialize the index set I = {1, . . . , N}
while I 6= ∅ do

pick randomly i in I
compute (p

(m)
j,i )1≤j≤K

sample R(m)
i according to (12)

remove i from I

Optional step: sample P (m) from its posterior (11)
return R

3. APPLICATION ON DATA

3.1. Simulation

At first, the impact of the noise level and the presence of out-
liers is studied. Two signals ofN = 100 points are generated,
with a change-point at t = 50, that defines two segments
in each signal. In the first case, the observations on each
segment k follow a non-standardized Student’s t-distribution
with a heavy tail, whose parameters are (ν, µk, σ) where ν =
3.0, and σ2 = ν/(ν − 2). In the second case, the distri-
bution is normal N (µk, σ). The SNR is defined as SNR =

10 log (µ0−µ1)
2

σ2 . To validate the non-parametric approach of
our model, we compare it with a classical Bernoulli Gaus-
sian model. The performances are computed on the MAP
estimator in terms of precision, that is the proportion of true
change-points found in the detected ones, with a tolerance of
±t points in time. The results are shown in figure 1. It appears



in 1(a) that the Bernoulli detector model has much less false
positives than the Bernoulli Gaussian, as expected because of
robustness of the rank-test to distributions with heavy tail in
the non-parametric pseudo-likelihood. The generic nature our
model is pointed out by the fact that the precision values are
the same in the normal case (1(b)). It is equivalent then to the
Bernoulli Gaussian model, and slightly better for small SNR.
Due to the restricted length of the paper, the recall values are
not plotted, however, we found results in agreement to preci-
sion values: the recall values are converging to one with high
SNR and the Bernoulli detector model presents better recall
performance for a Student noise.
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Fig. 1. Precision for several SNR, of Bernoulli detector model (BD,
red) and Bernoulli Gaussian model (BG, blue), with tolerance t.

In the second test we consider five signals following Nor-
mal distributions, classified in two independent groups: group
1 with signals 1 and 2 (3 segments), and group 2 with signals
3, 4 and 5 (4 segments). The change-points are the same for
all signals within a group. The SNR defined previously is
14.0 for signals 1 to 4 and -6.0 for signal 5, where change-
points are not visible (figure 2). The data are processed in-
dependently (results in blue in figure 2) and jointly with a
non-informative prior on dependency structure (in red in fig-
ure 2). Despite a higher computational cost, the advantage
of the of joint estimation is obvious in the results: the de-
pendency structure of both groups is perfectly learned, and
all change-points are precisely found, especially in signal 5,
whereas the estimation fails with independent processing.

3.2. Household electric power consumption data

In this section two principled applications of the proposed
algorithm are illustrated using measurements of household
power consumption [14]. This real dataset consists of four
time series. One of them depicts the global electrical energy
consumption in the house, while the others are devoted to the
measurements of power demand by specific devices.
Learning structure from data. In a first setting, the algo-
rithm is applied with non-informative priors on the depen-
dency structure between the four signals, namely all config-
urations in {0, 1}K are considered. Thanks to the Bayesian
framework, the Gibbs sampling process can be swimmingly
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Fig. 2. At top, independent MAP estimation of each signal. At
bottom, joint estimation with a non-informative prior on the change-
points structure. Real change-points are represented in dashed lines.

supplemented to yield a posteriori probabilities on the con-
figurations. Resulting histograms of the links between the
global household energy consumption, denoted 1, and the
three sub-metering measurements (respectively denoted 2, 3
and 4), plus the link between 3 and 4, are depicted in figure 3.
Unsurprisingly these figures confirm that, when a change-
point is observed in signals 2, 3 or 4, it is likely to be ob-
served in signal 1, whereas events appear independently be-
tween sub-metering signals. Therefore this setting amounts
to building a weighted graph of the dependencies between
time series by focusing on small-scale events such as change-
points. Visual results on a small portion of signals are repre-
sented in figure 4(a).
Using a priori data structure to alleviate data processing.
In a second setting the introduction of informative priors on
the structure of the dependencies is considered. It is indeed
known that strong additive relationships exist between signal
1 and signals 2, 3 and 4 respectively. The change-point de-
tection algorithm is thus modified by restricting E such that
change-points in signals 2, 3 or 4 must occur simultaneously
in signal 1. Consequences of such an approach are two-fold.
First computations are made significantly faster thanks to the
sharp decrease of the number of considered configurations.
Second spurious or missing change-points can be filtered out
with this simple approach. Visual results are represented in
figure 4(b).

4. DISCUSSION AND CONCLUSION

An innovative change-point detection algorithm has been pro-
posed. Its strength relies mainly on two characteristics. First
the algorithm is built upon robust foundations, namely rank-
based statistics. This confers the approach with a stable be-
haviour for various signal distributions, a worthy robustness
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Fig. 4. Change-point detection in real data (MAP). At top (a),
change-points found for signals 2, 3 and 4 but not for global signal
1 are represented in dashed lines.

to noise outliers and a strong efficiency in small samples prob-
lems. Second its surrounding Bayesian formulation provides
the algorithm with awesome flexibility regarding the prob-
lems at hand. While classical multivariate approaches focus
on detecting simultaneous change-points across time series,
the presented framework offers a wide range of possible us-
ages, from joint independent detections across time series, to
simultaneous change-points detection through the introduc-
tion of priors.

Two main settings have been presented to illustrate the
use of the algorithm. On the one hand it has been demon-
strated that the approach can be successfully applied to infer
dependency structure from change-points occurrences. This
constitutes an innovative way of estimating the dependencies
between signals, and will be explored in future work. This al-
gorithm therefore provides a tool to analyse multivariate time
series behaviour through the observation of small-scale events
in the signal. On the other hand, it has been demonstrated
that priors on the dependency structure can be favourably in-
troduced to improve change-point detections, and also reduce

the expensive computational cost, due to MCMC sampling
and configuration testing.
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