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Model checking is an effective technique for uncovering subtle errors in concurrent systems. Unfortunately,

the state space explosion is the main bottleneck in model checking tools. Here we propose a state space

reduction technique for model checking concurrent programs written in C. The reduction technique consists

in an analysis phase, which defines an approximate agglomeration predicate. This latter states whether a

statement can be agglomerated or not. We implement this predicate using a syntactic analysis, as well

as a semantic analysis based on abstract interpretation. We show the usefulness of using agglomeration

technique to reduce the state space, as well as to generate an abstract TLA+ specification from a C program.

Model checking, TLA, State space reduction, Agglomeration predicate.

1. INTRODUCTION

Model checking is an attractive formal verification

technique because it is automatic. It offers extensive

and thorough coverage by considering all possible

behaviors of a system, unlike traditional testing

methods. Given a set of properties expressed in

a temporal logic and a model, model-checking

automatically analyzes the state space of the

model and checks whether the model satisfies the

properties (Clarke et al. 1999). However, the main

obstacle of model checking is the state explosion

problem and concurrency is a major contributor to

this problem.

Many solutions have already been investigated for

reducing the complexity of model checking. For

instance, by getting a simpler model from the original

one using abstraction technique (Clarke et al. 1994),

or by using on-the-fly model checking to eliminate

part of the search to the automaton representing the

(negation of the) checked property (Fernandez et al.

1992).

1.1. Contribution

In this paper, we present a state space reduction

technique for model checking concurrent programs

written in a low level language. We apply this

technique to the verification of C programs by an

explicit model checker. We use TLA+ (Lamport

1994) as a formal specification language for our

concurrent C programs and we base ourselves on

previous work reported in (Methni et al. 2015).

The reduction technique is based on an analysis

phase, which defines an approximate agglomeration

predicate. This latter states whether a statement

can be agglomerated or not. We implement this

predicate using a syntactic analysis, as well as a

semantic analysis based on abstract interpretation

of C code. The particularity of our method is that we

apply the reduction technique during the generation

of TLA+ code and by using the abstract interpretation

technique. We show the usefulness of using this

technique to reduce the state space during the

verification of C programs, as well as to generate an

abstract TLA+ specification from a C program.

1.2. Outline

The rest of the paper is organized as follows. We

give an overview of TLA+ in Section 2. Section 3

presents how we specify the semantics of C in TLA+.

Section 4 describes the reduction technique and how

we implement it on C programs. Experimental results

are presented in Section 5. We discuss related work

in Section 6. Section 7 concludes and illustrates

future research directions.

2. OVERVIEW OF TLA

TLA+ (Lamport 2002) is the specification language

of the Temporal Logic of Actions (TLA). TLA is

1
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〈formula〉 , 〈predicate〉 | �[〈action〉]〈state function〉 | ¬〈formula〉
| 〈formula〉 ∧ 〈formula〉 | �〈formula〉

〈action〉 , boolean valued expression containing constant symbols, variables,

and primed variables

〈predicate〉 , 〈formula〉 with no primed variables | ENABLED 〈action〉

〈state function〉 , nonboolean expression containing constant symbols and variables

Figure 1: TLA syntax (Lamport 2002)

a variant of linear temporal logic introduced by

(Lamport 1994) for specifying and reasoning about

concurrent systems. Readers interested in a more

detailed presentation of TLA+ can refer to Lamport’s

book (Lamport 2002).

TLA+ specifies a system by describing its possible

behaviors. A behavior is an infinite sequence

of states. A state is an assignment of values

to variables. A state function is a nonboolean

expression built from constants, variables and

constant operators and it assigns a value to each

state. For example, y + 3 is a state function that

assigns to state s the value 3 plus the value

that s assigns to the variable y. An action is a

boolean expression containing constants, variables

and primed variables (adorned with “′” operator).

Unprimed variables refer to variable values in the

current state and primed variables refer to their

values in the next-state. Thus, an action represents

a relation between old states and new states. A state

predicate (or predicate for short) is an action with no

primed variables.

The syntax of TLA is given in Figure 1 (the symbol

, means equal by definition). TLA+ formulas are

built up from actions and predicates using boolean

operators (¬ and ∧ and others that can be derived

from these two), quantification over logical variables

(∀, ∃), and the unary temporal operator � (always) of

the linear temporal logic (Manna and Pnueli 1992).

The predicate “ENABLED A”, where A is an action, is

defined to be true in a state s iff there exists some

state t such that the pair of states 〈s, t〉 satisfies

A. The formula [A]vars, where A is an action and

vars the tuple of all system variables, is equal to

(A ∨ (vars′ = vars)) where vars′ is the expression

obtained by priming all variables in vars. It asserts

that every step (pair of successive states) is either

an A step or else leaves the values of all variables

vars unchanged. TLA+ defines the abbreviation

“UNCHANGED vars” to denote that vars′ = vars.

While TLA+ permits a variety of specification styles,

the specification that we use is defined by:

Spec , Init ∧�[Next]vars ∧ Fairness (1)

where:

• Init is a state predicate describing the possible

initial states by assigning values to all system

variables,

• Next is an action representing the program’s

next-state relation,

• vars is the tuple of all variables,

• Fairness is an optional formula representing

weak or strong assumptions about the execu-

tion of actions.

Formula Spec is true of a behavior σ iff Init is

true of the first state of σ and every step of σ is

either a Next step or a “stuttering step”, in which

none of the specified variables change their values,

and Fairness holds. The behaviors satisfying the

specification formula given by Equation (1) are the

ones that represent correct behaviors of the system,

where a behavior represents a conceivable history of

a universe that may contain the system.

The TLA+ formula Spec ⇒ φ is valid when the

model represented by Spec satisfies the property φ,

or implements the model φ.

TLA+ has an explicit model checker called TLC that

can be used to check the validity of safety and

liveness properties. TLC handles specifications that

have the standard form of the formula (1). For this

reason, we only use specification formula of the form

of Equation (1). TLC requires a configuration file

which defines the finite-state instance to analyze. It

begins by generating all states satisfying the initial

predicate Init. Then, it generates every possible

next-state t such that the pair of states 〈s, t〉 satisfies

Next and the Fairness constraints, looking for a

state where an invariant is violated. Finally, it checks

temporal properties over the state space.

3. TRANSLATION FROM C TO TLA+

Our approach to checking a concurrent C program is

to first translate it into a TLA+ specification, to which

the TLA+ tools can be applied. In what follows, we

briefly present how we specify the semantics of C in
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1 int x = 3;

2 int y = 0;

3

4 int inc(int i)

5 {

6 int tmp;

7 tmp = i+1;

8 return tmp;

9 }

10

11 void p1(){

12 int a = 1;

13 x = inc(a);

14 a = x;

15 return;

16 }

17

18 void p2(){

19 int a;

20 x = x - 1;

21 x = 3;

22 y = 0;

23 }

(a) Code C source (b) Memory layout

Figure 2: Example of a C code in which one process (with id equals to 1) executes p1() function and the second one

executes p2(). The top of the stack[1] indicates that process 1 is executing the statement with label 6 of inc() function.

Undef represents an undefined value such as the value of an uninitialized variable.

TLA+ by describing the memory layout considered

and how we model the control flow of a C program.

3.1. Memory Layout

C file is parsed and normalized according to CIL

(C Intermediate Language) (Necula et al. 2002)

which transforms complicated constructs of C into

simpler ones. This transformation makes programs

more amenable to analysis and transformation.

According to the Abstract Syntax Tree (AST) of the

C program, C2TLA+ generates automatically a TLA+

specification according to a set of translation rules

detailed in our previous work (Methni et al. 2015).

In C2TLA+, a concurrent program consists of

many interleaved sequences of operations called

processes, corresponding to threads in C. Each

process has a unique identifier id. The set of all

processes is determined by the TLA+ constant

ProcSet.

Figure 2 presents a C program and the content of

the memory as modeled by C2TLA+. We consider

that the C code is executed by two processes. One

process executes p1() function and the other one

executes p2() function.

The memory is separated into four areas that do not

overlap:

• a shared memory called data that stores

global (and static) variables. In the example of

Figure 2a, the x variable is shared by the two

processes.

• a local memory for each process, called

stack and stores local variables and function

parameters. The memory stack[id] specifies

the local memory of process id and is

composed of stack frames. Each stack frame

corresponds to a call to a function. In the

example of Figure 2a, stack[1] is composed

of two stack frames, one of p1() function and

one of inc() function. When a function call

terminates, its stack frame is removed.

• a local memory for each process called

register modeled as a sequence and stores

the program counter of each process. The

head of this sequence contains the statement

being currently executed by the process id.

• a local memory called ret which contains

values to be returned by processes.
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The memory is modeled in TLA+ by a variable called

memory. It is a record whose four fields represent

the four memory areas. The global memory data

behaves like an array of values, whereas stack

and register behave like a FIFO (First In, First

Out) queues. Access to those memory areas is

addressed using offsets. So, a memory address is

a couple [loc,offs] of memory location loc, (data or

stack area) and an offset offs in this location. For

instance, Addr x specified in Figure 2b defines the

memory address of x variable.

The main operations that manage the memory are

load() and store():

• load() is the function that given the current

state of memory mem and a memory address

addr (in the form of [loc, offs]), returns the

value stored at the address addr in the memory

mem,

• store() is the function that given the current

state of memory mem, a memory address

addr and a value val, returns the new copy of

the memory after storing the value val at the

memory address addr.

3.2. Specifying the C control-flow

Each C statement i is identified in C2TLA+ by a

label assigned by CIL and is modeled by a TLA+

function, noted stmti(), which takes as arguments

the process identifier id and the memory mem,

and returns the new content of the memory after

executing the statement.

Each stmti() updates the program counter register

of the process id and may change the content of

mem, stack, and/or ret memory areas depending

on the type of the statement (assignment, jump

statements, etc.). For instance, the statement

on line 20 is translated into the TLA+ function

p2 20(id,mem) defined as follows:

p2 20(id,mem)
∆

=
LET mcopy

∆

= load(id, Addr x, [val 7→ 3]) IN

[data 7→ mcopy.mem, stack → mcopy.stack,

register 7→ [mem.register EXCEPT ![id] =
〈[pc 7→ 〈“p2 21”〉, fp 7→ Head(mem.register[id]).fp]〉

◦ Tail(mem.register[id]),
ret 7→ mem.ret]

The definition of p2 20() function uses the TLA+

construct LET/IN to define a temporary variable that

stores the value of the memory after affecting the

value 3 to the memory address Addr x. The symbol

◦ defines the concatenation operator for TLA+

sequences. Head(s) is a TLA+ function that returns

the head of the sequence s and Tail(s) returns

the tail of the sequence s. Then, the register[id]

is updated by the label value of the successor

statement given by the control flow graph (CFG) of

the C program (provided by CIL).

The control flow of the C program in C2TLA+ is

ensured by the dispatch() function. For the example

of Figure 2a, this function is defined as follows:

dispatch(id,mem)
∆

=
CASE Head(mem.register[id]).pc = ”inc 6”

→ inc 6(id,mem)
� Head(mem.register[id]).pc = ”inc 7”

→ inc 7(id,mem)
� Head(mem.register[id]).pc = ”p1 11”

→ p1 11(id,mem)
� Head(mem.register[id]).pc = ”p1 12”

→ p1 12(id,mem)
� Head(mem.register[id]).pc = ”p1 13”

→ p1 13(id,mem)
� Head(mem.register[id]).pc = ”p1 14”

→ p1 14(id,mem)
� Head(mem.register[id]).pc = ”p2 19”

→ p2 19(id,mem)
� Head(mem.register[id]).pc = ”p2 20”

→ p2 20(id,mem)
� Head(mem.register[id]).pc = ”p2 21”

→ p2 21(id,mem)
� OTHER → mem

The dispatch() function calls, according to the

value of the pc field contained at the top

the process register (determined by the expres-

sion Head(mem.register[id]).pc), the corresponding

TLA+ function to execute, i. e., the C instruction to

execute.

The C program is thus simulated by the Spec formula

given by equation (1). The Init predicate specifies

the initial values of the memory and the Next action

is defined as follows:

Next
∆

=
∨ ∃ id ∈ ProcSet :

∧ memory.regsiter[id] 6= 〈〉
∧ memory′ = dispatch(id,mem)

∨ ∀ id ∈ ProcSet :
∧ memory.regsiter[id] = 〈〉
∧ UNCHANGED memory

It states that one of the processes that has not

finished execution (its register[id] is not empty) is

nondeterministically chosen to execute one action

until all processes finish execution, i. e., all registers

become empty. Executing an action consists in

calling dispatch() function. For example, when

Head(mem.register[id]).pc equals to ”inc 6”, calling

the function inc 6(id,mem) will update the value of

stack[id] (as tmp is stored in the local memory) as

well as the top of register[id]. As the register[id] is
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Figure 3: Example of a state space

still not empty, the control flow is thus passed to the

successor statement.

The behavior of the C program modeled by the Spec

formula can be given in terms of a state transition

system.

Definition 1. A state transition system is a 3-tuple

T = (Q, I, δ) given by

• a finite set of states Q,

• a set I ⊆ Q of initial states, specified by the

Init predicate,

• a transition relation δ ⊆ Q × Q that links two

states. This latter corresponds to satisfying the

predicate Next.

The state transition system encodes the state space

of the corresponding TLA+ specification of the C

program.

Figure 3 illustrates the state space of the corre-

sponding TLA+ specification of the C code given in

Figure 2a. It consists in all the possible interleaving

of process execution. In order to simplify, we rep-

resent only the content of pc field contained at the

top of the register[1] and register[2] memories. Each

state of the graph matches a valuation of memory

variable, i. e., its four fields.

3.3. Process Synchronization

All processes interact with each other through the

shared memory data. Concurrent access to this lat-

ter is ensured via synchronization mechanism. There

are many different ways to implement concurrency

synchronization in C. For instance, by using locks

and semaphores, or by providing low level hard-

ware instructions (e. g., test-and-set and compare-

and-swap). To support synchronization mechanism,

generated TLA+ specifications by C2TLA+ can be

completed with manually written TLA+ specifications

to provide concurrency primitives and atomic instruc-

tions. More detailed information about integrating

synchronization primitives in TLA+ specifications can

be found in our previous work (Methni et al. 2015).

4. APPLYING REDUCTION ON C PROGRAMS

The process of generating an optimized TLA+

specification is illustrated in Figure 4. To apply

reduction on C programs, it is necessary to define

the agglomeration predicate. The C program is

first analyzed. This analysis phase defines an

approximate agglomeration predicate which takes

as argument a C statement and returns true or

false depending on whether the statement can be

agglomerated or not. This predicate can be safe or

unsafe. The meaning of safe predicate depends on

how the analysis is performed.

• The predicate is said safe when the analysis

is a safe approximation. Its definition is as

follows:

– if the statement does not modify the

shared memory, the predicate returns

true,
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– if the statement modifies the shared

memory or it is unknown, it returns false.

The unknown predicate states that we have no

idea if the statement modifies the memory or

not.

• The predicate is called unsafe when a

statement is agglomerated and we are not sure

if it modifies the global memory or not.

Figure 4: Reduction process

In this Section, we introduce the agglomeration

technique by an example. Then, we describe the

implementation of a safe agglomeration predicate

by using a syntactic and semantic analysis on C

programs. Then, we show the interest of using

an unsafe agglomeration predicate to generate an

abstract TLA+ specification of a C program.

In what follows, we use the expression agglomer-

ating TLA+ actions, to designate agglomerating the

corresponding statements in the C program.

4.1. An introducing example

As the semantics of a TLA+ is expressed through

a state transition system, where transitions between

states are ensured by TLA+ actions, the reduction

technique consists in agglomerating consecutive

actions into one atomic action which performs the

effects of the original ones. The reduction idea based

on agglomeration has been widely used in Petri Nets

(Haddad and Pradat-Peyre 2006; Berthelot 1986).

Figure 5 shows three consecutive states linked by

two actions x′ = x + 1 and x′ = x + 2. The result

of this agglomeration (represented by −→), is two

states linked by one atomic action which is the result

of executing the action x′ = x+ 1, then x′ = x+ 2.

x = 2

x = 3

x = 5

x′ = x+ 1

x′ = x+ 2

→

x = 2

x = 5

x′ = (x+ 1) + 2

Figure 5: Agglomerating actions

(a) Before reduction (b) After reduction

Figure 6: The control flow graph of a C code example

4.2. Using syntactic and semantic analysis

Syntactic analysis
A syntactic analysis is performed to detect state-

ments on which reduction can be applied. Often, C

functions make use of local variables, and when a

statement refers only to local variables, the value

for which the statement is executed by a process

cannot change the execution of other processes.

Furthermore, we assume that statements involving

local pointer variable cannot be agglomerated as

they may reference shared memory.

Moreover, we consider that jump statements, namely

goto, break and continue, can be agglomerated

with its successor (designated by computing the

CFG), as they only change the local register of the

process (register[id] in TLA+ specification).

Semantic analysis
In many scenarios, a concurrent C program could

contain, in its global memory, data blocks that are

accessed only by one process at a time. In that case,

syntactic analysis is insufficient. Therefore, we use

a semantic approximation predicate. The C program

is thus analyzed and an approximation of memory

access is computed using the Mthread Frama-C

plugin (Mth). This latter provides information about

the memory zones that are accessed concurrently

by more than one process and those that are not. In

this case, the agglomeration predicate is safe as the

analysis is based on an over-approximation of the

memory.

We consider the example given by Figure 2a.

To illustrate the agglomeration technique on this

example, we represent the C program by its control

flow graph, illustrated by Figure 6a, where each

state of the graph represents a C statement and

edges represent the control flow. After applying the

syntactic and semantic analysis on this example,
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the control flow graph is transformed into a smaller

graph, given in Figure 6b. Each state of the

graph corresponds to one statement or a block of

statements. As the inc() function uses only local

memory, its block definition is combined into one

basic block. For p1() function, statement on line

11 is agglomerated with statement on line 12 and

statement on line 14 is agglomerated with the return

instruction.

4.3. Generating an abstract specification

Agglomerating statements can also be useful to

generate an abstract TLA+ specification of a C

program. The user can define which C statements

can be agglomerated using an unsafe predicate. The

resulting TLA+ specification can be viewed as an

abstract formal specification of the C program.

As TLA+ is a fragment of LTL\x (Linear Temporal

Logic without the “next operator”), it is well known

that the equivalence between checking a property

given in LTL\x on an abstract model and checking it

on the original model is ensured by the preservation

(Goltz et al. 1992).

Example: Agglomerating critical sections
Consider the following fragment of C code (Figure 7)

implementing an example of the producer/consumer

model. The two processes share a buffer protected

by a mutex m. The synchronization between

processes is ensured by two semaphores empty and

full. Mutex and semaphores are implemented as

an integer values and are only accessible through

two atomic operations P() and V().

Translating this implementation into a TLA+ spec-

ification and model checking results in verifying

all interleavings of actions between processes. We

define the agglomeration predicate that states that

statements protected by mutex (namely by P() and

V() primitives) can be agglomerated. After reduction,

the control flow graph of this example is illustrated in

Figure 8b.

Therefore, the block statements from line 12 to line

14 and that from line 12 to 26 are agglomerated into

one state. The state space of the TLA+ specification

generated after agglomerations contains fewer

states than the one without agglomerations as the

reduction inside the critical section restricts the

amount of interleaving allowed between processes.

We define the mutual exclusion property in TLA+ as

follows:

mut exclusion(lbl1, lbl2)
∆

= �((∀ id1, id2 ∈ ProcSet :
∧ (id1 6= id2) ∧ (Head(memory.register[id1]) 6= 〈〉)
∧(Head(memory.register[id2]) 6= 〈〉)
∧(Head(memory.regsiter[id1]).pc = lbl1))

⇒ Head(memory.register[id2]).pc 6= lbl2)

1 #define BUFFER_SIZE 5

2 mutex m;

3 sem full = 0, empty = BUFFER_SIZE;

4 int buffer[BUFFER_SIZE ]; /* the buffer */

5 int count; /* buffer count */

6

7 void Producer(int item) {

8 while(TRUE) {

9 item = rand();/* generate a random number */

10 P(&empty); /* acquire the empty lock */

11 P(&m); /* acquire the mutex lock */

12 if(count < BUFFER_SIZE) {

13 buffer[count] = item;

14 count ++; }

15 V(&m); /* release the mutex lock */

16 V(&full); /* signal full */

17 }

18 }

19 void Consumer(void) {

20 while(TRUE) {

21 int item;

22 P(&full); /* acquire the full lock */

23 P(&m); /* aquire the mutex lock */

24 if(count > 0) {

25 item = buffer [(count -1)];

26 count --; }

27 V(&m); /* release the mutex lock */

28 V(&empty); /* signal empty */

29 }

30 }

Figure 7: Example of a producer/consumer model using

locks

This property expresses that critical sections cannot

be executed simultaneously. This property was

verified on the TLA+ specification after reduction.

Thus, we can deduce that the property is also

verified on the specification generated without the

reduction technique.

4.4. Integrating the reduction into TLA+
specification

In what follows, we show how we implement

the reduction on TLA+ specification. As described

in Section 3, each execution of Next action

corresponds to executing an atomic C statement.

The reduction in C programs, consists in translating

a sequence of C statements into one action instead

of multiple ones. Let i be the identifier of a statement

and j be the identifier of its successor. To do that, we

generate for each statement i a new function that we

call stmt longi() defined below.

stmt longi(id,mem)
∆

=
stmt longj(id, dispatch(id,mem))

The definition of stmt longi(id,mem) consists in

calling the function of the successor statement j,

noted by stmt longj() and passing as argument the

memory state returned by dispatch(id,mem).

7



(a) Before reduction (b) After reduction

Figure 8: The control flow graph of the Producer() and Consumer() functions before and after reduction

To generate a reduced TLA+ specification, we

iterate over all statements and when the ag-

glomeration predicate returns true for a state-

ment i, its translation consists in calling the func-

tion stmt longj(id, dispatch(id,mem)). Otherwise,

we call dispatch(id,mem) function.

The C program is thus specified by the formula

Spec given by equation (1), except that the Next

action calls a new function dispatch red(), instead of

dispatch() function. For the example of figure 2a, the

dispatch red() function is defined in Figure 9:

The dispatch red(id,mem) function calls according

to the value the program counter pc contained at the

head of mem.register[id] the corresponding TLA+

function to execute.

5. EXPERIMENTS

The reduction technique is totally automatic and was

integrated in C2TLA+ which is a Frama-C (Cuoq

et al. 2012) plugin, implemented in OCaml. This

Section is concerned with our practical experience.

We use the Mthread plugin results and the syntactic

analysis as described in Section 4 to implement our

agglomeration technique.

We consider one sequential C program and four

concurrent programs:

dispatch red(id,mem)
∆

=
CASE Head(mem.st[id]).pc = ”inc 6”

→ inc long 6(id,mem)
� Head(mem.register[id]).pc = ”inc 7”

→ inc long 7(id,mem)
� Head(mem.register[id]).pc = ”p1 11”

→ p1 long 11(id,mem)
� Head(mem.register[id]).pc = ”p1 12”

→ p1 long 12(id,mem)
� Head(mem.register[id]).pc = ”p1 13”

→ p1 long 13(id,mem)
� Head(mem.register[id]).pc = ”p1 14”

→ p1 long 14(id,mem)
� Head(mem.register[id]).pc = ”p2 19”

→ p2 long 19(id,mem)
� Head(mem.register[id]).pc = ”p2 20”

→ p2 long 20(id,mem)
� Head(mem.register[id]).pc = ”p2 21”

→ p2 long 21(id,mem)
� OTHER → mem

Figure 9: Example of the dispatch red() function definition
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Table 1: Comparing Model Checking Results with & without Reduction (time in seconds)

Prorgam #Proc
Without reduction With reduction

Factor

#St #T #St #T

Zunebug 1 389 0.147 2 0.136 99.48

Dekker 2 173 0.128 70 0.109 59.53

Peterson
2 107 1.37 22 0.131 79.43

4 1.080.161 59.2 31.221 4.82 97.10

Bakery
2 2.389 1.91 223 1.67 90.66

4 50.515.927 1560 835.355 76.6 98.36

Philos
4 9.791.509 366 146.106 12 98.5

5 >619.309.984 25340 4.179.520 352 99.32

• Zunebug which is a bug in the internal clock

driver of Zune 30GB music player. The source

code is taken from (Weimer et al. 2010).

• Lamport’s Bakery and Peterson algorithms ob-

tained from (Raynal 2013) and Dekker mu-

tual exclusion algorithm presented in (Dijkstra

1968).

• Dining philosopher problem. We use the

solution that appears in Tanenbaum’s book

(Tanenbaum 2007).

These programs make typical examples for demon-

strating the strength of the state space reduction.

C2LTA+ takes as input a C program and generates

for each one the corresponding TLA+ specification.

Using the TLC model checker, we compute the total

number of generated states and we verify a set of

properties on the two specifications.

Results of experiments are shown in Table 1, where

#Proc denotes the process number, #St denotes the

numbers of states and #T denotes the time for model

checking in seconds. Columns 3 to 6 give information

about the state space generated with and without

applying the reduction technique. The last column

indicates the reduction factor, the ratio between the

state space generated without reduction and the one

after applying the reduction technique.

All experimental results were performed on an

Intel Core Pentium i7-2760QM machine with 8

cores (2.40GHz each), with 8Gb of RAM memory.

For zunebug, one property to verify is program

termination, which is a liveness property that we

express as follows:

termination
∆

= ⋄(Head(memory.register[1]) = 〈〉)

This property asserts that the register of the

program will eventually be empty. For the TLA+

specification without agglomeration, checking this

property causes TLC to report an error. This error

occurs when the code takes as input the last day

of a leap year, causing the code to enter into an

infinite loop. After applying the reduction technique

for the zunebug program, the state space size of its

corresponding TLA+ specification equals 2. This is

due to the fact that the program is sequential. Model

checking the TLA+ code with the last day of a leap

year causes the TLC model to report an incorrect

recursive function definition.

For the concurrent programs, the mutual exclusion

property has been successfully verified on Peterson,

Bakery, Dekker and Philosophers benchmarks. As

expected, the size of the state space with agglom-

erations is always smaller than the one without

agglomerations. For the philosopher example with

5 processes, the state space without agglomeration

takes more than 7 hours to be model checked.

However, using the reduction technique the specifi-

cation is verified in 6 minutes. The reduction factor

in this cas reaches 99.32. The reduction technique

obtains good results on these benchmarks due to the

elimination of some intermediate states.

6. RELATED WORK

There are a wealth of research contributions on

formal verification of software as well as techniques

for the reduction of the state space.

Program slicing is a technique introduced by

(Weiser 1981) for simplifying sequential programs for

debugging and program understanding. It consists

in removing from the program features that are

irrelevant for the property to be verified. Recently,

slicing technique has been used to reduce the state

space of a system in model checking. It has been

applied to Promela (Millett and Teitelbaum 2000),

the input language for the Spin model checker
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(Holzmann 1997). The interested reader can refer to

(Tip 1995) for a detailed description of the different

approaches used in the program slicing.

Predicate abstraction (Graf and Saı̈di 1997) is a

technique in which a set of predicates over the

programs variables is used to construct an abstract

program. This technique is being used in SLAM (Ball

and Rajamani 2002), BLAST (Henzinger et al. 2003)

and MAGIC (Chaki et al. 2004).

Other approaches perform reduction during explo-

ration of the state space of the program. For exam-

ple, partial order reduction (Valmari 1989) is a tech-

nique which explores only a representative subset

of the state space of a model. The basic idea is to

exploit the commutativity caused by the interleav-

ings of transitions, which result in the same state.

This technique was first introduced for checking the

absence of deadlock. Subsequently, a number of

variants of this technique have been developed and

integrated in verification tools, like Spin (Holzmann

1997) and Verisoft (Godefroid 1997).

Although we have mentioned some projects in the

C context, there are also significant works interested

in model checking the Java language. For example,

JPF (Visser et al. 2003) uses state compression

technique to handle big states, partial order and

symmetry reduction, slicing, abstraction and runtime

analysis techniques to reduce the state space.

In this work, the state space reduction technique that

we propose is closer to that originally introduced by

(Berthelot 1986) in Petri nets formalism. Berthelot

developed a large set of reduction rules for reducing

the complexity of verification. Extended work has

been proposed by (Haddad and Pradat-Peyre 2006).

Our work differs from this latter by the fact that the

model of our TLA+ specification is a state transition

system and the agglomeration predicate depends

on the analysis of the C program. Our reduction

technique is applied during the generation of TLA+

code unlike the partial order reduction technique

which performs reduction during the construction of

the state space. Besides, we use TLA+ as formal

framework which provides an expressive power to

specify the semantics of a programming language

and can reason about concurrent systems and

can express safety and liveness properties unlike

SLAM and BLAST which have limited support for

concurrent properties as they only check safety

properties.

7. CONCLUSION AND FUTURE WORK

We have proposed a technique to reduce the state

space for model checking C programs. We used

C2TLA+ to translate the semantics of C to the

formal specification language TLA+. This reduction

technique is based on an analysis phase, which

defines an approximate agglomeration predicate that

states whether a statement can be agglomerated

or not. We implemented this predicate by applying

a syntactic and semantic analysis on C Programs.

We illustrated the effectiveness of applying the

agglomeration technique to reduce the state space

during the verification of C programs and also as

well as to define an abstract TLA+ specification that

model the behavior of C programs.

We aim to integrate a mechanism for structuring

large TLA+ specifications from C programs using

a refinement process between different levels of

abstraction. Finally, we are planning to apply the

methodology on a critical part of the microkernel of

the PharOS (Lemerre et al. 2011) real-time operating

system (RTOS).
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