Belgacem Amira Methni 
email: amira.methni@cea.fr
  
Ben Hedia 
  
Matthieu Lemerre 
email: matthieu.lemerre@cea.fr
  
Serge Haddad 
email: haddad@lsv.ens-cachan.fr
  
Kamel Barkaoui 
email: kamel.barkaoui@cnam.fr
  
State Space Reduction Strategies for Model Checking Concurrent C Programs

Model checking is an effective technique for uncovering subtle errors in concurrent systems. Unfortunately, the state space explosion is the main bottleneck in model checking tools. Here we propose a state space reduction technique for model checking concurrent programs written in C. The reduction technique consists in an analysis phase, which defines an approximate agglomeration predicate. This latter states whether a statement can be agglomerated or not. We implement this predicate using a syntactic analysis, as well as a semantic analysis based on abstract interpretation. We show the usefulness of using agglomeration technique to reduce the state space, as well as to generate an abstract TLA+ specification from a C program.
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INTRODUCTION

Model checking is an attractive formal verification technique because it is automatic. It offers extensive and thorough coverage by considering all possible behaviors of a system, unlike traditional testing methods. Given a set of properties expressed in a temporal logic and a model, model-checking automatically analyzes the state space of the model and checks whether the model satisfies the properties [START_REF] Clarke | Model Checking[END_REF]. However, the main obstacle of model checking is the state explosion problem and concurrency is a major contributor to this problem.

Many solutions have already been investigated for reducing the complexity of model checking. For instance, by getting a simpler model from the original one using abstraction technique [START_REF] Clarke | Model Checking and Abstraction[END_REF]), or by using on-the-fly model checking to eliminate part of the search to the automaton representing the (negation of the) checked property [START_REF] Fernandez | On-the-fly verification of finite transition systems[END_REF].

Contribution

In this paper, we present a state space reduction technique for model checking concurrent programs written in a low level language. We apply this technique to the verification of C programs by an explicit model checker. We use TLA+ [START_REF] Lamport | The Temporal Logic of Actions[END_REF]) as a formal specification language for our concurrent C programs and we base ourselves on previous work reported in [START_REF] Methni | Specifying and Verifying Concurrent C Programs with TLA+[END_REF]. The reduction technique is based on an analysis phase, which defines an approximate agglomeration predicate. This latter states whether a statement can be agglomerated or not. We implement this predicate using a syntactic analysis, as well as a semantic analysis based on abstract interpretation of C code. The particularity of our method is that we apply the reduction technique during the generation of TLA+ code and by using the abstract interpretation technique. We show the usefulness of using this technique to reduce the state space during the verification of C programs, as well as to generate an abstract TLA+ specification from a C program.

Outline

The rest of the paper is organized as follows. We give an overview of TLA+ in Section 2. Section 3 presents how we specify the semantics of C in TLA+. Section 4 describes the reduction technique and how we implement it on C programs. Experimental results are presented in Section 5. We discuss related work in Section 6. Section 7 concludes and illustrates future research directions.

OVERVIEW OF TLA

TLA+ [START_REF] Lamport | Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers[END_REF] is the specification language of the Temporal Logic of Actions (TLA). TLA is The syntax of TLA is given in Figure 1 (the symbol means equal by definition). TLA+ formulas are built up from actions and predicates using boolean operators (¬ and ∧ and others that can be derived from these two), quantification over logical variables (∀, ∃), and the unary temporal operator (always) of the linear temporal logic [START_REF] Manna | The Temporal Logic of Reactive and Concurrent Systems[END_REF].

f ormula predicate | [ action ] state f unction | ¬ f ormula | f ormula ∧ f ormula | f ormula
The predicate "ENABLED A", where A is an action, is defined to be true in a state s iff there exists some state t such that the pair of states s, t satisfies A. The formula [A] vars , where A is an action and vars the tuple of all system variables, is equal to (A ∨ (vars ′ = vars)) where vars ′ is the expression obtained by priming all variables in vars. It asserts that every step (pair of successive states) is either an A step or else leaves the values of all variables vars unchanged. TLA+ defines the abbreviation "UNCHANGED vars" to denote that vars ′ = vars.

While TLA+ permits a variety of specification styles, the specification that we use is defined by:

Spec Init ∧ [N ext] vars ∧ F airness (1)
where:

• Init is a state predicate describing the possible initial states by assigning values to all system variables,

• N ext is an action representing the program's next-state relation,

• vars is the tuple of all variables,

• F airness is an optional formula representing weak or strong assumptions about the execution of actions.

Formula Spec is true of a behavior σ iff Init is true of the first state of σ and every step of σ is either a N ext step or a "stuttering step", in which none of the specified variables change their values, and F airness holds. The behaviors satisfying the specification formula given by Equation ( 1) are the ones that represent correct behaviors of the system, where a behavior represents a conceivable history of a universe that may contain the system.

The TLA+ formula Spec ⇒ φ is valid when the model represented by Spec satisfies the property φ, or implements the model φ.

TLA+ has an explicit model checker called TLC that can be used to check the validity of safety and liveness properties. TLC handles specifications that have the standard form of the formula (1). For this reason, we only use specification formula of the form of Equation (1). TLC requires a configuration file which defines the finite-state instance to analyze. It begins by generating all states satisfying the initial predicate Init. Then, it generates every possible next-state t such that the pair of states s, t satisfies N ext and the F airness constraints, looking for a state where an invariant is violated. Finally, it checks temporal properties over the state space.

TRANSLATION FROM C TO TLA+

Our approach to checking a concurrent C program is to first translate it into a TLA+ specification, to which the TLA+ tools can be applied. In what follows, we briefly present how we specify the semantics of C in 1 int x = 3; 2 int y = 0; TLA+ by describing the memory layout considered and how we model the control flow of a C program.

Memory Layout

C file is parsed and normalized according to CIL (C Intermediate Language) [START_REF] Necula | CIL: Intermediate Language and Tools for Analysis and Transformation of C Programs[END_REF] which transforms complicated constructs of C into simpler ones. This transformation makes programs more amenable to analysis and transformation.

According to the Abstract Syntax Tree (AST) of the C program, C2TLA+ generates automatically a TLA+ specification according to a set of translation rules detailed in our previous work [START_REF] Methni | Specifying and Verifying Concurrent C Programs with TLA+[END_REF].

In C2TLA+, a concurrent program consists of many interleaved sequences of operations called processes, corresponding to threads in C. Each process has a unique identifier id. The set of all processes is determined by the TLA+ constant P rocSet.

Figure 2 presents a C program and the content of the memory as modeled by C2TLA+. We consider that the C code is executed by two processes. One process executes p1() function and the other one executes p2() function.

The memory is separated into four areas that do not overlap:

• a shared memory called data that stores global (and static) variables. In the example of Figure 2a, the x variable is shared by the two processes.

• a local memory for each process, called stack and stores local variables and function parameters. The memory stack[id] specifies the local memory of process id and is composed of stack frames. Each stack frame corresponds to a call to a function. In the example of Figure 2a, stack[1] is composed of two stack frames, one of p1() function and one of inc() function. When a function call terminates, its stack frame is removed.

• a local memory for each process called register modeled as a sequence and stores the program counter of each process. The head of this sequence contains the statement being currently executed by the process id.

• a local memory called ret which contains values to be returned by processes.

The memory is modeled in TLA+ by a variable called memory. It is a record whose four fields represent the four memory areas. The global memory data behaves like an array of values, whereas stack and register behave like a FIFO (First In, First Out) queues. Access to those memory areas is addressed using offsets. So, a memory address is a couple [loc,of f s] of memory location loc, (data or stack area) and an offset of f s in this location. For instance, Addr x specified in Figure 2b defines the memory address of x variable.

The main operations that manage the memory are load() and store():

• load() is the function that given the current state of memory mem and a memory address addr (in the form of [loc, of f s]), returns the value stored at the address addr in the memory mem,

• store() is the function that given the current state of memory mem, a memory address addr and a value val, returns the new copy of the memory after storing the value val at the memory address addr.

Specifying the C control-flow

Each C statement i is identified in C2TLA+ by a label assigned by CIL and is modeled by a TLA+ function, noted stmt i (), which takes as arguments the process identifier id and the memory mem, and returns the new content of the memory after executing the statement.

Each stmt i () updates the program counter register of the process id and may change the content of mem, stack, and/or ret memory areas depending on the type of the statement (assignment, jump statements, etc.). For instance, the statement on line 20 is translated into the TLA+ function p2 20(id, mem) defined as follows:

p2 20(id, mem)

∆ = LET mcopy ∆ = load(id, Addr x, [val → 3]) IN [data → mcopy.mem, stack → mcopy.stack, register → [mem.register EXCEPT ![id] = [pc → "p2 21" , f p → Head(mem.register[id]).f p] • T ail(mem.register[id]), ret → mem.ret]
The definition of p2 20() function uses the TLA+ construct LET/IN to define a temporary variable that stores the value of the memory after affecting the value 3 to the memory address Addr x. The symbol • defines the concatenation operator for TLA+ sequences. Head(s) is a TLA+ function that returns the head of the sequence s and T ail(s) returns the tail of the sequence s. Then, the register [id] is updated by the label value of the successor statement given by the control flow graph (CFG) of the C program (provided by CIL).

The control flow of the C program in C2TLA+ is ensured by the dispatch() function. For the example of Figure 2a, this function is defined as follows: Head(mem.register[id]).pc = "inc 6" → inc 6(id, mem) Head(mem.register [id]).pc = "inc 7" → inc 7(id, mem) Head(mem.register [id]).pc = "p1 11" → p1 11(id, mem) Head(mem.register [id]).pc = "p1 12" → p1 12(id, mem) Head(mem.register [id]).pc = "p1 13" → p1 13(id, mem) Head(mem.register [id]).pc = "p1 14" → p1 14(id, mem) Head(mem.register [id]).pc = "p2 19" → p2 19(id, mem) Head(mem.register [id]).pc = "p2 20" → p2 20(id, mem) Head(mem.register [id]).pc = "p2 21" → p2 21(id, mem) OTHER → mem

dispatch(id, mem) ∆ = CASE
The dispatch() function calls, according to the value of the pc field contained at the top the process register (determined by the expression Head(mem.register[id]).pc), the corresponding TLA+ function to execute, i. e., the C instruction to execute.

The C program is thus simulated by the Spec formula given by equation ( 1). The Init predicate specifies the initial values of the memory and the N ext action is defined as follows:

N ext ∆ = ∨ ∃ id ∈ P rocSet : ∧ memory.regsiter[id] = ∧ memory ′ = dispatch(id, mem) ∨ ∀ id ∈ P rocSet : ∧ memory.regsiter[id] = ∧ UNCHANGED memory
It states that one of the processes that has not finished execution (its register[id] is not empty) is nondeterministically chosen to execute one action until all processes finish execution, i. e., all registers become empty. Executing an action consists in calling dispatch() function. For example, when Head(mem.register [id]).pc equals to "inc 6", calling the function inc 6(id, mem) will update the value of stack[id] (as tmp is stored in the local memory) as well as the top of register [id]. As the register[id] is • a finite set of states Q,

• a set I ⊆ Q of initial states, specified by the Init predicate,

• a transition relation δ ⊆ Q × Q that links two states. This latter corresponds to satisfying the predicate N ext.

The state transition system encodes the state space of the corresponding TLA+ specification of the C program.

Figure 3 illustrates the state space of the corresponding TLA+ specification of the C code given in Figure 2a. It consists in all the possible interleaving of process execution. In order to simplify, we represent only the content of pc field contained at the top of the register[1] and register[2] memories. Each state of the graph matches a valuation of memory variable, i. e., its four fields.

Process Synchronization

All processes interact with each other through the shared memory data. Concurrent access to this latter is ensured via synchronization mechanism. There are many different ways to implement concurrency synchronization in C. For instance, by using locks and semaphores, or by providing low level hardware instructions (e. g., test-and-set and compareand-swap). To support synchronization mechanism, generated TLA+ specifications by C2TLA+ can be completed with manually written TLA+ specifications to provide concurrency primitives and atomic instructions. More detailed information about integrating synchronization primitives in TLA+ specifications can be found in our previous work [START_REF] Methni | Specifying and Verifying Concurrent C Programs with TLA+[END_REF].

APPLYING REDUCTION ON C PROGRAMS

The process of generating an optimized TLA+ specification is illustrated in Figure 4. To apply reduction on C programs, it is necessary to define the agglomeration predicate. The C program is first analyzed. This analysis phase defines an approximate agglomeration predicate which takes as argument a C statement and returns true or false depending on whether the statement can be agglomerated or not. This predicate can be safe or unsafe. The meaning of safe predicate depends on how the analysis is performed.

• The predicate is said safe when the analysis is a safe approximation. Its definition is as follows:

-if the statement does not modify the shared memory, the predicate returns true,

-if the statement modifies the shared memory or it is unknown, it returns false.

The unknown predicate states that we have no idea if the statement modifies the memory or not.

• The predicate is called unsafe when a statement is agglomerated and we are not sure if it modifies the global memory or not. In this Section, we introduce the agglomeration technique by an example. Then, we describe the implementation of a safe agglomeration predicate by using a syntactic and semantic analysis on C programs. Then, we show the interest of using an unsafe agglomeration predicate to generate an abstract TLA+ specification of a C program.

In what follows, we use the expression agglomerating TLA+ actions, to designate agglomerating the corresponding statements in the C program.

An introducing example

As the semantics of a TLA+ is expressed through a state transition system, where transitions between states are ensured by TLA+ actions, the reduction technique consists in agglomerating consecutive actions into one atomic action which performs the effects of the original ones. The reduction idea based on agglomeration has been widely used in Petri Nets [START_REF] Haddad | New Efficient Petri Nets Reductions for Parallel Programs Verification[END_REF][START_REF]Checking properties of nets using transformation[END_REF]).

Figure 5 shows three consecutive states linked by two actions x ′ = x +1and x ′ = x +2. The result of this agglomeration (represented by -→ ), is two states linked by one atomic action which is the result of executing the action x ′ = x +1, then x ′ = x +2.
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x =5

x ′ = x +1

x ′ = x +2 → x =2
x =5

x ′ =(x + 1) +2 

Using syntactic and semantic analysis

Syntactic analysis

A syntactic analysis is performed to detect statements on which reduction can be applied. Often, C functions make use of local variables, and when a statement refers only to local variables, the value for which the statement is executed by a process cannot change the execution of other processes. Furthermore, we assume that statements involving local pointer variable cannot be agglomerated as they may reference shared memory.

Moreover, we consider that jump statements, namely goto, break and continue, can be agglomerated with its successor (designated by computing the CFG), as they only change the local register of the process (register[id] in TLA+ specification).

Semantic analysis

In many scenarios, a concurrent C program could contain, in its global memory, data blocks that are accessed only by one process at a time. In that case, syntactic analysis is insufficient. Therefore, we use a semantic approximation predicate. The C program is thus analyzed and an approximation of memory access is computed using the Mthread Frama-C plugin (Mth). This latter provides information about the memory zones that are accessed concurrently by more than one process and those that are not. In this case, the agglomeration predicate is safe as the analysis is based on an over-approximation of the memory.

We consider the example given by Figure 2a.

To illustrate the agglomeration technique on this example, we represent the C program by its control flow graph, illustrated by Figure 6a, where each state of the graph represents a C statement and edges represent the control flow. After applying the syntactic and semantic analysis on this example, the control flow graph is transformed into a smaller graph, given in Figure 6b. Each state of the graph corresponds to one statement or a block of statements. As the inc() function uses only local memory, its block definition is combined into one basic block. For p1() function, statement on line 11 is agglomerated with statement on line 12 and statement on line 14 is agglomerated with the return instruction.

Generating an abstract specification

Agglomerating statements can also be useful to generate an abstract TLA+ specification of a C program. The user can define which C statements can be agglomerated using an unsafe predicate. The resulting TLA+ specification can be viewed as an abstract formal specification of the C program.

As TLA+ is a fragment of LTL \x (Linear Temporal Logic without the "next operator"), it is well known that the equivalence between checking a property given in LTL \x on an abstract model and checking it on the original model is ensured by the preservation [START_REF] Goltz | Propositional Temporal Logics and Equivalences[END_REF].

Example: Agglomerating critical sections

Consider the following fragment of C code (Figure 7) implementing an example of the producer/consumer model. The two processes share a buffer protected by a mutex m. The synchronization between processes is ensured by two semaphores empty and full. Mutex and semaphores are implemented as an integer values and are only accessible through two atomic operations P() and V().

Translating this implementation into a TLA+ specification and model checking results in verifying all interleavings of actions between processes. We define the agglomeration predicate that states that statements protected by mutex (namely by P() and V() primitives) can be agglomerated. After reduction, the control flow graph of this example is illustrated in Figure 8b.

Therefore, the block statements from line 12 to line 14 and that from line 12 to 26 are agglomerated into one state. The state space of the TLA+ specification generated after agglomerations contains fewer states than the one without agglomerations as the reduction inside the critical section restricts the amount of interleaving allowed between processes. We define the mutual exclusion property in TLA+ as follows:

mut exclusion(lbl1, lbl2) Head(memory.regsiter[id1]).pc = lbl1))

∆ = ((∀ id1, id2 ∈ P rocSet : ∧ (id1 = id2) ∧ (Head(memory.register[id1]) = ) ∧(Head(memory.register[id2]) = ) ∧(
⇒ Head (memory.register[id2]).pc = lbl2) This property expresses that critical sections cannot be executed simultaneously. This property was verified on the TLA+ specification after reduction. Thus, we can deduce that the property is also verified on the specification generated without the reduction technique.

Integrating the reduction into TLA+ specification

In what follows, we show how we implement the reduction on TLA+ specification. As described in Section 3, each execution of N ext action corresponds to executing an atomic C statement. The reduction in C programs, consists in translating a sequence of C statements into one action instead of multiple ones. Let i be the identifier of a statement and j be the identifier of its successor. To do that, we generate for each statement i a new function that we call stmt long i () defined below.

stmt long i (id, mem) ∆ = stmt long j (id, dispatch(id, mem))
The definition of stmt long i (id, mem) consists in calling the function of the successor statement j, noted by stmt long j () and passing as argument the memory state returned by dispatch(id, mem). To generate a reduced TLA+ specification, we iterate over all statements and when the agglomeration predicate returns true for a statement i, its translation consists in calling the function stmt long j (id, dispatch(id, mem)). Otherwise, we call dispatch(id, mem) function.

The C program is thus specified by the formula Spec given by equation (1), except that the N ext action calls a new function dispatch red(), instead of dispatch() function. For the example of figure 2a, the dispatch red() function is defined in Figure 9:

The dispatch red(id, mem) function calls according to the value the program counter pc contained at the head of mem.register[id] the corresponding TLA+ function to execute.

EXPERIMENTS

The reduction technique is totally automatic and was integrated in C2TLA+ which is a Frama-C [START_REF] Cuoq | Frama-C: A Software Analysis Perspective[END_REF]) plugin, implemented in OCaml. This Section is concerned with our practical experience. We use the Mthread plugin results and the syntactic analysis as described in Section 4 to implement our agglomeration technique.

We consider one sequential C program and four concurrent programs: Head(mem.st[id]).pc ="inc 6" → inc long 6(id, mem) Head (mem.register[id]).pc ="inc 7"

dispatch red(id, mem) ∆ = CASE
→ inc long 7(id, mem) Head (mem.register[id]).pc ="p1 11" → p1 long 11(id, mem) Head (mem.register[id]).pc ="p1 12" → p1 long 12(id, mem) Head (mem.register[id]).pc ="p1 13" → p1 long 13(id, mem) Head (mem.register[id]).pc ="p1 14" → p1 long 14(id, mem) Head (mem.register[id]).pc ="p2 19" → p2 long 19(id, mem) Head (mem.register[id]).pc ="p2 20" → p2 long 20(id, mem) Head (mem.register[id]).pc ="p2 21" → p2 long 21(id, mem) OTHER → mem • Zunebug which is a bug in the internal clock driver of Zune 30GB music player. The source code is taken from [START_REF] Weimer | Automatic Program Repair with Evolutionary Computation[END_REF]).

• Lamport's Bakery and Peterson algorithms obtained from [START_REF] Raynal | Concurrent Programming: Algorithms, Principles, and Foundations[END_REF] and Dekker mutual exclusion algorithm presented in (Dijkstra 1968).

• Dining philosopher problem. We use the solution that appears in Tanenbaum's book [START_REF] Tanenbaum | Modern Operating Systems[END_REF].

These programs make typical examples for demonstrating the strength of the state space reduction. C2LTA+ takes as input a C program and generates for each one the corresponding TLA+ specification.

Using the TLC model checker, we compute the total number of generated states and we verify a set of properties on the two specifications.

Results of experiments are shown in Table 1, where #Proc denotes the process number, #St denotes the numbers of states and #T denotes the time for model checking in seconds. Columns 3 to 6 give information about the state space generated with and without applying the reduction technique. The last column indicates the reduction factor, the ratio between the state space generated without reduction and the one after applying the reduction technique.

All experimental results were performed on an Intel Core Pentium i7-2760QM machine with 8 cores (2.40GHz each), with 8Gb of RAM memory.

For zunebug, one property to verify is program termination, which is a liveness property that we express as follows:

termination ∆ = ⋄(Head(memory.register[1]) = )
This property asserts that the register of the program will eventually be empty. For the TLA+ specification without agglomeration, checking this property causes TLC to report an error. This error occurs when the code takes as input the last day of a leap year, causing the code to enter into an infinite loop. After applying the reduction technique for the zunebug program, the state space size of its corresponding TLA+ specification equals 2. This is due to the fact that the program is sequential. Model checking the TLA+ code with the last day of a leap year causes the TLC model to report an incorrect recursive function definition.

For the concurrent programs, the mutual exclusion property has been successfully verified on Peterson, Bakery, Dekker and Philosophers benchmarks. As expected, the size of the state space with agglomerations is always smaller than the one without agglomerations. For the philosopher example with 5 processes, the state space without agglomeration takes more than 7 hours to be model checked. However, using the reduction technique the specification is verified in 6 minutes. The reduction factor in this cas reaches 99.32. The reduction technique obtains good results on these benchmarks due to the elimination of some intermediate states.

RELATED WORK

There are a wealth of research contributions on formal verification of software as well as techniques for the reduction of the state space.

Program slicing is a technique introduced by [START_REF] Weiser | Program Slicing[END_REF] for simplifying sequential programs for debugging and program understanding. It consists in removing from the program features that are irrelevant for the property to be verified. Recently, slicing technique has been used to reduce the state space of a system in model checking. It has been applied to Promela [START_REF] Millett | Issues in Slicing PROMELA and its Applications to Model Checking, Protocol Understanding, and Simulation[END_REF], the input language for the Spin model checker [START_REF] Holzmann | The Model Checker SPIN[END_REF]). The interested reader can refer to [START_REF] Tip | A Survey of Program Slicing Techniques[END_REF] for a detailed description of the different approaches used in the program slicing.

Predicate abstraction [START_REF] Graf | Construction of Abstract State Graphs with PVS[END_REF] is a technique in which a set of predicates over the programs variables is used to construct an abstract program. This technique is being used in SLAM [START_REF] Ball | The SLAM project: Debugging System Software via Static Analysis[END_REF], BLAST (Henzinger et al. 2003) and MAGIC [START_REF] Chaki | Modular verification of software components in c[END_REF]).

Other approaches perform reduction during exploration of the state space of the program. For example, partial order reduction [START_REF] Valmari | Stubborn Sets for Reduced State Space Generation[END_REF]) is a technique which explores only a representative subset of the state space of a model. The basic idea is to exploit the commutativity caused by the interleavings of transitions, which result in the same state. This technique was first introduced for checking the absence of deadlock. Subsequently, a number of variants of this technique have been developed and integrated in verification tools, like Spin [START_REF] Holzmann | The Model Checker SPIN[END_REF] and Verisoft [START_REF] Godefroid | Model Checking for Programming Languages using VeriSoft[END_REF]).

Although we have mentioned some projects in the C context, there are also significant works interested in model checking the Java language. For example, JPF [START_REF] Visser | Model Checking Programs[END_REF] uses state compression technique to handle big states, partial order and symmetry reduction, slicing, abstraction and runtime analysis techniques to reduce the state space.

In this work, the state space reduction technique that we propose is closer to that originally introduced by [START_REF]Checking properties of nets using transformation[END_REF] in Petri nets formalism. Berthelot developed a large set of reduction rules for reducing the complexity of verification. Extended work has been proposed by [START_REF] Haddad | New Efficient Petri Nets Reductions for Parallel Programs Verification[END_REF].

Our work differs from this latter by the fact that the model of our TLA+ specification is a state transition system and the agglomeration predicate depends on the analysis of the C program. Our reduction technique is applied during the generation of TLA+ code unlike the partial order reduction technique which performs reduction during the construction of the state space. Besides, we use TLA+ as formal framework which provides an expressive power to specify the semantics of a programming language and can reason about concurrent systems and can express safety and liveness properties unlike SLAM and BLAST which have limited support for concurrent properties as they only check safety properties.

CONCLUSION AND FUTURE WORK

We have proposed a technique to reduce the state space for model checking C programs. We used C2TLA+ to translate the semantics of C to the formal specification language TLA+. This reduction technique is based on an analysis phase, which defines an approximate agglomeration predicate that states whether a statement can be agglomerated or not. We implemented this predicate by applying a syntactic and semantic analysis on C Programs. We illustrated the effectiveness of applying the agglomeration technique to reduce the state space during the verification of C programs and also as well as to define an abstract TLA+ specification that model the behavior of C programs.

We aim to integrate a mechanism for structuring large TLA+ specifications from C programs using a refinement process between different levels of abstraction. Finally, we are planning to apply the methodology on a critical part of the microkernel of the PharOS [START_REF] Lemerre | Method and Tools for Mixed-Criticality Real-Time Applications within PharOS[END_REF]) real-time operating system (RTOS).
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 2 Figure 2: Example of a C code in which one process (with id equals to 1) executes p1() function and the second one executes p2(). The top of the stack[1] indicates that process 1 is executing the statement with label 6 of inc() function. U ndef represents an undefined value such as the value of an uninitialized variable.
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 7 Figure 7: Example of a producer/consumer model using locks
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 8 Figure 8: The control flow graph of the Producer() and Consumer() functions before and after reduction
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 9 Figure 9: Example of the dispatch red() function definition
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	Figure 1: TLA syntax (Lamport 2002)
	a variant of linear temporal logic introduced by
	(Lamport 1994) for specifying and reasoning about
	concurrent systems. Readers interested in a more
	detailed presentation of TLA+ can refer to Lamport's
	book (Lamport 2002).
	TLA+ specifies a system by describing its possible
	behaviors. A behavior is an infinite sequence
	of states. A state is an assignment of values
	to variables.

A state function is a nonboolean expression built from constants, variables and constant operators and it assigns a value to each state. For example, y + 3 is a state function that assigns to state s the value 3 plus the value that s assigns to the variable y. An action is a boolean expression containing constants, variables and primed variables (adorned with " ′ " operator). Unprimed variables refer to variable values in the current state and primed variables refer to their values in the next-state. Thus, an action represents a relation between old states and new states. A state predicate (or predicate for short) is an action with no primed variables.

Table 1 :

 1 Comparing Model Checking Results with & without Reduction (time in seconds)

	Prorgam #Proc	Without reduction	With reduction	Factor
			#St	#T	#St	#T	
	Zunebug	1	389	0.147	2	0.136	99.48
	Dekker	2	173	0.128	70	0.109	59.53
	Peterson	2 4	107 1.080.161	1.37 59.2	22 31.221	0.131 4.82	79.43 97.10
	Bakery	2 4	2.389 50.515.927	1.91 1560	223 835.355	1.67 76.6	90.66 98.36
	Philos	4 5	9.791.509 >619.309.984	366 25340	146.106 4.179.520	12 352	98.5 99.32