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LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, 75013, Paris, France
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Abstract

Let us consider a specific action or situation
(called event) that takes place within a time se-
ries. The objective in early detection is to build
a decision function that is able to go off as soon
as possible from the onset of an occurrence of
this event. This implies making a decision with
an incomplete information. This paper proposes
a novel framework that i) guarantees that a de-
tection made with a partial observation will also
occur at full observation of the time-series; ii)
incorporates in a consistent manner the lack of
knowledge about the minimal amount of infor-
mation needed to make a decision. The proposed
detector is based on mapping the temporal se-
quences to a landmarking space thanks to ap-
propriately designed similarity functions. As a
by-product, the framework benefits from a scal-
able training algorithm and a theoretical guar-
antee concerning its generalization ability. We
also discuss an important improvement of our
framework in which decision function can still
be made reliable while being more expressive.
Our experimental studies provide compelling re-
sults on toy data, presenting the trade-off that oc-
curs when aiming at accuracy, earliness and re-
liability. Results on real physiological and video
datasets show that our proposed approach is as
accurate and early as state-of-the-art algorithm,
while ensuring reliability and being far more ef-
ficient to learn.
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1. Introduction
Early detection of temporal events is a valuable ability for
automatic systems that serve in many widespread fields.
Common instances of such applications are security (e.g
video surveillance, attack detection and earthquake warn-
ing), healthcare (e.g heart failure detection and protection
of the elderly) and entertainment (e.g recognition of ges-
tures and gaming). Concretely, early detection is the ca-
pability of detecting as soon as possible an occurrence of
the event of interest (let us say a heart disorder) during an
online sequential analysis of a time-series (an electrocar-
diogram in this example). This implies making a decision
with the incomplete observation of an occurrence, that is a
partial information. Admitting that the temporal event of
interest is of finite duration, our objective is to build a de-
tector that is able to make a correct decision as soon as an
occurrence appears and obviously before it ends.

Early decision systems got a growing interest from the ma-
chine learning community in the last years. This is true for
early classification (Xing et al., 2009; 2012; Parrish et al.,
2013) and detection (Hoai & De la Torre, 2012; 2014). In
these works, two points are noteworthy.

The first important point is earliness. The detector is
learned so as to make a decision with partial observations
but without knowing exactly the sufficient amount of infor-
mation to collect. A tempting way to achieve earliness is to
force partial observations to be well recognized (Ellis et al.,
2013; Hoai & De la Torre, 2014). This is quite computa-
tionally demanding and more importantly a simplistic way
to handle the lack of knowledge about the minimal amount
of information required to make a decision. Indeed, such
a procedure implies considering partial observations as oc-
currences of the event. However, some of those incomplete
observations should not be considered as positive events
since not enough information has been collected yet. This
may confuse the learning of the recognition system.
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The second important concept is reliability. It is defined in
a probabilistic way in Parrish et al. (2013): the probability
that a prediction given incomplete information is the same
as the one given the complete information. This property
is essential for early systems since it guarantees the con-
sistency between the decisions with a partial and a full ob-
servation. Such a consistency is a mandatory property in
medical applications or other security applications.

In this work, we describe a novel and general framework,
nicknamed SimpleED, to build a reliable and early non-
linear detector of temporal events. Here, we consider re-
liability in a deterministic way, that is, we ensure that the
decision with a partial observation is identical to the one
achieved with the full sequence. However, achieving these
two properties come inherently with the price of a small
trade-off in detection performances.

For this purpose, we assume that the events are character-
ized by discriminative frames, where a frame corresponds
to a single unit in the temporal sequence (an image for a
video sequence or a frame for an audio recording). Such a
frame-based approach is well suited to a sequential analy-
sis, since at each time step a new frame is collected.

Moreover, this framework is naturally connected to
multiple-instance learning (MIL). The MIL paradigm is
aimed at labeling a bag of instances based on these ones,
but without knowing beforehand which instance is discrim-
inative. This ambiguity is inherent to MIL and makes it
a relevant problem (Keeler et al., 1991; Dietterich et al.,
1997; Wang & Zucker, 2000). Our frame-based approach
makes a link between the MIL ambiguity and the lack of
knowledge concerning the sufficient amount of information
to collect to make an early decision. Thus, and similarly to
the MIL paradigm, this minimal amount is obtained (and
then the event occurrence can be detected) as soon as a
discriminative frame appears. As such, we have build our
framework from the MIL work by Chen et al. (2006) and
we have significantly extended it by exploiting its full po-
tential for sequential decision and by integrating earliness
and reliability properties.

In summary, we make the following contributions in the
context of early detection of temporal events (reflecting the
outline of the paper):

• we propose a novel framework for learning an early
detector which achieves a guaranteed and determinis-
tic reliability;

• this framework handles in a consistent manner the lack
of knowledge inherent to early detection by taking in-
spiration from the MIL literature. It is based on ap-
propriately designed similarity measures which nicely
embed the sequences of frames. Owing to that, we
succeed in building an early detector framework with-
out the need of enumerating all partial observations;

• even with the special features of early detection, our
framework comes with Rademacher-based generaliza-
tion guarantees, obtained from the work by Kakade
et al. (2009). To the best of our knowledge, this is
the first theoretical analysis concerning generalization
of an early detector and it comes as an important by-
product of our learning framework;

• while the model ensuring reliability is achieved by re-
stricting the expressivity power of the classifier, we
show that a large class of reliable models can actually
be built by relaxing these constraints and by a slight
modification of the decision function. Experimental
results show that these relaxed models are competi-
tive both in terms of earliness and accuracy while still
ensuring reliability.

Besides these novelties, the last section of this paper is de-
voted to a detailed comparison between our framework and
the works by Chen et al. (2006) and Hoai & De la Torre
(2014). The numerical experiments include physiological
and video datasets.

2. Related work
The general topic of event detection has been widely ex-
plored in several fields like computer vision (Gorelick
et al., 2007) and disease outbreak (Neill et al., 2005). Yet,
early detection has just recently appeared in the machine
learning community (Hoai & De la Torre, 2012; 2014), re-
sulting in the method called maximum margin early event
detector (MMED). In this work, the authors extend struc-
tured output SVM (Tsochantaridis et al., 2005) to handle
the sequential nature of time-series and early detection by
augmenting the training sequences with all the partial ob-
servations. Then reliability is touched upon thanks to ex-
plicit constraints that promote an increase of the decision
during the analysis of an event occurrence. This approxi-
mate growth of the decision function conveys the following
idea: the more information is collected, the more positive
the decision should be. However, the learned detector is
not deterministically reliable. In addition, by nature, this
approach is rather computationally demanding due to train-
ing example augmentation and the structured output learn-
ing framework.

Early event detection has a strong relation with early clas-
sification of time-series, which is an active field of research
since the early attempts by Rodriguez & Alonso (2002) and
latter by Xing et al. (2009; 2012). Rodriguez & Alonso
(2002) built an early classifier by boosting weak learners
based on simple predicates like the time-series increases in
this region or the time-series stays in this region. On the
contrary, Xing et al. (2012) have developed an early classi-
fier based on a nearest-neighbor technique. More recently,
a framework to classify temporal sequences as soon as pos-
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sible and with a predefined probabilistic reliability has been
introduced in (Parrish et al., 2013). By estimating the first
moments of the conditional density of the complete data
given the incomplete data, Parrish et al. are able to clas-
sify an event with low latency and high reliability. This
approach is based on some hypotheses on the probability
distribution of the data, that enable them to derive an early
decision function.

The MIL paradigm is naturally suited to recognition of tem-
poral sequences, since it deals with discovering the dis-
criminative instances in a bag (and so the discriminative
frames in a sequence). Thus, MIL has been recently ap-
plied to early recognition of human actions in a probabilis-
tic setting (Ellis et al., 2013). Like (Hoai & De la Torre,
2014), the system proposed by Ellis et al. tackles earli-
ness through augmented training sequences (partial obser-
vations) and does not focus on reliability.

Compared to all above-mentioned works, as well as a pre-
liminary study of ours (Sangnier et al., 2015), our approach
is based on a framework which makes no hypotheses on
the data distribution while providing guaranteed reliability
of the decision. In addition, the learning problem is sim-
ple and does not need partial training sequences, making
it more scalable than competitors. Finally, it comes with a
generalization bound on the expected loss of the detector.

3. Theoretical framework for early detection
3.1. Problem definition

In this work, the time is discretized and embodied by
the subscript t ∈ {1, 2, . . . , T} with T being a prede-
fined upper-bound. At each t, a frame is represented by
a feature vector xt, coming from some set S. A tem-
poral sequence is a time-feature representation X1..T =
(x1, . . . ,xt, . . . ,xT ) and we define XT the set of these
sequences. Shorter sequences such as X1..t, with t < T ,
are considered elements of XT through zero-padding.

The aim of this study is to build a real-valued decision func-
tion f : XT → R such that f(X1..t) predicts the nature of
the full sequence X1..T , given the partial observation X1..t.
For a detection threshold b ∈ R, f(X1..t) ≥ b claims that
the sequence X1..T is an occurrence of the event of interest
(this is a detection), while f(X1..t) < b means that the se-
quence X1..T does not represent the event or that the detec-
tor did not collect enough information to make a detection.
This is the default state.

The problem of early detection is to detect an event occur-
rence as soon as possible. Concretely, we shall produce
a decision f(X1..t) ≥ b with the shortest partial obser-
vation X1..t (the smallest t), only when X1..T represents
the event. In practice, such a detector is used in a se-

quential way. A decision is computed at each time step:
f(X1..1), f(X1..2), . . . , f(X1..t). When f(X1..t) ≥ b,
the analysis is interrupted and a notification of detection
is thrown. Note that this sequential analysis can be com-
pacted by defining g(X1..T ) , max1≤t≤T f(X1..t). This
means that X1..T is declared as an event occurrence if and
only if g(X1..T ) ≥ b.

The main aim of this paper is to propose a framework
where f is early and reliable, that is f(X1..T ) and g(X1..T )
produce the same decisions. For this purpose, let us define
formally the notion of reliability. The definition we provide
is inspired by the probabilistic one by (Parrish et al., 2013)
but differs in that it is deterministic.

Definition 3.1 (Reliability) A decision function f is said
reliable with respect to a detection threshold b ∈ R if:

∀X1..T ∈ XT , f(X1..T ) < b : max
1≤t≤T

f(X1..t) < b.

With this definition, a reliable couple (f, b) satisfies
sign (max1≤t≤T f(X1..t)− b) = sign (f(X1..T )− b). In
other words, this definition tells that if the detector dur-
ing the sequential prediction phase outputs a positive label,
then the observation of the full sequence X1..T would also
lead to a positive detection. In addition, if the detector does
not early trigger then it wont trigger when observing X1..T .

3.2. Inducing reliable models

Consider a set of training sequences
{(

X
(i)
1..T , yi

)}
1≤i≤n

,

where the label yi is equal to +1 when the sequence X
(i)
1..T

is an event occurrence, or to −1 otherwise. Our objective
is to learn from these examples a decision model f(·) that
is early and reliable. In what follows, we expose how we
induce model reliability.

The proposed framework is based on a similarity measure
k : XT × S → R which, in a nutshell, measures the simi-
larity of a sequence X1..t to a single frame representation
p. Typically, this frame representation p, called from now
on a landmark, is expected to be related to a discrimina-
tive frame. Note that the similarity measure k performs
some sort of pooling over time, since sequences of differ-
ent lengths can be compared to a single frame p. Owing to
this measure k and a set of landmarks {pj}mj=1, the deci-
sion function f is defined as: f(X1..t) = 〈w | ψ(X1..t)〉`2 ,
where w ∈ Rm and ψ : X → Rm is a map such that
ψ(X1..t) = (k(X1..t,p1), . . . , k(X1..t,pm)). The reason
for this choice stands on some theoretical arguments that
are exposed in the sequel, but also on very intuitive ones.
Indeed, as the landmarks are supposed to be discriminative
for the task at hand, a sequence X1..t that exhibits strong
similarity with a landmark is expected to be detected reli-
ably and as soon as this resemblance is made clear.
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Let us now introduce formally the few assumptions re-
quired to build a reliable model f(·) = 〈w | ψ(·)〉`2 .

Proposition 3.1 Let k : XT × S → R be a similarity mea-
sure and w ∈ Rm. If w < 0 and if k is a non-decreasing
time-dependent function: ∀(p,X1..T ) ∈ S × XT ,[

t1 ≤ t2
]
⇒
[
k(X1..t1 ,p) ≤ k(X1..t2 ,p)

]
,

then f(·) = 〈w | ψ(·)〉`2 is reliable with respect to any
detection threshold.

Proof With these assumptions, f(X1..t1) ≤ f(X1..t2)
when t1 ≤ t2. Thus, max1≤t≤T f(X1..t) = f(X1..T ) and
f is reliable.

This proposition tells us that by imposing non-negative
weights (w < 0) and by appropriately choosing the sim-
ilarity measure k, the resulting detector f is reliable.

In this work, we propose to build a non-decreasing simi-
larity measure k according to the following recipe. Con-
sider a frame-to-frame proximity function q : S × S →
R, for instance q(xt′ ,p) = 〈xt′ ,p〉S , or q(xt′ ,p) =
exp

(
−γ‖xt′ − p‖2S

)
, where γ ≥ 0, depending whether

the set S admits an inner product or a norm. Then, by
pooling the past proximity values, for example thanks to

an `r-norm: k(X1..t,p) =
(∑t

t′=1 |q(xt′ ,p)|r
) 1

r

, the re-
sulting similarity function k is non-decreasing and can be
used to learn a reliable detector. When r → +∞ and q(·, ·)
is Gaussian, this procedure returns the function:

k(X1..t,p) = exp

(
−γ min

1≤t′≤t
‖xt′ − p‖2S

)
, (1)

which is a radial basis similarity based on a non-euclidean
metric. This function has already been used by Chen et al.
(2006) as an embedding for MIL. However, they have
missed its importance and implications for sequential de-
cision making.

3.3. Landmarks, earliness and learning formulation

As mentioned above, the decision function f is learned in
a landmarking space defined by ψ. Such a choice raises
the question of how to select the discriminative frames
{pj}mj=1. A natural way to circumvent this issue is to se-
lect the relevant landmarks (during training) among all the
frames available in the training dataset (Chen et al., 2006;
Kar & Jain, 2012). This can be easily achieved thanks to an
`1-penalization on the weight vector w (Tibshirani, 1996).

Interestingly, this landmark selection idea can be extended
in order to promote earliness in the decision. By strongly
penalizing the selection of late-appearing frames in fully
observed sequences, we incite the decision function to

compare a sequence X1..t to early discriminative frames.
This promotes earliness in the decision. Thus, we replace
the `1-norm by a weighted norm ‖w‖µ`1 =

∑m
j=1 µj |wj |.

Here, µ is a predefined weighting vector, the components
of which are small for early-appearing landmarks (typically
1) and progressively larger for later ones.

The learning problem of the detector f = 〈w | ψ(·)〉`2
(jointly with the detection threshold b) is then obtained by
writing down an `1-norm SVM (Zhu et al., 2004) with the
features mentioned above (that is, the positivity constraint
for reliability and the weighted norm for earliness):

minimize
w, b, ξ

‖w‖µ`1 + C
∑n

i=1 ξi

s. t.

 yi

(〈
w | ψ(X(i)

1..T )
〉
`2
− b
)
≥ 1− ξi,∀i

ξ < 0, w < 0,
(2)

where C is a positive trade-off parameter. Problem (2) is a
linear program that can be solved using off-the-shelf tools
such as lpsolve (Berkelaar et al., 2004). The only potential
embarrassment could be the size of w, as w ∈ RnT , result-
ing from considering all the frames available in the training
dataset as landmarks. This point is tackled in Section 5.

Remark Despite what has been said before, it is quite im-
portant to understand that in some situations, earliness can
not be controlled. This is so if the discriminative frames are
not expected to appear in a structured manner. For instance
if their probability of appearance is equally distributed over
the time-frame [1, T ]. A concrete example is a shout in an
audio recording of a kid play area. In this case, we face
what we call a non-structured event. Thus, playing with µ
may be harmful and going back to a usual `1-norm could
be in our best interest.

Remark An alternative way used in the literature for pro-
moting early detection, is to make use of partially-observed
sequences in the learning procedure, through an augmented
loss function (Ellis et al., 2013; Hoai & De la Torre, 2014).
By forcing them to be well detected, it is possible to control
the earliness of the decision. However it usually leads to
complex optimization problems which are slow to solve as
increasing score constraints such as f(X1..t1) ≤ f(X1..t2),
for t1 ≤ t2, are explicitly stated in the learning problem.

3.4. Generalization guarantee

Proposition (3.1) claims that our detector f is reliable but
the proof gives another interesting result: g(X1..T ) =
max1≤t≤T f(X1..t) = f(X1..T ). In other words, the deci-
sion function in the sequential prediction phase g is identi-
cal to the learned one f . This accounts for our interest in
guaranteeing the generalization capability of our detector.
Any result on the learned (over the full sequences) function
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f is still true on the function g used in practice.

In the proposed framework, the detector f is
trained by minimizing the empirical loss L̂(f) =
1
n

∑n
i=1 `

(
f(X

(i)
1..T ), yi

)
over a function class F . The

equivalence with Problem (2) can be obtained thanks to
the theory by Tikhonov & Arsenin (1977). Here, the
loss function is ` (z, y) = max (0, 1− y(z − b)) and
F =

{
x 7→ 〈w | x〉`2 : w ∈ Rm,w < 0, ‖w‖µ`1 ≤ c1

}
.

This point of view enables us to give a theoretical support
to every early detector learned through the proposed frame-
work. First, let us remind the definition given by Kakade
et al. (2009) of the Rademacher complexity of a function

class F : Rn (F) = E

[
sup
f∈F

1
n

∑n
i=1 f(X

(i)
1..T )εi

]
, where

ε1, . . . , εn are random variables, that independently take
values in {−1,+1} with equal probability. As usual, the
sequences from the training dataset are supposed indepen-
dent and identically distributed. The following proposition
claims that the complexity of our class of early detector is
bounded in O(n−

1
2 ).

Proposition 3.2 Suppose that ∃c∞ ≥ 0: |k(X1..t,p)| ≤
c∞ for all (p,X1..t) ∈ S ×XT . If the lowest component of
µ is 1, then:

Rn (F) ≤ c1c∞

√
2 logm

n
.

Proof Direct application of (Kakade et al., 2009, The-
orem 3, Example (2)) in the landmarking space (x =
ψ(X1..t) ∈ Rm), considering that the weights of ‖·‖µ`1 are
greater than 1.

This proposition can be used to derive a generalization
bound thanks to (Bartlett & Mendelson, 2002; Kakade
et al., 2009, theorem 1). This one states that, with high
probability, the expected loss L(g) = E [` (g(X1..T ), y)] is
uniformly bounded in the following way:

L(g) ≤ L̂(f) + 2Rn (F) +O(n−
1
2 ) = L̂(f) +O(n−

1
2 ).

This can be interpreted as: the expected real-time loss tends
to be low if the empirical loss (minimized during the learn-
ing procedure) is low too and/or if the sample of training
sequences grows.

4. Relaxing reliability constraints
Reliability is highly desirable for early detection although
few approaches in the literature satisfy this property. Par-
rish et al. (2013) provide some probabilistic property while
the main method we compare our framework with, called
MMED (Hoai & De la Torre, 2014), is not reliable.

In our framework, we induce a deterministic reliability
property by imposing some positivity constraints on the de-
cision function weights. However, such constraints tend to
reduce the expressivity of the decision function leading to
poorer capability of learning the training examples. Hence,
we propose to learn our decision function f(·) by making
a compromise between reliability and expressivity. This
trade-off is induced by relaxing the positivity constraints,
yielding the following learning problem:

minimize
w, b, ξ,v

‖w‖µ`1 + C
∑n

i=1 ξi + λ
∑m

j=1 vj

s. t.

 yi

(〈
w | ψ(X(i)

1..T )
〉
`2
− b
)
≥ 1− ξi,∀i

ξ < 0,w < −v,v < 0,
(3)

where λ is a positive trade-off parameter between expres-
sivity and reliability. Note that when λ → +∞, we get
back the original Problem (2) while when λ = 0, we have
a classical learning problem similar to the one proposed in
(Chen et al., 2006) but with an earliness-promoting penalty.

Because of this relaxation, Proposition 3.1 guaranteeing
reliability does not hold anymore. Interestingly, the next
proposition tells us that we can easily derive for the learned
f(·) a reliable decision function.

Proposition 4.1 Let k : XT × S → (−∞, 1] be a non-
decreasing time-dependent function. For any model f =
〈w | ψ(·)〉`2 , let P = {j ∈ {1, . . . ,m} : wj > 0}
and N the sets indexing respectively positive and negative
weights. Then f̂(·) ,

∑
j∈P wjk(·,pj) +

∑
j∈N wj is re-

liable with respect to any detection threshold b. Moreover,
if f̂(X1..t) ≥ b, then f(X1..T ) ≥ b.

Proof First, reliability comes from the same argu-
ment as in Proposition 3.1. Second, f(X1..T ) −
f̂(X1..t) =

∑
j∈P wj(k(X1..T ,pj) − k(X1..t,pj)) +∑

j∈N wj(k(X1..T ,pj)−1) ≥ 0 since k is non-decreasing
with respect to t and k(X1..T ,pj) ≤ 1. Thus, f(X1..T ) ≥
b as soon as f̂(X1..t) ≥ b.

Several remarks can be stated from this proposition. First,
one important statement is that any model can now achieve
reliable decision. This ability of delivering reliable de-
tection at a time t depends on how negative is the score∑

j∈N wj . This latter score can be understood as a gap
needed for a relaxed model for ensuring reliability. Hence,
if wj = 0 for all j ∈ N without specifying explicitly this
constraint in the learning problem, then we obtain the same
reliability condition than the one given by Proposition 3.1.

The second important remark is that since∑
j∈P wjk(X1..t,pj) is a non-decreasing function,

our relaxed model actually trades earliness versus relia-
bility. Indeed, at a time t1, we can have f(X1..t1) ≥ b
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without reliability but we need to wait until t2 > t1 to get
f̂(X1..t2) ≥ b.

5. Training algorithm
Like Problem (2), Problem (3) can be solved with an off-
the-shelf solver, by using the decoupling trick: ‖w‖µ`1 =∑m

j=1 µj(w
+
j +w−j ), with w = w+−w− and w+,w− <

0. However, to do so, one has to accept to deal with many
components of w that will be null at the optimality. In order
to speed up the training of our detector, we propose to solve
the dual of Problem (3) instead:

maximize
β∈Rn

〈1 | β〉`2

s. t.


0 4 β 4 C1
−µ− λ1 4 Qβ 4 µ
〈β | y〉`2 = 0,

(4)

where Q=
(
y1ψ(X

(1)
1..T , . . . , y1ψ(X

(n)
1..T )

)
∈ Rm×n.

The primal variables w and b turn out to be the Lagrangian
variables of the last two constraints in (4). Moreover,
Karush-Kuhn-Tucker conditions indicate that if µj − λ <
(Qβ)j < µj , then wj = 0. This suggests a column gen-
eration algorithm (Nocedal & Wright, 2000). Such a pro-
cedure is presented in Algorithm 1. Convergence is guar-
anteed by convex optimization theory (Luenberger, 1984).

Algorithm 1 Algorithm to learn a an early detector.
1: A ← random sample of indexes between 1 and m
2: repeat
3: Q←

(
yik(X

(i)
1..T ,pj)

)
j∈A, 1≤i≤n

4: β ← solve Problem (4)
5: j− ← arg min

1≤j≤m
((Qβ)j + µj)

6: j+ ← arg max
1≤j≤m

((Qβ)j − µj)

7: if −µj− − λ ≤ (Qβ)j− and (Qβ)j+ ≤ µj+ then
8: convergence
9: else if −µj− − λ > (Qβ)j− then

10: A ← A∪ {j−}
11: else
12: A ← A∪ {j+}
13: end if
14: until convergence

6. Numerical experiments
Our detection task is a multi-objective problem, where
them goal is to correctly detect all the events with the
fewest false alarm as possible, and in an early and reli-
able way. As such, it is difficult, if not impossible, to

optimize both earliness and accuracy while being reliable.
Hence, depending on the parameter µ (promoting earli-
ness) and the hyper-parameter λ controlling reliability, we
can achieve models that perform well on a criterion but
poorly on the other. We thus believe that the choice of
which criteria should be put forward and thus the model
selection is application and user dependent. Hence, in the
sequel, we have presented the results obtained by several of
our models. As competitors, we have considered MMED,
which is not a reliable detector and the MILES classifier by
Chen et al. (2006), that we turned into a reliable sequential
detector. Note that although we present the sequential and
reliable MILES as a competitor, this algorithm is a contri-
bution of ours as it is subsumed under our model SimpleED
(µ = 1 and λ = 0) and strongly relies on Proposition 4.1.

In the whole section, AUROC refers to the area under
the receiver operating curve obtained for ĝ(X1..T ) =

max1≤t≤T f̂(X1..t) (that is for a sequential test). It mea-
sures the overall capability of detection independently of
the threshold b (1 notifies a perfect ability). Following
(Hoai & De la Torre, 2014), we also consider the ac-
tivity monitoring operating curve (AMOC) (Fawcett &
Provost, 1999), which depicts the average normalized-
time-to-detect the occurrences of the event versus the false
positive rate. This curve is obtained by making the detec-
tion threshold b vary. To perform a fair comparison, in-
dependently of the trade-off between accuracy and earli-
ness, we analyze the area under the AMOC curve (denoted
AUAMOC). Unless specified, numerical results presented
(AUROC, AUAMOC, AMOC curve, training time) are av-
eraged on 10 random runs, where the models are evalu-
ated on a test dataset, after being learned on a separate
training dataset. The parameter γ that defines the land-
marking space is set to 2−1 (default value for normalized
data). Smallest value of µ is always set to 1 according
to Proposition 3.2. The other values are defined follow-
ing a linear trend. C is obtained through a 5-fold cross-
validation (maximizing the AUROC) on the following grid
[2−2, 20, . . . , 210]. Eventually, MMED is trained in accor-
dance to its design, our framework and the other confronted
methods, using the time-serie {ψ(X1..t)}Tt=1: event occur-
rences are sent with the time frame label [1, T ] (meaning
that the whole sequence is an occurrence) and the other
sequences with the time frame label [0, 0] (meaning that
there is no occurrence in this sequence). A quick compari-
son reported a faster training and slightly better results than
drowning the occurrences in large time-series. Matlab R©

code ran on a single core of an Intel R© Xeon R© E5-2630
CPU, operating at 2.4 GHz with GNU/Linux and 144 Gb
of RAM. In addition, this code is available on the authors’
websites.



Early and Reliable Event Detection Using Proximity Space Representation

MODEL CRITERION
NUMBER λ max(µ) AUAMOC AUROC TIME (S)

1 0 1 0.8309 1.000 0.27
2 0 2 0.1961 0.998 0.28
3 1 2 0.5425 1.000 0.30
4 2 2 0.5590 1.000 0.29
5 INF 2 0.5601 1.000 0.25
6 0 4 0.0630 0.995 0.27
7 1 4 0.0797 0.998 0.27
8 2 4 0.1313 1.000 0.28
9 INF 4 0.2435 1.000 0.28

10 0 8 0.0587 0.995 0.26
11 1 8 0.0657 0.997 0.27
12 2 8 0.0786 0.998 0.28
13 INF 8 0.0986 0.999 0.23

MMED - - 0.1066 1.000 32.93
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Figure 1. Toy dataset: table summarizing numerical results (left) and AMOC curves of the different models (right).

6.1. Toy dataset

This first numerical experiment is aimed at assessing the
ability of SimpleED to promote an early detection. This ex-
periment is performed with a toy dataset, which is made up
of two classes. Each class is a one-second linear chirp (both
starting at 100 Hz and ending at respectively 7000 and 8000
Hz) with an additive Gaussian noise. We use MFCC com-
puted on a sliding window as time-feature representation.
The dataset contains 400 sequences of 40 frames. For each
run, half of them are selected for training, and the other
half is for testing the models. In order to make MMED
tractable, we have pruned the number of landmarks by a
factor of 2, yielding thus 4000 landmarks. Figure 1 depicts
the AMOC curves for SimpleED under different parame-
ters µ and λ. The first model (Model 1) with the slope
of µ equals to 1 and λ = 0 corresponds to the reliable
MILES model by Chen et al. (2006) which as been made
reliable according to Proposition (4.1). Performance of
MMED is also presented. From the table on Figure 1, sev-
eral interesting remarks can be pointed out. First, MILES
(Model 1) performs poorly in term of AUAMOC. This a
natural consequence of not imposing any constraints on the
landmarks. When keeping fixed the penalty λ on the nega-
tive weights (encouraging reliability), increasing the largest
weight on the `1-penalty, reduces AUAMOC. For λ = 2,
AUAMOC takes values 0.56, 0.13 and 0.08 respectively
for largest values of µ (2, 4 and 8). This is a natural con-
sequence of imposing early landmarks to be selected. For
similar weights on the `1-penalty, inducing reliability in-
creases AUAMOC and AUROC (see for instance the re-
sults for µ = 4). We can explain this by two points: i)
reliability induces model to select landmarks for which it
has more confidence (hence later landmarks); ii) AUROC
increases because models which are less constrained on re-
liability (smaller values of λ) but are used in a reliable de-

cision context, have larger negative weights that need to be
compensated before detection. Hence these models tend to
miss some positive time-series (more miss to detect).

We can note that MMED is on par with SimpleED in terms
of AUROC and slightly worse for AUAMOC. Moreover,
its normalized-time to detect is poorer than those of most
of SimpleED for small false positive rate, which is the in-
teresting setting. In addition, its running time for training
is almost 100 times more expensive than SimpleED.

6.2. BCI data

Here, we address electroencephalographic event detection
related to brain-computer interfaces (BCI). The objective is
to detect 5-second length event occurrences. In BCI tasks,
being able to reliably detect an event occurrence as soon as
possible is of primary importance, since it helps in increas-
ing command bitrate related to the BCI. Again, reliability
is a key feature as it is preferable to collect more data than
to make an error due to incomplete observation. Errors are
indeed difficult to fix with BCI.

For this experiment, we used the publicly available dataset
2a from BCI competition IV (Brunner et al., 2008). The
features we extracted for a single frame are similar to the
classical procedure used in BCI and they are based on
Common Spatial Patterns (CSP) (Lotte & Guan, 2011).
The main difference here is that instead of projecting the
whole 5s signals onto the CSP subspace, frames of 50-ms
window are built and the portion of related signals are pro-
jected. We thus have 100 frame per signals, 144 signals
per subject and 9 subjects. Again, in order to make MMED
tractable, we have pruned the number of landmarks by a
factor of 3, yielding thus 4800 landmarks. Because the BCI
frames are not normalized, the parameter γ used for com-
puting similarity in Equation (1) has been set to the inverse
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Table 1. BCI: statistics for a subset of our models (due to space
limitation). Model 1 is sequential MILES. The penultimate line
provides a single average criterion for comparing the methods (the
larger the better).

SUBJECT CRITERION MODEL
1 4 5 8 9 13 MMED

1 AUAMOC 0.56 0.56 0.52 0.61 0.56 0.56 0.26
AUROC 0.83 0.89 0.94 0.89 0.95 0.93 0.93

2 AUAMOC 0.79 0.80 0.81 0.79 0.80 0.81 0.66
AUROC 0.54 0.53 0.53 0.52 0.53 0.52 0.49

3 AUAMOC 0.54 0.55 0.47 0.48 0.48 0.46 0.29
AUROC 0.84 0.92 0.92 0.92 0.92 0.94 0.95

4 AUAMOC 1.00 0.86 0.88 0.85 0.88 0.88 0.77
AUROC 0.50 0.55 0.60 0.51 0.57 0.58 0.57

5 AUAMOC 0.73 0.78 0.79 0.79 0.85 0.89 0.72
AUROC 0.50 0.50 0.56 0.46 0.55 0.52 0.56

6 AUAMOC 0.74 0.81 0.74 0.75 0.73 0.77 0.53
AUROC 0.57 0.61 0.65 0.59 0.63 0.65 0.69

7 AUAMOC 0.78 0.68 0.86 0.73 0.86 0.72 0.59
AUROC 0.67 0.79 0.62 0.71 0.61 0.74 0.70

8 AUAMOC 0.36 0.37 0.37 0.37 0.37 0.39 0.12
AUROC 0.95 0.94 0.94 0.93 0.93 0.94 0.99

9 AUAMOC 0.18 0.19 0.19 0.25 0.26 0.19 0.24
AUROC 0.97 0.97 0.97 0.98 0.97 0.97 0.96

(1-AUAMOC +AUROC)/2 0.54 0.56 0.56 0.55 0.55 0.56 0.65
TIME (S) 1.72 1.59 1.47 1.48 1.36 1.25 34.09

of the square-root of the average distance between 20% of
the frames.

Results are presented in Table 1. They are single run re-
sults since for each subject training and testing sets are
pre-defined. They clearly show that SimpleED, whose pa-
rameters are identical to the toy problem, performs slightly
worse than MMED regarding the average AMOC and AU-
ROC over all the subjects. We understand this as the little
price to pay for reliability! This can be clearly seen for
AUROC-best performing subjects (1, 3, 8 and 9), where
earliness is traded against reliability. Again, our algorithm
achieved a large gain in training time compared to MMED.

6.3. Emotions dataset

As a video-based experiment, we consider the extended
Cohn-Kanade dataset (CK+) (Lucey et al., 2010). This
one contains 327 facial image sequences from 123 sub-
jects. Each subject performed a prescribed emotion (among
anger, contempt, disgust, fear, happiness, sadness, and sur-
prise) from neutral behavior (first frame) to peak expres-
sion (last frame). Similarly to (Hoai & De la Torre, 2014),
we consider the task of detecting negative emotions: anger,
disgust, fear, and sadness. As a time-feature representation,
we use the tracking landmarks of the Active Appearance
Models, which are publicly available (Lucey et al., 2010),
normalized by subtracting the features of the first and neu-
tral frame. We used 100 time-series for training leading to
1879 landmarks.

Comparison results are given in Figure 2. For this experi-
ment, we have kept the general experimental set-up but in
addition, we have cross-validated the parameter λ among
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MODEL AUAMOC AUROC (1-AUAMOC +AUROC)/2 TIME (S)
MILES 0.69 0.53 0.42 0.122
SIMPLEED 0.36 0.88 0.76 0.096
MMED 0.42 0.93 0.75 2.969

Figure 2. Emotions dataset: AMOC curves with standard devia-
tions (shaded areas) and table providing averaged statistics.

the values (0, 2−5, 2−3, 20, 23, 25,∞). From the table, we
can see that MMED and SimpleED are on par, with an ad-
vantage for SimpleED in AUAMOC. Here, again the train-
ing running time of our algorithm is of an order of mag-
nitude better than the one of MMED. From the figure, we
notice that the AMOC curve of SimpleED is always bet-
ter than the one of MMED and there exists large gap of
normalized-time-to-detect around 0.1 false positive rate in
our favor. This again shows that the approaches we devel-
oped are efficient as the state-of-the-art for early detection,
while being in addition reliable.

7. Conclusion
In this paper, we have provided a novel framework for early
and reliable detection of temporal events. The detector is
built upon a landmarking space with specific properties.
We have also investigated how these properties can be re-
laxed in order to enhance the expressivity power of the de-
cision function and provide novel ways for guaranteeing
reliability of these models. Experimental results highlight
that our detector based on similarity functions is faster to
train and achieves similar performances than its competitor
MMED while providing reliable decisions and being far
more efficient to learn.

Constraints relaxations have been considered for perfor-
mance boosting. Another way to achieve this goal would be
to integrate a representation learning into the global learn-
ing strategy. Learning the landmarks would also be an im-
portant step in the future improvements of this framework.



Early and Reliable Event Detection Using Proximity Space Representation

Acknowledgments
This work was partially funded by the industrial chair “Ma-
chine Learning for Big Data”, CEA, LIST and the Di-
rection Générale de l’Armement (French Ministry of De-
fense).

References
Bartlett, P.L. and Mendelson, S. Rademacher and gaussian

complexities: Risk bounds and structural results. Jour-
nal of Machine Learning Research, 3:463–482, 2002.

Berkelaar, M., Eikland, K., and Notebaert, P. lpsolve:
Open source (mixed-integer) linear programming sys-
tem. Eindhoven University of Technology, 2004.

Brunner, C., Leeb, R., Mller-Putz, G.R., Schlgl, A., and
Pfurtscheller, G. {BCI} {Competition} 2008 – {Graz}
data set {A}. Technical report, Institute for Knowledge
Discovery, Institute for Human-Computer Interfaces,
Graz University of Technology, Austria, 2008. URL
http://www.bbci.de/competition/iv/.

Chen, Y., Bi, J., and Wang, J.Z. Miles: Multiple-instance
learning via embedded instance selection. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
28:1931–1947, 2006.

Dietterich, T.G., Lathrop, R.H., and Lozano-Prez, T. Solv-
ing the multiple instance problem with axis-parallel rect-
angles. Artificial Intelligence, 89(1-2):31–71, 1997.

Ellis, C., Masood, S.Z., Tappen, M.F., Laviola, J.J. Jr., and
Sukthankar, R. Exploring the trade-off between accuracy
and observational latency in action recognition. Interna-
tional Journal of Computer Vision, 101:420–436, 2013.
ISSN 0920-5691.

Fawcett, T. and Provost, F. Activity monitoring: Noticing
interesting changes in behavior. In SIGKDD conference
on knowledge discovery and data mining, 1999.

Gorelick, L., Blank, M., Shechtman, E., Irani, M., and
Basri, R. Actions as space-time shapes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 29:
2247–2253, 2007.

Hoai, M. and De la Torre, F. Max-margin early event de-
tectors. In IEEE Conference on Computer Vision and
Pattern Recognition, 2012.

Hoai, M. and De la Torre, F. Max-margin early event de-
tectors. International Journal of Computer Vision, 107:
191–202, 2014.

Kakade, S.M., Sridharan, K., and Tewari, A. On the
complexity of linear prediction: Risk bounds, margin

bounds, and regularization. In Advances in Neural In-
formation Processing Systems. 2009.

Kar, P. and Jain, P. Supervised learning with similarity
functions. In Advances in Neural Information Process-
ing Systems. 2012.

Keeler, J.D., Rumelhart, D.E., and Leow, W.-K. Integrated
Segmentation and Recognition of Hand-Printed Numer-
als. In Advances in Neural Information Processing Sys-
tems. 1991.

Lotte, F. and Guan, C. Regularizing common spatial pat-
terns to improve BCI designs: Unified theory and new
algorithms. IEEE Transactions on Biomedical Engineer-
ing, 58(2):355–362, 2011.

Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z.,
and Matthews, I. The Extended Cohn-Kanade Dataset
(CK+): A complete dataset for action unit and emotion-
specified expression. In IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition Work-
shops, June 2010. doi: 10.1109/CVPRW.2010.5543262.

Luenberger, D.G. Linear and nonlinear programming.
Addison-Wesley, 1984. ISBN 9780201157949.

Neill, D., Moore, A., and Cooper, G. A bayesian spatial
scan statistic. In Advances in Neural Information Pro-
cessing Systems. 2005.

Nocedal, J. and Wright, S.J. Numerical optimization.
Springer, 2000. ISBN 9780387303031.

Parrish, N., Anderson, H.S., Gupta, M.R., and Hsiao, D.Y.
Classifying with confidence from incomplete informa-
tion. Journal of Machine Learning Research, 14:3561–
3589, 2013.

Rodriguez, J.J. and Alonso, C.J. Boosting interval-based
literals: Variable length and early classification. In Work-
shop on Knowledge Discovery from (Spatio-) Temporal
Data, 2002.

Sangnier, M., Gauthier, J., and Rakotomamonjy, A. Early
frame-based detection of acoustic scenes. In IEEE Inter-
national Workshop on Applications of Signal Processing
to Audio and Acoustics, 2015.

Tibshirani, R. Regression Shrinkage and Selection via the
Lasso. Journal of the Royal Statistical Society. Series B
(Methodological), 58(1):267–288, 1996.

Tikhonov, A.N. and Arsenin, V.Y. Solutions of ill-posed
problems. Winston, Washington, DC, 1977.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun,
Y. Large margin methods for structured and interdepen-
dent output variables. Journal of Machine Learning Re-
search, 6:1453–1484, 2005.

http://www.bbci.de/competition/iv/


Early and Reliable Event Detection Using Proximity Space Representation

Wang, Jun and Zucker, J.-D. Solving the multiple-instance
problem: A lazy learning approach. In International
Conference on Machine Learning, 2000.

Xing, Z., Pei, J., and Yu, P.S. Early prediction on time
series: A nearest neighbor approach. In International
Joint Conferences on Artificial Intelligence, 2009.

Xing, Z., Pei, J., and Yu, P.S. Early classification on time
series. Knowledge and Information Systems, 31:105–
127, 2012. ISSN 0219-1377.

Zhu, J., Rosset, S., Hastie, T., and Tibshirani, R. 1-norm
Support Vector Machines. In Advances in Neural Infor-
mation Processing Systems. 2004.


	Introduction
	Related work
	Theoretical framework for early detection
	Problem definition
	Inducing reliable models
	Landmarks, earliness and learning formulation
	Generalization guarantee

	Relaxing reliability constraints
	Training algorithm
	Numerical experiments
	Toy dataset
	BCI data
	Emotions dataset

	Conclusion

