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Abstract

Cross-modal tasks occur naturally for multimedia con-

tent that can be described along two or more modalities like

visual content and text. Such tasks require to “translate” in-

formation from one modality to another. Methods like ker-

nelized canonical correlation analysis (KCCA) attempt to

solve such tasks by finding aligned subspaces in the descrip-

tion spaces of different modalities. Since they favor correla-

tions against modality-specific information, these methods

have shown some success in both cross-modal and bi-modal

tasks. However, we show that a direct use of the subspace

alignment obtained by KCCA only leads to coarse trans-

lation abilities. To address this problem, we first put for-

ward a new representation method that aggregates informa-

tion provided by the projections of both modalities on their

aligned subspaces. We further suggest a method relying on

neighborhoods in these subspaces to complete uni-modal

information. Our proposal exhibits state-of-the-art results

for bi-modal classification on Pascal VOC07 and improves

it by over 60% for cross-modal retrieval on FlickR 8K/30K.

1. Introduction

An increasing number of multimedia documents are de-

scribed along two or more modalities that convey partly

common and partly complementary information. This gives

the opportunity to devise rich multimedia representations

that support both multi-modal and cross-modal tasks. For

example, images have a visual content but may also have

associated textual data (keywords or sentences). In bi-

modal image classification, visual and textual content are

employed together for solving the task. Cross-modal tasks

like text illustration or image annotation require instead to

“translate” information from one modality to another.

Simple fusion approaches such as early fusion (i.e. con-

catenation of visual and textual features) have been ex-

tensively employed, with some success, in bi-modal tasks.
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Figure 1. Visual and textual contents of a document are projected

onto a common space that has been previously quantized. Both

points, corresponding to the same document, are encoded accord-

ing to a common vocabulary before their aggregation.

But to address cross-modal tasks it was necessary to de-

vise methods that are able to link the two modalities more

closely. This is accomplished through the development of a

common, latent representation space resulting from a max-

imization of the relatedness between the different modali-

ties. The methods typically rely on Canonical Correlation

Analysis or its kernel extension [10, 14, 5, 9] and on deep

learning [20, 26, 8, 7, 18, 27].

Given a set of documents described along two different

modalities like image and text, Kernel Canonical Correla-

tion Analysis (KCCA) aims to find maximally correlated

manifolds in the feature spaces associated to the two modal-

ities. These manifolds are seen as a common space, where

each multimedia document is represented by the two projec-

tions of its visual and respectively textual features. This ap-

proach was shown to be quite effective [10, 14, 12, 5, 9] and
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some recently proposed neural networks for cross-modal

tasks [7, 27] also make use of KCCA.

While mainly considered for cross-modal tasks, a com-

mon representation space also has the potential to improve

the results obtained in bi-modal tasks. For images described

by both a visual and a textual content, bi-modal tasks typi-

cally focus on semantics. The common representation space

favors inter-related information that usually highlights se-

mantics and discounts modality-specific information. Us-

ing features from the common representation space instead

of early fusion features can then be seen as a form of regu-

larization that reduces the risk of overfitting.

However, by observing the distribution of data projected

on the common representation space obtained with KCCA,

we found that this space only provides a very coarse as-

sociation between modalities. For any given document, the

projections of its visual and respectively textual features fall

far apart. A direct use of these projections results in limited

quality “translation” between modalities.

To deal with this problem, we put forward a new rep-

resentation method for the projections on the common

space, called Multimedia Aggregated Correlated Compo-

nents (MACC). It aims to reduce the gap between the pro-

jections of visual and textual features by embedding them

in a local context reflecting the data distribution in the com-

mon space. Given a database of multimedia documents, we

first perform KCCA and build a codebook from all the pro-

jections of visual and textual features on the KCCA com-

mon space. Subsequently, for each multimedia document,

visual and textual features are projected on this common

space, then coded using the codebook and eventually ag-

gregated into a single MACC vector that is the multimedia

representation of the document (see Figure 1).

When one modality is missing from the initial descrip-

tion of a document, we further propose a method for com-

pleting its MACC representation using data from an aux-

iliary dataset. First, its nearest neighbors in KCCA space,

according to the available modality, are found in this aux-

iliary data. Then, the descriptions of the nearest neighbors

according to the other modality are combined and complete

the MACC representation of the target document.

We show that MACC representations allow to reach

state-of-the-art performance in a bi-modal task (image clas-

sification on Pascal VOC07) and in a cross-modal task

(cross-modal retrieval on FlickR 8K and FlickR 30K). We

also find that the representation completion method sup-

ports an interesting novel usage consisting in training clas-

sifiers on data from one modality and testing them on data

from the other.

The remainder of this paper is organized as follows. The

related work section reviews the usage of KCCA in the re-

cent literature for addressing either cross-modal or bi-modal

tasks. After a brief reminder of KCCA, we focus on the

construction of MACC representations, involving an aggre-

gation of the projections of visual and textual content rep-

resented on a common vocabulary. The method we devised

for completing the MACC representation when data is miss-

ing for one of the modalities is also presented. The evalu-

ation in Section 4, conducted on three datasets, concerns

both image classification and cross-modal retrieval. We

briefly highlight the deficiency of KCCA-based represen-

tations that motivated our introduction of MACC represen-

tations. Several experiments are then presented, supporting

comparisons to the state of the art and to several baselines,

but also allowing to explore the impact of some key param-

eters. We end up with the conclusion and a few directions

for future work.

2. Related Work

In the recent literature, various (K)CCA-based ap-

proaches have been proposed to deal with either cross-

modal or bi-modal tasks. CCA was first applied to cross-

modal retrieval in [10], where its kernel extension KCCA

was also introduced in order to allow for more general, non-

linear latent spaces. Since not all the words (or tags) anno-

tating an image have equal importance, [14, 15] proposed a

method taking advantage of their importance when building

the KCCA representation. The importance of a word for an

image is obtained from the order of words in the annota-

tions provided by users for that image. Gong et al. [9] put

forward a multi-view (K)CCA method: a third view, explic-

itly representing image’s high-level semantics, is taken into

account when searching for the latent space. This “seman-

tic” view corresponds to ground-truth labels, search key-

words or semantic topics obtained by clustering tags. This

first group of approaches focus on investigating complete

representations of data for building a robust common space.

Nevertheless, they directly use the projections of the textual

and visual descriptors the KCCA common space in order to

perform cross-modal tasks.

Approaches in a second group aim to build upon these

direct projections on the KCCA common space. Specifi-

cally, Costa Pereira et al. [5] proposed semantic correlation

matching (SCM), where the projections of image and text

features by (K)CCA are first transformed into semantic vec-

tors produced by supervised classifiers with respect to pre-

defined semantic classes. These vectors are then used for

cross-modal retrieval. Ahsan et al. [1] employed the con-

catenation of textual and visual KCCA-descriptors as inputs

of a clustering algorithm to perform a bi-modal task, social

event detection. Our proposal follows this second group of

approaches. The novelty of our work compared to existing

methods is to build a common vocabulary for image and

text on the KCCA space and to represent multimedia doc-

uments by aggregating their visual and textual descriptors

defined on this common vocabulary.
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3. MACC: Multimedia Aggregated Correlated

Components Representation

We briefly remind in Section 3.1 the theoretical foun-

dations of CCA and its kernelized version KCCA. In Sec-

tion 3.2, we describe a new representation of multimedia

documents relying on an aggregation of the projections of

visual and textual content defined on a common vocabu-

lary. Since (K)CCA aims to find a projection space where

the correlation between modalities is maximized, we named

this new representation “Multimedia Aggregated Correlated

Components” (MACC). In Section 3.3 we propose an ex-

tension for completing the MACC representations of doc-

uments for which only one modality is available. While

MACC addresses problems with the representation of bi-

modal documents, this extension focuses on actual cross-

modal cases.

3.1. Kernel Canonical Correlation Analysis

For data simultaneously represented in two different

vector spaces, CCA [10] finds maximally correlated linear

subspaces of these spaces. Let XT and XI be two ran-

dom variables, taking values in R
dT and respectively R

dI .

Consider N samples {(xT
i , x

I
i )}

N
i=1 ⊂ R

dT × R
dI . CCA

simultaneously seeks directions wT ∈ R
dT and wI ∈ R

dI

that maximize the correlation between the projections of xT

onto wT and of xI onto wI ,

w∗
T , w

∗
I = argmax

wT ,wI

wT

′

CTI wI
√

wT
′

CTT wT wI
′

CII wI

(1)

where CTT , CII denote the autocovariance matrices of XT

and XI respectively, while CTI is the cross-covariance

matrix. The solutions w∗
T and w∗

I are eigenvectors of

C−1
TTCTIC

−1
II CIT and respectively C−1

II CITC
−1
TTCTI . The

d eigenvectors associated to the d largest eigenvalues define

maximally correlated d-dimensional subspaces in R
dT and

respectively R
dI . Even though these are linear subspaces of

two different spaces, they are often referred to as “common”

representation space.

Kernel CCA (KCCA, see e.g. [10]) aims to remove the

linearity constraint by using the “kernel trick” to first map

the data from each initial space to the reproducing ker-

nel Hilbert space (RKHS) associated to a selected kernel

and then looking for correlated subspaces in these RKHS.

KCCA seeks vectors of coefficients αT , αI ∈ R
N that al-

low to define these maximally correlated subspaces. αT , αI

are solutions of

α∗
T , α

∗
I = argmax

αT ,αI

α
′

T KT KI αI

V (αT ,KT )V (αI ,KI)
(2)

where V (α,K) =
√

αt (K2 + κK)α, κ ∈ [0, 1] is a regu-

larization parameter and KT , KI denote the N ×N kernel

matrices obtained from {xT
i }

N
i=1 and {xI

i }
N
i=1.

3.2. Aggregation of textual and visual information
in the projection space

Let us consider a document with a textual and a visual

(image) content. A feature vector xT is extracted from its

textual content and another feature vector xI from the vi-

sual one. In what follows, we assimilate a document to a

couple of feature vectors (xT , xI). A set of such data is a

set of couples X = {(xT
i , x

I
i ), i = 1 . . . N}. By apply-

ing KCCA to this data, as explained in Section 3.1, we ob-

tain 2N points (vectors) belonging to a “common” vector

space where the two modalities are maximally correlated.

In this space, a document (xT , xI) is represented by two

points, pT that is the projection of xT and pI the projec-

tion of xI . Ideally, since they represent the same document,

pT and pI should be closer to each other than to any other

point in the projection space. However, in practice, this is

far from being the case as shown in Section 4.3. It is thus

quite problematic for a given document to be represented by

two (very) distinct points for multimedia recognition tasks.

We propose to create a unified representation for each doc-

ument, by the following process:

1. define a unifying vocabulary in the projection space,

2. describe both pT and pI according to this vocabulary,

3. aggregate both descriptions into a unique representa-

tive vector of the document.

Simply said, the “unified vocabulary” is obtained by quan-

tizing the projection space, then pT and pI are projected to

this codebook and sum pooled to get the final representa-

tion. Since it is well known that in computer vision devil is

in the details [2, 3], this is further explained below.

Codebook learning. As for the bag of words (BoW)

model, we learn a codebook C = {c1, .., ck} of k code-

words with k-means directly in the projection space. A cru-

cial point is that all the projected points, coming from both

textual and visual modalities, are employed as input to the

k-means algorithm. Hence, the clustering potentially results

into three types of codewords (that are centers of the clus-

ters). Some are representative of textual data only, others

of visual data only, while some clusters contain both textual

and visual projection points. The codebook is thus intrin-

sically cross-modal and can serve as “common vocabulary”

for all the points in the projection space, whether they result

from the projection of a textual content or of a visual one.

MACC representation. A bi-modal document (xT , xI)
is projected on the KCCA projection space of dimension d

into (pT , pI). Each of these points is then encoded by its

differences with respect to its nearest codewords:

vTi = pT − ci; ci ∈ NNn(pT ) (3)

vIi = pI − ci; ci ∈ NNn(pI) (4)
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where i = 1, .., k and NNn(p) denotes the set of the n

nearest codewords of p. The modality-specific represen-

tations vT and vI result from the concatenation of the d-

dimensional vectors vTi and respectively vIi . The MACC

representation v is then obtained by aggregating the visual

and textual descriptors vI , vT by sum pooling, leading to:

v = [v1, v2, . . . , vi, . . . , vk] s.t. (5)

vi = (pT − ci)✶NNn(pT )(ci) + (pI − ci)✶NNn(pI)(ci)

where ✶A(.) is the indicator function. Vector v is subse-

quently L2-normalized. The projection space obtained with

KCCA has dimension d, so the modality-specific encoded

vectors vT and vI , as well as the MACC vector v, have a

size of D = d× k, where k is the size of the codebook C.

The vectors vT and vI are component-wise differences

of pT and pI with some codewords. When n = 1, such a

gradient can be seen as a simplified non-probabilistic ver-

sion of a Fisher Vector (FV) representation. The FV rep-

resentation is itself an extension of the BoW model result-

ing from a Maximum Likelihood estimation of the gradient

with respect to the parameters of a Gaussian Mixture that

models the log-likelihood of data used to learn the code-

book [16]. However, in our case we show in the experimen-

tal Section 4 that choosing n > 1 is advantageous. In some

cases, the best results are even obtained with n = k. With

respect to the vocabulary of a BoW model [2], we could say

that [16] uses a hard coding (n = 1) while we prefer soft

coding (n = k) or possibly local soft coding (1 < n < k).

The benefits of soft coding are well known in the BoW con-

text [13] but have not been proven in the context of FV-

like signatures (i.e. when one uses component-wise gradi-

ents with respect to the codebook).

There is also another advantage in our context, where

some codewords may be representative of “modality-

specific” Voronoi cells, i.e. clusters that contain projected

points of only one modality after k-means (see Section 4.3).

Therefore, by encoding pT and pI according to several

codewords, it is more likely to include information from

both modalities. Hence, the “modality vectors” vT and vI

are not exactly modality-specific since they benefit from

a sort of “modality regularization” with the multimodal

codebook. Yet another advantage is that if pT and pI are

close enough then they certainly share one or several near-

est codewords. These codewords will then be enforced by

Eq. (5) in the final vector v.

All this indicates that the MACC representation is a soft

synthesis of the contributions of both modalities that com-

pensates for the imperfection of the KCCA projection space

in the context of bi-modal tasks.

3.3. MACC completion with the missing modality

The MACC representation proposed in the previous sec-

tion is defined when the multimedia document it describes

has both a visual and a textual content. But this condition

does not hold for several important multimedia tasks. In

particular, for cross-modal tasks, data in the reference base

and/or the query usually come from only one modality. In

such a case, we estimate MACC representations by com-

pleting uni-modal data with suitable information that con-

cerns the missing modality and is obtained from an auxil-

iary dataset.

Modality completion. Consider an auxiliary dataset

containing m documents where both visual and textual con-

tents are present. Let A be the set of pairs of KCCA projec-

tions of the visual and textual features of these documents

on the common space, with A = {(qT , qI)}, qT ∈ AT ,

qI ∈ AI , |A| = m. In practice, the auxiliary dataset could

be the training data used to obtain the KCCA space.

To explain the completion process, let us consider a doc-

ument with textual content only, described by a feature vec-

tor xT that is projected as pT on KCCA space. The same

development could be symmetrically applied to a document

having only visual content. A “naive” choice would be to

combine pT with a vector obtained from its µ nearest neigh-

bors among the points projected from the other modality

(visual modality in this case), NN
µ

AI (p
T ). Preliminary ex-

periments (not reported here) have shown that such a strat-

egy is far from being optimal. We propose instead to find

the auxiliary documents having similar projected content in

the available modality (textual modality in this case) and

to use the projections of the visual content of these docu-

ments to complete pT . Formally, the set of contributors to

the “modality complement” of pT is defined as

Mc(p
T ) = {qIj } such that

{

qTj ∈ NN
µ

AT (p
T )

(qTj , q
I
j ) ∈ A

(6)

where the condition (qTj , q
I
j ) ∈ A means that qTj and qIj

are the projections of two feature vectors extracted from the

same multimedia document. Note that
∣

∣Mc(p
T )

∣

∣ = µ.

MACC representation with the completed modality.

Once the complementary information regarding the miss-

ing modality has been collected on the KCCA space as

Mc(p
T ), the MACC representation of the initially textual-

only document is obtained as

v =[v1, v2, . . . , vi, . . . , vk] s.t

vi =(pT − ci)✶NNn(pT )(ci)

+
1

µ

∑

qI
j
∈Mc(pT )

(qIj − ci)✶NNn(qI
j
)(ci)

(7)

4. Experimental Evaluation

We first describe the datasets and the visual/textual fea-

tures employed. Then we highlight the limits of the KCCA

projection, justifying the need of MACC representations.
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Our contribution is then evaluated for bi-modal and also

cross-modal classification on PascalVOC 07. Finally, we

show that MACC establishes a new state of the art in cross-

modal retrieval, improving former results on FlickR 8K

(+11 pts R@1) and FlickR 30K (+15.4 pts R@1).

4.1. Datasets and evaluation metrics

Pascal VOC07 [15]. This dataset includes 5011 training

and 4952 testing images collected from Flickr without their

original user tags. Twenty class labels were defined and

each image receives between 1 and 6 positive labels. Using

Amazon Mechanical Turk, in [15] each image also received

several tags. The classification results are evaluated using

mean Average Precision (mAP), following the literature.

FlickR 8K [22] and FlickR30K [29]. These datasets

contain 8000 and 31783 images respectively. Each image

was annotated by 5 sentences using Amazon Mechanical

Turk. These datasets have the same 1000 images for vali-

dation and 1000 images for testing. While the training set

of FlickR 8K contains 6000 images, the one of FlickR 30K

is much larger containing 29783 images. We employ the

evaluation metric proposed in [4] for image retrieval with

textual query: the five sentences annotating a given image

are used together to retrieve images and we report the Re-

call@K, i.e. the fraction of times the ground-truth image is

found among the top K images.

4.2. Feature extraction

To represent visual content we use the 4096-dimensional

features of the Oxford VGG-Net [24], L2-normalized. This

representation was shown to provide very good results in

several classification and retrieval tasks.

To represent texts (sets of tags or sentences, respectively)

we employ the features built from Word2Vec [19], an effi-

cient method for learning vector representations of words

from large amounts of unstructured text data. In our experi-

ments, textual features are 300-dimensional L2-normalized

vector representations.

4.3. Limitations of KCCA projections

As previously mentioned in Section 1, the common rep-

resentation space obtained with KCCA only provides a

coarse association between modalities. Several data anal-

ysis results shown here highlight this problem.

Table 1 reports several average distances between KCCA

projections of the training data (10022 points in Pas-

cal VOC07 and 12000 points in FlickR 8K). We denote

by dintramodality(I) and dintramodality(T ) the average within-

modality distances between image and respectively text

projected points. Next, dintermodality(sample) is the average

distance between visual projection and associated textual

projection on the KCCA space of a training sample, while

dintermodality(overall) is the average distance between visual

Average Distance Pascal VOC07 FlickR 8K

dintramodality(I) 1.18 ± 0.16 1.17 ± 0.13

dintramodality(T ) 1.11 ± 0.19 0.75 ± 0.13

dintermodality(sample) 1.39 ± 0.07 1.02 ± 0.12

dintermodality(overall) 1.42 ± 0.06 1.28 ± 0.10

Table 1. Average distances between projections on KCCA space.
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Figure 2. Separation between modalities on the KCCA space.

# projected # visual # textual

Dataset points k clusters clusters

Pascal VOC07 10022 16 12 4

FlickR 8K 12000 8 6 2

Table 2. Distribution of textual and visual KCCA-projected points

into clusters.

and textual projections over all training data. The values

obtained in Table 1 show that projected points are closer to

their within-modality neighbors than to their corresponding

points in the other modality.

For a better visualization, we computed the centers of

gravity of the visual and respectively textual points, then

projected all the points onto the line that joins these two

centers. In Figure 2, we report the distribution of these pro-

jected points. The separation in the KCCA space between

data points from the two modalities appears very clearly, for

both Pascal VOC07 and FlickR 8K datasets.

Given this separation between modalities on the common

space, the clusters we obtain with k-means contain mostly

data from a single modality (image or text). Table 2 shows

the number of clusters associated to each modality in Pas-

cal VOC07 and FlickR 8K. They are qualified as “visual”

or “textual” according to the majority of points they con-

tain, but each cluster can have both visual and textual points.

The clusters are used for codebooks in the following exper-

iments. The value of k is chosen on a validation set.
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Approach mAP (%)

BoVW 54.5

FV [23] 63.9

improved FV[3] 68.0

BoMW [30] 67.8

AGS [6] 71.1

FV+CNN [21] 76.2

He et al. [11] 82.4

Chatfield et al. [3] 82.4

HCP-2000C [28] 85.2

VGG NetD&NetE [24] 89.7

MACC 90.12

Table 3. Pascal VOC07: comparison with published results.

4.4. Image classification on Pascal VOC07

The KCCA is learnt on the 5011 training data, with both

visual and textual content. We used the seminal KCCA im-

plementation [10], with a regularization parameter κ = 0.1
and a Gaussian kernel with standard deviation σ = 0.2.

The dimension of the “common” projected space is set to

d = 150. All 5011 training data are then projected on this

common space and a codebook C is learnt with k-means

from this set (2×5011 = 10022 points) for k ∈ {8, 16, 32}.

Classification of bi-modal documents. The first evalu-

ation considers the classification of documents having both

a visual and a textual content, such that a MACC represen-

tation (of size d× k) of each document is directly obtained

from Eq. 5, using the previously built codebook. The pa-

rameter n in Eq. 5 varies in {1, 2, 5, 16, 32}. For each cate-

gory, we learn a SVM classifier with linear kernel, follow-

ing a one-versus-all strategy.

With such settings, the best result we obtain on the test-

ing set is a mAP of 90.37, with (k = 16, n = 5), resulting

into a 2400-dimensional MACC representation. However,

when a full cross-validation is conducted on the training

set, we obtain a mAP of 90.12 with (n = 5, k = 32).
Table 3 compares this performance to other results in the

literature. We report superior performance with respect to

methods that use only the original (visual) data of the Pas-

cal VOC07 challenge, such as BoVW and Fisher Vectors

(FV) [23, 3]. Our approach also outperforms methods em-

ploying additional information sources for training, such as

text [30], ground-truth bounding box information [6], or

based on deep learning [21, 11, 3, 28, 24].

We also compare our image classification result to sev-

eral baselines that uses the same features as MACC in Ta-

ble 4. For the VGG-Net (respectively Word2Vec) baseline,

classifiers are trained and tested on VGG-Net (respectively

Word2Vec) features only, i.e. using the visual (respectively

textual) content alone. For the VGG-Net+Word2Vec base-

line, representations for both training and testing data are

Baseline Size of representation mAP (%)

VGG-Net 4096 86.10

Word2Vec 300 82.50

VGG-Net+Word2Vec 4396 86.16

KCCAimg 150 84.84

KCCAimg 2400 85.29

KCCAtxt 150 82.01

KCCAtxt 2400 82.60

MACC 2400 90.12

Table 4. Pascal VOC07: comparison with baselines.

k=8 k=16 k= 32

n=1 88.75 87.73 86.33

n=2 90.1 89.71 89.18

n=5 89.96 90.37 90.10

n=16 - 89.68 90.33

n=32 - - 89.68

Table 5. Pascal VOC07: mAP (%) for different values of k and n.

obtained by early fusion, i.e. by concatenating VGG-Net

features and Word2Vec features.

For the KCCAimg (respectively KCCAtxt) baseline, the

visual (respectively textual) features are first projected on

the KCCA common space for both training and testing data

and then used for classifiers learning. We consider two dif-

ferent sizes of the KCCA common space, 150 and 2400, so

that the results can be compared to our 2400-dimensional

MACC representation (built from a 150-dimensional com-

mon space, with 16 codewords). The results in Table 4

show that the MACC approach outperforms all the men-

tioned baselines.

We report in Table 5 the results obtained with the MACC

approach for different values of k and n (for d = 150). We

note that the results are quite stable and consistently above

the performance of the previously mentioned baselines for

this entire range of parameters. Furthermore, these results

show that (local) soft coding (n > 1) is more effective than

hard coding (n = 1) to build the MACC representations.

Classification in a cross-modal context. Let us now

consider a scenario where a global resource is available,

consisting of a projection space obtained by KCCA and a

codebook built on this space. One may wish to train clas-

sifiers on new classes, using new data for which only one

modality is available, and then run these classifiers on other

data that may also have only one modality available (and

maybe not the same as the one used for training). Thanks to

the completion mechanism (Eq. 7), the MACC representa-

tion addresses not only classical cross-modal tasks but also

such a scenario, that is tested in the following.

Specifically, we use the same 150-dimensional projec-

tion space obtained by KCCA from the bi-modal training
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data of Pascal VOC07 and the codebook learnt on this space

(k = 16). We then define two new symmetric tasks. In the

Text-Image task, the SVM classifiers are trained with docu-

ments from the training set of Pascal VOC07 but the visual

content was removed. Each document, originally described

by its textual content alone, has its MACC representation

completed with a visual part following the procedure de-

scribed in Section 3.3, with the training set of PascalVOC

07 chosen as auxiliary dataset A. Hence, the visual part of

the signature is not computed from the original visual con-

tent of that document but results from combining the contri-

butions of the visual parts of its nearest neighbors according

to the textual modality (the document itself is not consid-

ered among its µ nearest neighbors). The resulting clas-

sifiers are then evaluated on the testing documents of Pas-

cal VOC07 but where the textual content was removed and

the MACC representations completed following the proce-

dure in Section 3.3. The Image-Text task is symmetric to

the Text-Image task: classifiers are trained with documents

without textual content and tested on documents without vi-

sual content, all being completed according to Eq. 7.

The results obtained on these two novel tasks are shown

in Table 6 for several values of the parameter µ and com-

pared to two baselines. All representations are 2400-

dimensional vectors. For the “Random” baseline, the

MACC representation is completed with randomly selected

data point along the missing modality. For the KCCAinc

baseline, classifiers are trained with the projections of one

modality on the common KCCA space and tested with the

projections of the other modality on this space.

Without completion (µ = 0), the performance of MACC

representations is very low. However, as soon as the com-

pletion is considered, the performance is significantly above

that of the baseline. To our knowledge, no previous work

has investigated this type of cross-modal classification sce-

nario on Pascal VOC07, thus there is no other comparison

in Table 6. It is not surprising that the results obtained in

this cross-modal scenario are not as good as those obtained

in the bi-modal task (90.12%, see Table 3). However, the

difference is not so large and the improvement with respect

to the baselines is significant.

4.5. Image retrieval on FlickR 8K and FlickR 30K

KCCA is learnt on the 6000 training documents with

both visual and textual content. To select the parameters,

a grid search is performed employing the validation set of

1000 documents. This leads to use a Gaussian kernel with a

standard deviation σ = 2, a regularization parameter κ = 1
and only d = 50 dimensions for the projected space. The vi-

sual and textual features of the training documents are then

all projected on this common space and a codebook is learnt

from this set of 12000 (= 2× 6000) points.

FlickR 8K image retrieval. For the text-to-image re-

mAP (%) mAP (%)

Text-Image Image-Text

Random 7.76 7.33

KCCAinc 71.21 51.20

MACC(µ = 0) 12.03 10.04

MACC(µ = 1) 79.00 76.88

MACC(µ = 3) 81.72 79.18

MACC(µ = 5) 82.17 78.82

MACC(µ = 8) 82.18 78.65

MACC(µ = 10) 82.09 77.97

Table 6. Pascal VOC07: classification in a cross-modal context

using the completion mechanism for MACC representations.

Approach R@1 R@5 R@10

Socher et al. [25] 6.1 18.5 29

Hodosh et al. [12] 7.6 20.7 30.1

Karpathy et al. [17] 11.8 32.1 44.7

Chen et al. [4] 17.3 42.5 57.4

KCCA(VGG+W2V) 26.1 53.7 65.6

MACC 27.6 55.6 69.4

Table 7. Image retrieval results on FlickR 8K.

trieval task the training dataset of FlickR 8K is used as aux-

iliary dataset A. Parameters being cross-validated on the

training data, we get R@1=27.6% for k = n = 32;µ =
64. As shown in Table 7, the proposed approach has higher

R@1, R@5 and R@10 than the other image retrieval meth-

ods in the recent literature on the FlickR 8K dataset. Ho-

dosh et al. [12] work was also based on cross retrieval in

the KCCA space but their visual and textual representations

are simply described by several specific kernels on classical

features such as color, texture or GIST descriptors for im-

ages, and bag of words for texts. In the KCCA(V GG+W2V )

baseline, we apply the image retrieval method of in [12]

with our KCCA space built from VGG-Net and Word2Vec

features, leading to much better performance (26.1%) than

[12]. Our method also significantly outperforms several

recent deep learning approaches [25, 17, 4] that use con-

tent representation similar to ours. Furthermore, the MACC

representation achieves better results than [4], the current

state-of-the-art on both FlickR 8K and FlickR 30K image

retrieval, in which the VGG-Net features are also employed.

We studied the impact of different coding parameters on

the effectiveness of MACC representations. Codebook size

being fixed to k = 64, Figure 3 reports the performance

with hard coding (n = 1), local soft coding (1 < n < k)

and soft coding (n = k). Since soft coding provides a bet-

ter location of data points in feature space (with respect to

all k codewords, not only to one or to a few of them), it

usually performs better for retrieval. The most important

result is nevertheless that our method achieves better per-
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Figure 3. Coding methods comparison for MACC representation.

formance than the state-of-the-art [4] as soon as µ > 10.

On the FlickR 8K benchmark, the performances are quite

stable with any given coding scheme for µ > 20.

In a third experiment we study the stability of our ap-

proach with regard to k, n and µ. Figure 4 reports perfor-

mance on FlickR 8K while varying these parameters. Fol-

lowing the conclusion of the second experiment, soft coding

(n = k) is employed in this experiment for its effectiveness.

The results firstly show that even when the size of codebook

and resulting MACC representations is very small, we con-

sistently achieve better performance than the other methods

in Table 7. For instance, our approach has a first rank re-

call (R@1) of 18.5% with k as low as 8 (the corresponding

MACC representation is only 400-dimensional). Besides,

an interesting observation is that with a sufficiently large

number µ of contributors to MACC completion, the pro-

posed approach yields superior performance over the robust

KCCA(V GG+W2V ) baseline regardless of the size of the

codebook. These results show the stability of our approach

over a large range of parameters.

FlickR 30K: benefit of auxiliary dataset. To study the

impact of the auxiliary dataset A used for MACC comple-

tion in cross-modal tasks, we conducted an experiment on

FlickR 30K that has the same validation and testing sets as

FlickR 8K but a larger training set. The experimental pro-

tocol was the same as for FlickR 8K (same KCCA space

and codebook) except for the choice of A, where we used

the full training set of FlickR 30K (29783 images) instead

of the training set of FlickR 8K (6000 images). The results

in Table 8 show a significant improvement of 5 points for

the MACC approach, which is thus due to the larger auxil-

iary dataset. This improvement is higher that those obtained

in previous publications. It increases when the parameters

are cross-validated on FlickR30k training set. While the im-

provement in the previous state-of-the-art [4] is from 17.3%

on FlickR 8k to 18.5% on FlickR 30K, in our case it is from
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Figure 4. FlickR 8K image retrieval: stability of MACC represen-

tations over a large range of parameters.

Approach R@1 R@5 R@10

Socher et al. [25] 8.9 29.8 41.1

Karpathy et al. [17] 15.2 37.7 50.5

Chen et al. [4] 18.5 45.7 58.1

MACC (F8k) 33.9 65.6 77.5

MACC (F30k) 35.3 66.0 78.2

Table 8. Image retrieval results on FlickR 30K. MACC parameters

are cross-validated on FlickR 8k (F8k) or FlickR 30k (F30k)

28.3% to 33.9%, showing a better use of the extended train-

ing dataset, at a limited cost (KCCA and the codebook are

always computed on FlickR 8K).

5. Conclusion and Discussion

We proposed a new representation of a multimedia doc-

ument that aggregates information provided by the projec-

tions of both modalities on their aligned subspaces. We also

suggested a method to complete uni-modal information re-

lying on neighborhoods in these subspaces. The interest of

our approach was demonstrated in bi-modal classification,

cross-modal classification and cross-modal retrieval, where

our method provides state-of-the-art performance.

We believe that this approach should also be relevant

for other types of joint text-image representations built us-

ing e.g. Latent Dirichlet Allocation, Partial Least Squares

or deep neural networks. However, the scheme we pro-

pose already relies on very effective methods (VGG and

Word2Vec) to produce uni-modal representations from raw

content. The choice of an algorithm to compute the joint

representation should be made in compliance with the char-

acteristics of the uni-modal representations employed.

Acknowledgement: this work is supported by the USEMP

FP7 project, partially funded by the European Commission

under contract number 611596.

2053



References

[1] U. Ahsan and I. Essa. Clustering social event images us-

ing kernel canonical correlation analysis. In Proceedings

of the 2014 IEEE Conference on Computer Vision and Pat-

tern Recognition Workshops, CVPRW ’14, pages 814–819,

Washington, DC, USA, 2014. IEEE Computer Society.

[2] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman.

The devil is in the details: an evaluation of recent feature

encoding methods. In British Machine Vision Conference,

2011.

[3] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convo-

lutional nets. arXiv:1405.3531, 2014.

[4] X. Chen and C. Lawrence Zitnick. Mind’s eye: A recurrent

visual representation for image caption generation. In CVPR,

June 2015.

[5] J. Costa Pereira, E. Coviello, G. Doyle, N. Rasiwasia,

G. Lanckriet, R. Levy, and N. Vasconcelos. On the role

of correlation and abstraction in cross-modal multimedia re-

trieval. TPAMI, 36(3):521–535, 2014.

[6] J. Dong, W. Xia, Q. Chen, J. Feng, Z. Huang, and S. Yan.

Subcategory-aware object classification. In Computer Vision

and Pattern Recognition (CVPR), 2013 IEEE Conference on,

pages 827–834. IEEE, 2013.

[7] F. Feng, X. Wang, and R. Li. Cross-modal retrieval with

correspondence autoencoder. In Proc. of ACM Intl. Conf. on

Multimedia, MM ’14, 2014.

[8] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean,

T. Mikolov, et al. Devise: A deep visual-semantic embed-

ding model. In NIPS, pages 2121–2129, 2013.

[9] Y. Gong, Q. Ke, M. Isard, and S. Lazebnik. A multi-view em-

bedding space for modeling internet images, tags, and their

semantics. IJCV, 106(2):210–233, Jan. 2014.

[10] D. R. Hardoon, S. R. Szedmak, and J. R. Shawe-Taylor.

Canonical correlation analysis: An overview with applica-

tion to learning methods. Neural Comput., 16(12):2639–

2664, 2004.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pool-

ing in deep convolutional networks for visual recognition.

TPAMI, 37(9):1904–1916, 2015.

[12] M. Hodosh, P. Young, and J. Hockenmaier. Framing image

description as a ranking task: Data, models and evaluation

metrics. Journal of Artificial Intelligence Research, pages

853–899, 2013.

[13] Y. Huang, Z. Wu, L. Wang, and T. Tan. Feature coding

in image classification: A comprehensive study. TPAMI,

36(3):493–506, 2014.

[14] S. J. Hwang and K. Grauman. Learning the relative impor-

tance of objects from tagged images for retrieval and cross-

modal search. IJCV, 100(2):134–153, Nov. 2012.

[15] S. J. Hwang and K. Grauman. Reading between the lines:

Object localization using implicit cues from image tags.

TPAMI, 34(6):1145–1158, June 2012.

[16] H. Jegou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, and

C. Schmid. Aggregating local image descriptors into com-

pact codes. TPAMI, 34(9):1704–1716, 2012.

[17] A. Karpathy and L. Fei-Fei. Deep visual-semantic align-

ments for generating image descriptions. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2015.

[18] A. Karpathy, A. Joulin, and F. F. F. Li. Deep fragment

embeddings for bidirectional image sentence mapping. In

Advances in neural information processing systems, pages

1889–1897, 2014.

[19] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean.

Distributed representations of words and phrases and their

compositionality. CoRR, abs/1310.4546, 2013.

[20] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng.

Multimodal deep learning. In Proceedings of the 28th inter-

national conference on machine learning (ICML-11), pages

689–696, 2011.

[21] F. Perronnin and D. Larlus. Fisher vectors meet neural net-

works: A hybrid classification architecture. In CVPR, June

2015.

[22] C. Rashtchian, P. Young, M. Hodosh, and J. Hockenmaier.

Collecting image annotations using amazon’s mechanical

turk. In Proceedings of the NAACL HLT 2010 Workshop

on Creating Speech and Language Data with Amazon’s Me-

chanical Turk, CSLDAMT ’10, pages 139–147, Strouds-

burg, PA, USA, 2010. Association for Computational Lin-

guistics.

[23] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Im-

age classification with the fisher vector: Theory and practice.

IJCV, 105(3):222–245, 2013.

[24] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.

[25] R. Socher, A. Karpathy, Q. V. Le, C. D. Manning, and A. Y.

Ng. Grounded compositional semantics for finding and de-

scribing images with sentences. Transactions of the Associ-

ation for Computational Linguistics, 2:207–218, 2014.

[26] N. Srivastava and R. R. Salakhutdinov. Multimodal learn-

ing with deep boltzmann machines. In Advances in neural

information processing systems, pages 2222–2230, 2012.

[27] W. Wang, R. Arora, K. Livescu, and J. Bilmes. On deep

multi-view representation learning. In International Confer-

ence on Machine Learning, Lille, France, 2015.

[28] Y. Wei, W. Xia, J. Huang, B. Ni, J. Dong, Y. Zhao,

and S. Yan. CNN: single-label to multi-label. CoRR,

abs/1406.5726, 2014.

[29] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier. From im-

age descriptions to visual denotations: New similarity met-

rics for semantic inference over event descriptions. TACL,

2:67–78, 2014.

[30] A. Znaidia, A. Shabou, H. Le Borgne, C. Hudelot, and

N. Paragios. Bag-of-multimedia-words for image classifi-

cation. In ICPR, pages 1509–1512. IEEE, 2012.

2054


