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 ABSTRACT 
 

Sandwich honeycomb structures (aluminum core bonded to Carbon Fiber 

Reinforced Polymer (CFRP) sheets on either side) are widely employed in the aerospace 

industry for their high strength to mass ratio. However, they might be subjected to 

damages such as delaminations of the composite sheets or debondings between the face 

sheets and the core due to impacts or thermo-mechanical aging. In order to reduce 

maintaining costs and extend the service time, Guided Waves (GW) based Structural 

Health Monitoring (SHM) systems are considered an adequate solution. Indeed, GW 

propagate over long distances and exhibit low attenuation, thus allowing to monitor 

wide areas with a limited number of sensors. Defect imaging on CFRP composites and 

honeycomb composite structures using both Delay-And-Sum [1] and correlation-based 

algorithm Excitelet [2] is presented in this communication.  

A machine learning algorithm is finally implemented in order to automatically 

identify and isolate defects on a given cartography map. The machine learning algorithm 

is trained on an experimental database of false and positive results obtained on 

representative specimens. 

 

 

INTRODUCTION 
 

In the past years, the use of composite materials in the aeronautic industry has 

considerably increased. This rapid growth is mainly due to the considerable economic 

benefits due to the mass reduction allowed by the use of composites. These materials 

are now used for a wide range of complex structures, such as aircraft nacelles, which 

are of interest in this study. The aircraft nacelle, the housing of the aircraft engine, is 

_____________ 
 

Andrii Kulakovskyi, Safran Tech, Magny-Lès-Hameaux, France ; CEA LIST, NDE 
Department, Gif-sur-Yvette Cedex, France 
Bastien Chapuis & Olivier Mesnil, CEA LIST, NDE Department, Gif-sur-Yvette, France 
Nas-Redine Bedreddine, Safran Nacelles, Le Havre, France 
Oscar D’Almeida, Safran Tech, Magny-Lès-Hameaux, France 
Alain Lhémery, CEA LIST, NDE Department, Gif-sur-Yvette, France 



 
 

mostly made of honeycomb composite (aluminum cores encapsulated by carbon fiber 

based composite sheets on the top and bottom surfaces). These composite structures 

exhibit excellent strength-to-weight ratio, stiffness, toughness and corrosion resistance.  

However, appearance of defects such as face sheets delamination or core-sheet 

debonding due to impacts or thermo-mechanical aging may decrease these properties. 

Guided elastic waves are considered an adequate mean to monitor such systems in a 

Structural Health Monitoring (SHM) context. Indeed, Guided Waves (GW) propagate 

over long distances with low attenuation, allowing to monitor wide areas with a limited 

number of sensors [3]. However, the analysis of GW signals is of increasing complexity 

as the structure becomes more complex, due to their multi-modal and dispersive 

behavior.  

In this study, we mainly focus on damage detection and localization in Carbon Fiber 

Reinforced Polymer (CFRP) and honeycomb composite structures. Two imaging 

algorithms, Delay–And-Sum (DAS) [1] and Excitelet [4] are implemented and tested 

on multiple samples of different materials. A machine learning algorithm is finally 

implemented in order to automatically identify and isolate defects on a given 

cartography obtained by GW imaging. The machine learning algorithm is trained on an 

experimental database of false and positive results obtained on representative 

specimens. 

 

 

GUIDED WAVE IMAGING  
 

Delay-And-Sum (DAS) and Excitelet are two guided wave based imaging 

algorithms and require a similar type of measurement procedure. In particular, the 

knowledge of the initial state of the studied structure, the baseline signal, is required for 

both methodologies. The specimen of interest is instrumented by a sparse array of 

piezoelectric (PZT) sensors and each pair of sensors acts sequentially as emitter and 

receiver of guided waves, thus creating a scan of the specimen. Two identical scans of 

the studied structure are taken in a healthy and a damaged state. The residual signal is 

obtained as the difference between both scans, thus removing the incident wave packets 

and the reflection from the edges. A schematic of the scanning process of the specimens 

is represented in the Figure 1.  For each pair of sensors, the first wave-packets of the 

residual signal, corresponds to the ‘echoes’ from defect, i.e. the energy reflected from 

the flaw. In order to build a cartography representing the health of the specimen, the 

entire upper surface of the specimen is discretized in a grid where each pixel is given a 

Damage Index (DI) value that can be interpreted as a probability of the presence of a 

defect presence at each pixel. The methodologies DAS and Excitelet use different 

strategies to calculate the DI.  

 

Delay and sum (DAS)  
 

The process to compute a DI with DAS is the following: 1) the residual signal is 

computed as the difference between the scans measured in the reference and a damaged 

state; 2) For each pair of sensor, the received baseline signal is delayed of the theoretical 

time of flight, computed using the propagation speed of the GW, creating a DI for this 

pair of sensors; 3) The DI contribution of each pair is summed for all pair of sensors, 



 
 

 
 

Figure 1. Schematic of the measurement process for guided wave imaging. The blue circles 

represents PZT transducers acting sequentially as GW emitter and receiver. The red spot 

represents the defect reflecting GWs generated by PZT 1 and received by PZT 2. 

 

creating the final DI map. The algorithm DAS requires only the knowledge of the 

directional group velocity of the GW mode and the frequency of interest.  The detailed 

process of computing a DI with DAS can be found in [5]. Considering that GW are 

dispersive, it is required to use a single GW mode with a narrow bandwidth excitation 

in order to mitigate the dispersion effects. 

 
Excitelet  
 

The process to compute a DI with Excitelet is the following: 1) For each pair of 

sensors and each pixel (Xi, Yi), the theoretical contribution that would be received by 

the receiver from a wave packet generated by the emitter and reflected by pixel (Xi, Yi) 

is computed; 2) the correlation coefficient is computed for each pixel of the cartography 

as the correlation between the theoretical and the measured residual signals. The 

detailed process of computing a DI with Excitelet can be found in [4].  Unlike DAS, by 

comparing the measured wave packets to the theoretical ones, the dispersion is taken 

into account in the process, therefore Excitelet is generally highly accurate but 

computationally intensive. However, Excitelet requires the knowledge of the dispersion 

curves of the studied specimen. 

In this work, we make the far-field-radiation approximation (FFA) assumption to 

compute the theoretical signals. For anisotropic samples, the angular dependency of 

guided waves is measured using a laser vibrometer and taken into account in the 

computation of the theoretical signals. 

 

 

EXPERIMENTAL RESULTS 
 

First, two CFRP plates are studied. The first plate is made of 8 layers with a 

[0°,45°,0°45°]s layup and of dimensions 400 x 400 x 2.2 mm3. The second plate is made 

of 21 plies all aligned with the 0° orientation and of dimensions 1000 x 600 x 5.6 mm3. 

Four PZT sensors are permanently glued on the first plate, as represented in Figure 3 

and six on the second. The excitation signal is a 40 kHz burst modulated by a two-cycle 

Hann window with an amplitude of 10V. This frequency is chosen as the wave 

propagated is dominated by the A0 mode under these parameters. Secondly, two 

honeycomb composite structures are instrumented as well by four PZT each. Both 

specimens are made of aluminum honeycomb cores of 29.2 mm in height and 9.375 mm 

in diameter bounded on each side to 2-layer CRFP plates of 0° orientation and of 



 
 

0.275 mm in thickness each. The dimension of the first plate is 400 x 400 x 29.75 mm3 

while the second if 1000 x 600 x 29.75 mm3
. The chosen excitation signal is similar to 

the previous by at 25 kHz. For the sake of experiment repeatability, the defect was 

simulated by attaching magnets of 25 mm in diameter on both sides of the structures. 

This type of defect is not fully representative of reflective defects but is an easy way to 

test imaging algorithms capabilities. 

Before applying Excitelet, it is necessary to measure the dispersion relations and 

validate the far-field approximation. To do so, a Laser Doppler Vibrometer is used to 

measure B-scans in all directions for all the specimens. Dispersion relations are then 

extracted and used to compute Excitelet. For illustration purposes, a theoretical signal 

computed with the FFA is compared in Figure 4 to the same signal measured by 

Polytech laser Doppler. 

The results of DAS for the first CFRP plate and the first honeycomb plate are 

represented in Figure 3. It is observed that, even though the defects are located, the 

results are rather inaccurate, which is mainly to the fact that DAS neglects the 

dispersion. The results for Excitelet on the second CFRP plate and the second 

honeycomb plate are presented in the Figure 4. It is observed that Excitelet detects the 

defects in an appropriate fashion even with four or six transducers. The results with 

Excitelet are more precise than the ones with DAS due to the fact that the dispersion is 

taken into account. Also, it is observed that with an increasing number of sensors the 

noise of cartography decreases and the overall quality is improved. 

 

 

MACHINE LEARNING 
 

Due to the complexity of the analysis of the cartography obtained by both algorithms 

and the potentially large number of images to analyze, machine learning algorithms are  

a solution to automatically and quickly analyze GW imaging pictures [7]. In the current 

context, the Support Vector Machine (SVM) classifier is used to extract the defect 

position from the cartographies. This approach is potentially transposable to various 

SHM systems with a large number of  sensors with which complex images are obtained.  

 

 

  
(a) (b) 

Figure 2: Measured (a) and theoretical (with FFA) (b) b-scans for the  CFRP plate in the 0° 

direction. The theoretical b-scan does not take into account edge reflections. 



 
 

 

 
  

(a)  (b) (c) 
Figure 3 (a): CFRP plate instrumentation, with 4 PZT transducers and magnets to simulate a 

reflector, (b): Results of DAS imaging on the CFRP specimen and (c): Results of DAS imaging on 

the honeycomb composite structures. The exact defect position is denoted by the red diamond. 

  
 

(c) (d) 
Figure 4. Defect cartographies for CFRP (c) and honeycomb composite structures (d) obtained with 

Excitelet. Magenta circles denote PZT elements on the plate while the defect position is represented 

by the red diamond. 

 
The Histograms of Oriented Gradients (HOG) descriptor is a widely used tool in 

image processing and is capable of extracting unique features of the object [8]. The gray 

scaled cartography is analyzed by an 8x8 pixels sliding widow in order to replace each 

pixels by a scalar among 9 possible values representing the local orientation of the 

cartography (0°, 20° … 180°). HOG descriptor reduces the dimension of the studied 

picture and highlights their important features. As the GW imaging algorithms attempt 

to reconstruct defects as an omnidirectional point sources, the defects detected on the 

previous cartographies are represented by a vortex of oriented gradients in the pictures 

processed by the HOG description, as represented in  Figure 5. 

This process can be automated for defect extraction by using a 2D window with a 

50% overlap sliding along the cartography. The features extracted by HOG are feed to 

a SVM classifier, trained on an experimental database to automatically classify 

cartographies. Machine learning, and in particular SVM classifiers, is very promising to 

automate and speed up the processing of data obtained by SHM systems. In future 

works, the authors will pursue this cartography analysis in order to identify defect size 

and type.   

 



 
 

 

  
(a) (b) 

Figure 5. Defect cartography (a) and its representation by HOG descriptor (b). Each group of 8x8 

pixels is replace by a scalar among 9 possible values to reduce feature dimension. The red square 

denotes the defect location on the HOG descriptor representation.  The appereance of a vortex of the 

gradient is observed and represents the defects. 

 

 

CONCLUSIONS 
 

This work reports on the comparison of DAS and Excitelet Guided Wave imaging 

algorithms and their application on CFRP and honeycomb composites. The far-field 

radiation approximation is used as an approximation of the propagated signal in order 

to compute the wave propagation in composite structures. A support vector classifier is 

then applied on the images obtained by GW imaging in order to automatically extract 

the defect location for further analysis. The use of machine learning  is encouraging to 

further study defect description and classification. 
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