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State-of-strain evaluation with fiber Bragg

grating rosettes:

application to discrimination

between strain and temperature effects in fiber sensors

Sylvain Magne, Stéphane Rougeault, Manuel Vilela, and Pierre Ferdinand

An optical rosette that incorporates fiber Bragg gratings as strain gauges has been designed, fabricated,
and tested. We investigated it by measuring the state of strain of a thin plate as the test structure
submitted to an increasing load in a four-point bending configuration and for various angular orienta-
tions. This device has also been successfully investigated as a self-temperature-compensated in situ
uniaxial strain sensor without any angular dependence and with high accuracy in recovery analysis,
leading us to expect many industrial applications. Printed circuit processes or integrated optics on
polymers would provide a means for accuracy, reproducibility, and integration in a mass-produced

process.
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1. Introduction

Fiber Bragg gratings (FBG’s) are now recognized as
important optoelectronic components for guided-
wave optics, owing to the large number of device func-
tions in which they can be used.’2 They are used
extensively in telecommunications (wavelength-
division multiplexing, gain flattening of erbium-
doped fiber amplifiers, and dispersion compensation),
in instrumentation (wavelength-selective reflectors
for fiber lasers and, to a lesser extent, semiconductor
lasers), and in sensors for the measurement of strain,
temperature, and hydrostatic pressure.3

The first reported Bragg grating (the so-called Hill
grating) dates back to 1978 when Hill and co-workers
launched light at 488 nm from an argon-ion laser into
a germanosilicate optical fiber.# In those experi-
ments the grating was formed by the standing-wave
interference pattern set up by counterpropagating
beams inducing periodic perturbations of the refrac-
tive index along its length, and the center Bragg
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wavelength equaled the laser wavelength. Because
of the long interaction length, narrow-band Bragg
reflection filters were formed with reflectivities ap-
proaching 100%. After that, in spite of the signifi-
cant interest raised at the time, few studies were
pursued until 1989 when Meltz et al.5 reported that
gratings could be written by two-beam holographic
exposure through the side of the fiber by use of UV
radiation. This method dramatically improved the
writing efficiency because of the direct photoioniza-
tion process induced by UV light (in contrast with the
Hill experiment, in which photoionization resulted
from a two-photon absorption process). Moreover,
this method allowed the possibility of producing grat-
ings with an arbitrarily selected Bragg wavelength
simply by adjusting the angle between the exposed
beams with respect to the fiber axis. Although the
free-space holographic method (Meltz’s method) al-
lowed great flexibility in fabrication of FBG’s, a
higher reproducibility was achieved by a method
based on near-contact exposure through a phase
mask.® In this case the grating was photowritten by
interference of —1 and +1 diffraction orders with a
period equal to half of that of the mask independent
of the exposure wavelength. Since then activity in
photo-induced Bragg gratings has increased rapidly,
leading to the demonstration of many types of grating
(moiré, chirped, phase-shifted, etc.)>:2 in fibers or on
substrates and in many materials, such as germano-
silicate glasses with or without hydrogen loading;”

20 December 1997 / Vol. 36, No. 36 / APPLIED OPTICS 9437



cerium-, terbium-, or tin-doped silicate glasses;?°
cerium-doped fluorozirconate glasses;® and poly-
mers.11

FBG’s are known to be well suited for measuring
strain and temperature, e.g., in smart structures,12-14
and have unique advantages over classical electrical
strain gauges (metal-foil resistance and piezoelectric
ceramic strain gauges). These advantages are at
first conveyed by intrinsic features of optical fiber
sensors, such as electromagnetic interference immu-
nity, light weight and small size, high temperature
and radiation tolerance, flexibility, stability, and du-
rability against harsh environments. FBG’s have
the advantages of being absolute, linear in response,
interrupt immune, and of low insertion loss so that
they can be multiplexed in a series on a single-mode
fiber. The spectral signature renders the measure-
ment free of intensity fluctuations. This is a great
asset for long-term reproducibility. Moreover,
FBG’s can be easily embedded into composite ma-
terials and can provide local damage detection as
well as internal strain field mapping with high res-
olution in strain and localization and a large mea-
surement range. The FBG is therefore a major
component in the development of fiber-optic smart-
structure technology. It offers the promise of un-
dertaking real-time structural measurements with
built-in sensor systems expected to be cost effective
when the number of sensors that can be multi-
plexed is large.

In the scope of making strain measurements using
Bragg gratings, one can design FBG rosettes follow-
ing the example of electric strain rosettes. Rosettes
are made of two or three noncollinear strain gauges
mounted on a common substrate, typically arranged
at 45° or 120° with respect to one another to form
rectangular or delta rosettes, respectively. They are
used extensively in experimental stress analysis to
measure the two principal strains (and stresses) and
the orientation of the principal axis whenever it is not
known a priori. Such a concept has already been
demonstrated with fiber interferometer strain
gauges'517 and fiber Fabry—Perot strain gauges
placed onto common substrates!® or embedded in
neat resin and graphite—epoxy composite laminates
for mapping of two-dimensional strain fields.’® To
our knowledge rosettes have not yet been demon-
strated with FBG’s as strain gauges. FBG rosettes
have several advantages over interferometric strain
rosettes, including the fact that they are potentially
easy to manufacture (amenable to batch-process
manufacturing) and the multiplexing capability of
Bragg grating-based rosettes and gauges in a series
along a single monomode fiber.

However, whatever the method used, temperature
sensitivity of the fiber sensor can complicate its ap-
plication as a strain gauge. Let us focus on Bragg
grating-based optical sensors: many solutions have
been proposed to eliminate their thermal-apparent
strain. The most obvious solution lies in compensat-
ing for the temperature influence by using another
FBG (reference grating) shielded from strain (e.g., by
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Teflon sleeving) that measures only temperature.
The Bragg wavelength of this grating is then sub-
tracted from that of the FBG-measuring strain and
temperature.2® This correction is fully efficient if
both transducers are at the same temperature (i.e.,
they are close enough) or if the difference in temper-
ature remains constant.

We now attempt to make a survey of in situ
temperature-compensating methods for Bragg grat-
ings. They can be classified according to whether
they are intrinsic (i.e., make use of the fiber proper-
ties themselves) or extrinsic (i.e., require an extra
material). At least eight intrinsic methods have
been proposed. The first method involves the use of
a saturated chirped grating?! of which the spectral
bandwidth increases with strain, thus increasing the
return signal. The second method involves the use
of two superimposed Bragg gratings of different cen-
ter wavelengths.22:23 A third method relies on the
use of a Bragg grating photowritten in a highly bire-
fringent fiber.2¢ A fourth method involves the use of
two Bragg gratings of close center wavelengths pho-
towritten on either side of a splice between two fibers
of different cladding diameters (80 and 120 pm).25> A
fifth method relies on the primary and second orders
of diffraction from a single Bragg grating.26 A sixth
method makes use of the dependence of rocking fil-
ters on strain and temperature.2’-28 A seventh
method involves the use of two Bragg gratings and a
long-period grating,2® and an eighth method relies on
the use of a FBG and a Fabry—Perot interferometer.3°
The first method relies on an intensity measurement
(4-pe resolution in strain), and temperature is not
measured. For any of the seven latter methods tem-
perature and strain information can be recovered,
provided that two linear equations, both functions of
temperature and strain, can be solved.3!

Conversely, at least two extrinsic methods have
been proposed. The first makes use of a cantilever
with two FBG’s surface mounted on opposite surfaces
(top and bottom).32 One grating is stretched while
the other is compressed. The difference in Bragg
grating center wavelengths is temperature indepen-
dent because both Bragg gratings have the same
thermal sensitivity. The second method consists of
a passive temperature-compensating package and
makes use of a proper choice of materials and di-
mensions to nullify the temperature-to-wavelength
coefficient.33:3¢ These two methods involve a me-
chanical compensation and do not provide a temper-
ature measurement.

Here we describe the design, fabrication, and test
of a Bragg grating rosette. This device was tested
in two ways. The first test was dedicated to the
measurement of the state of strain of a plate as the
test structure. The second test was more unex-
pected, as it provided a rigorous measurement of a
uniaxial strain (or stress) independent of both tem-
perature and orientation of the rosette onto the test
structure.



2. Bragg Grating Properties

The Bragg center wavelength of a grating A, is given
by the Bragg phase-matching condition

)\g = 2neffA, (1)

where A is the fringe spacing of the grating and n is
the effective refractive index of the LP,; mode (de-
pending on the V value of the fiber). The relative
change in the center Bragg wavelength is therefore

AN, A AA
Sy _ e | 28

A, Negr A

(2)

Both refractive index and spacing depend on temper-
ature and strain, as follows:

2
N 8ax ;re [sr(Pll + P12) + P12£ax] + (OLS + ZS)AT7
(3)

8
where the first term refers to changes in the grating
spacing caused by axial strain, the second term in
brackets refers to photoelastically induced changes in
the refractive index n.,,, of the fiber core (~1.46 for
germanosilicate fibers), and the third and fourth
terms refer to thermal expansion (~5 X 1077 K1)
and thermo-optic (~7 X 1078 K1) coefficients of the
fiber material, respectively (i.e., change of shape and
refractive index with temperature). P;; ~ 0.113
and P, ~ 0.252 are the photoelastic constants of
silica,’5 and €,, and €, are the axial and radial strains,
respectively.

When the Bragg grating is axially strained, the
radial strain can be determined by Poisson’s law,

€ = ~ V€, (4)

where v, is the Poisson ratio of the fiber material (v,
~ 0.17 for silica). Then the strain—-temperature-to-
wavelength relation reduces to

ANg

N (1 _pe)sax + (as + CS)AT’ (5)

Ap
Where DPe = (ncore2/2)[P12 - 1)s(Pll + P12)] ~ 022 fOI'
a germanosilicate fiber. At room temperature the
experimental relative change in the Bragg center
wavelength is then

AN, 6
NN 0.78¢,, + 7.5 X 10" "AT(K). (6)

8

At the wavelength of 1.3 pm the temperature-to-
wavelength coefficient is approximately 0.1 K/pm at
room temperature, and the strain-to-wavelength co-
efficient is ag)proximately 1 pe/pm (1 pe = 1
pstrain = 10™°). Therefore a change in temperature
of 0.1 K induces the same wavelength shift as that
induced by 1 pstrain. It should not be overlooked
that both strain- and temperature-to-wavelength co-
efficients depend on temperature. For example,
Meltz et al.? reported slopes of relative Bragg grating
wavelength shift versus temperature that increased

from 6.7 X 107% K1 (from room temperature to
150 °C) to 9.57 X 10 8 K ! (at 450 °C).36 Therefore
recalibrations are needed every time there is a
change in the temperature range of use. (This is
particularly true for all intrinsic temperature-
compensation methods previously described.)

Once the FBG is bonded onto or embedded into the
test structure, the thermal expansion of the structure
material causes a change in the grating period. Let
Qgtructure D€ the thermal-expansion coefficient of the
test material. Then Eq. (5) becomes

AN
= (=Pt L+ o+ (1-p)
B
X (astructure - OLS)]AT

For o, => a, (for example, o yeture = 23 X 107°

K™ ! for aluminum), it reduces to

ANg

T = (1 _pe)sax + [Cs + (1 - pe)astructure]AT' (7)
B

The experimental relative change in the center wave-
length of a FBG bonded on aluminum is then

AN, 6
- 0.78¢,, + 25 X 10" °AT(K). (8)

g

3. Two-dimensional Stress and Strain Analysis

In practical strain gauging the two principal strains
are unknown, and the goal is to find their magnitudes
and directions from a number of strain measure-
ments taken at various angles. Therefore three in-
dependent strain measurements in three different
directions along the plane (arranged at convenient
angles in relation to each other) are necessary and
sufficient. A fourth gauge may be added for temper-
ature compensation.

In the following we assume that the test structure
is isotropic, homogeneous, and elastic. In practice,
the test structure was weakly loaded so that Hooke’s
law held (strain did not exceed 0.1%). Letx andy be
the coordinates of the plane structure and z be the
outward normal to the surface. Whatever the state
of strain, a reference frame (X, Y, Z) always exists in
which shear stresses vanish and only normal stresses
remain (i.e., principal stresses oy and 0y).37 Now let
us assume that the test structure behaves under a
state of plane stress (i.e., 0, = 0, = 0) and that
principal axes are well known. Let 7,, and o, be,
respectively, the shear and normal stresses acting on
a plane of outward normal y, and let o, be the normal
stress acting on a plane of outward normal x [Fig.
1(a)]. The plane surface makes an angle o with re-
spect to the principal axis X. oy and oy give rise to,
respectively, two orthogonal stresses Cy = oy sin «
and Cy = oy cos a acting on the tilted plane. A
gauge aligned along the y axis measures

0,=Cxsina+ Cycosa=d' +r' cos(2a), (9)

(10)

Ty = 7' sin(2a),
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Fig. 1. Normal and shear stresses acting on a surface plane of the
(a) outward normal y and (b) corresponding Mohr stress circle.

where the parameters d’ and r’ are called the mean
stress and the deviatoric stress (or stress deviator),
respectively, and are expressed as follows:

d' = (ox + oy)/2, (11a)

7" :(UY_Ux)/z (llb)

Local strains are deduced from local stresses in Eq.
(9) with Hooke’s law:

g, =0,/E =d +rcos(2w), (12)

where E is Young’s modulus of the test material and
d and r are the mean and deviatoric strains, respec-
tively, given by

d=(ex t+&y)/2, (13a)

r= (Ey - SX)/2 . (13b)

The normal and shear stresses are the two coordi-
nates of a state of stress that can be drawn on a circle
called the Mohr stress circle3” [Fig. 1(b)], described by
the following equation:

(o — d')?+ Txyz =r2 (14)

If the test structure no longer behaves under a state
of plane stress, the three normal stresses are drawn
on three circles called the Mohr stress tricircle. In

the case of a state of plane stress, the principal
strains €5 and €y are then

&x = (1/E)(ox — voy),
gy = (1/E)(oy — voy).

The principal stresses ox and oy can be derived from
the principal strains

ox =[E/(1 — v)](ex + vey),
oy =[E/(1 — v)](ey + vey),

(15)

(16)

where v is the Poisson ratio of the test material.
The local strain equation (12) can then be rewritten
for each gauge of the rosette:

g, =d + rcos[2a] (gauge 1),
€ =d + 1 cos[2(a + B)] (gauge 2),
g5 =d +rcos[2(a + 2B)] (gauge 3), (17)

where « is the angular orientation of the principal
axis Y with respect to FBG 1. Analytical solutions
for Egs. (17) can be obtained for two types of rosettes:
rectangular (B = 45°) or delta (B = 120°). Knowing
B and measuring €, €, and €5, one can determine the
strain parameters d, r, and o (see Table 1). Rosettes
of arbitrary angles (different from 45° or 120°) are
conceivable, but their practical use requires numeri-
cal resolution of Eq. (17).

An analytical form for the strain deviator can be
given for both rosette types. The deviatoric formula
for the delta rosette is given by

211/2
o B2 1] ] . (18)
(&1 — &)

whereas the deviatoric formula for the rectangular
(&2 — &)

rosette is given by
211/2
-1 . (19
(&1 — &) ] }

The principal strains and stresses, as well as the
angular orientation «, can thus be computed from the
measured strains €;, €, and €; by use of Eq. (18) or

1
T1900 = g (&, — 53)[3 +

1
Iy50 = 5 (81 - 83){1 + |:2

Table 1. Parameters for Rosette Evaluation of Principal Strains &y, €y, and Orientation «

Three-Gauge

Rosette Types Delta Rosette (B = 120°)

Rectangular Rosette (3 = 45°)

. + gy +
Mean strain (d) E1 T & T &

3
Deviatoric strain (r) € + &8 — 2¢,
3 cos(2a)
1 (&2 — &)
— (& — €)y3 + |2
je - efa s 2200
Principal axis ori- = € — &

entation [£g(2a)] \3 m

F

€ + &
2

€& — &

2 cos(2a)

1 (e — &) v
5(81 — 83){1 + [2(81 e — 1] }

€ + & — 2¢g,
€& — &
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Eq. (19), Table 1, and the following derived from Egs.
(13a) and (13b):

(20a)
(20b)

SX:d_T‘,
£y=d+7‘.

4. Bragg Grating Rosette as a
Self-Temperature-Compensated Uniaxial Strain Gauge

Under hydrostatic pressure or temperature changes,
the Mohr stress circle remains unchanged (same ra-
dius and angular orientation 2a) but shifts along the
oxaxis. Let us assume that the gradient in temper-
ature is negligible and that all gauges are at the same
temperature. Therefore temperature induces the
same thermal-apparent strain in any direction of
space, and so does hydrostatic pressure. As can be
seen in Table 1, only the d parameter (mean strain)
depends on temperature and hydrostatic pressure,
whereas r (strain deviator) and «a (angular orienta-
tion) do not because they both involve differences
between local strains. As a consequence, tempera-
ture and hydrostatic effects rigorously cancel out.
In the case of a uniaxial strain applied to the test
structure along the X direction (i.e., oy = 0; ox =
E¢y), Egs. (16) reduce merely to Hooke’s and Pois-
son’s laws, and the strain deviator can be written as

ley —&x (1 +w)
2 2

Therefore the uniaxial strain can be written as

ed = (-2 |
X 1+v e

where r is given by Eq. (18) or Eq. (19) for the delta or
rectangular rosette, respectively. In the particular
case of the delta rosette, the principal strain is then

_ 2 1 (82 - 83) z 1/2
Ex = mg (&1 — 33)[3 + |:2 &, — &) - 1:| } . (23)

As can be seen, the rosette evaluation of the principal
strain €y is temperature independent.

Note that two-gauge rosettes can also be used
whenever the principal axis orientation « is known.
In the case of a 90° tee rosette, the rosette strain
relations are then

|ex]. (21)

(22)

g =d + rcos[2a] (gauge 1),
& =d +rcos[2(a + w/2)] =d — rcos[2a] (gauge 2).
(24)

Therefore the deviatoric strain as measured by a two-
gauge tee rosette type is

_ 81 - 82
"7y cos[2a]’

The principal strain €5 can then be deduced with Eq.
(22), and one can see that it is absolutely temperature
independent as well.

(25)

The accuracy of the measurement of the state of
strain is partly limited by spectral resolution. In
fact, since three noncollinear gratings are required
for one to perform the measurement, one can easily
find [by differentiating Eq. (23)] that the error de-
pends on « and is approximately twice to three times
that of a single grating (owing to the vectorial nature
of the strain information). Therefore a maximum
error of approximately 3 pe/pm is anticipated for the
rosette-based uniaxial strain sensor. However, a
great inaccuracy arises from angular dispersion in
the positioning of gauges with respect to one another.
Let us suppose that one gauge is badly positioned
with respect to the two other gauges. There is a
small change in local strain A¢ in comparison with
that measured by the perfectly aligned gauge that
can be estimated by a first-order Taylor series ap-
proximation of Eqgs. (17) as a function of a small de-
parture AB from the exact angle. Then this new
strain € + Ae¢ is inserted into Eq. (18), and the corre-
sponding change in the deviator value is estimated by
a first-order Taylor-series approximation as a func-
tion of Ae. After simplification the relative error in
deviator estimation with respect to the departure an-
gle AB is then found to be

Ar _8 sin” B sin[4(« + B)]AB
r 9

(26)
and can be found to be, at worst =0.12% for a 0.1°
angular misalignment. In actual fact, two gauges
can be badly positioned with respect to the third one.
Therefore the relative error of the rosette sensor is
actually, at worst, +0.24% for a 0.1° angular mis-
alignment.

Once €x and « are known (Table 1), pure local
strains €;°, €,°, and €;° can be calculated by use of the
following deduced from Egs. (17):

if_ Y N Sah B 1+v 9
X—sm (@) — v cos™(a) = 2 2 cos(2a),

& . 9 9 1-v 1+v
E=S1n(oc+[3)—vcos(ot+[3)=< )—( )

" 2 2
X cos(2a + 2B),

€i°_,2( +2p) - 2o+ 28) = 1—v_1+v
eX—smoc B) — v cos(a B)= 9 9

27)

X cos(2a + 4PB).

The temperature information 7" — T, can be calcu-
lated with Eq. (7) for any grating:

1

[gs + (1 - pe)astructure] ‘
(28)

AN,
N

T-T,= [ -1 _pe)8i°:|

The absolute temperature 7' can then be estimated,
provided that an accurate calibration of the reference
temperature T, has been made beforehand. Since
the strain €;° is a function of €y and «, the relative
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Fig.2. Four-point bending setup: SLD, superluminescent diode.
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error in temperature with respect to spectral resolu-
tion can be estimated. The calculation is lengthy

but does not create any difficulty. It yields
g(K/ )_ 1+(1_ )1_1) %_FEE
Ay PRI PA79 Jlan| "3

1
X .
[Cs + (1 - pe)astructure]

(29)

The third term refers to the error in angular orien-
tation and is maximum for a = 45°.

5. Strain-to-Deflection Governing Equations for Plates
under Bending

A four-point bending setup was chosen for a proof-of-
principle experiment. It is depicted in Fig. 2. It
consists of two support bars fixed on an optical table,
two loading bars applying a force set by a screw, and
a micrometer to measure the center deflection of the
test structure. Four-point bending induces a state
of plane strain. Such a setup enables one to perform
static measurements with great stability over long
periods of time to achieve a good spectral resolution.20
Moreover, the curvature radius of the test structure
is constant at the center so that the bending-induced
strain is constant over the grating length (i.e., there
is no spectral chirp of the grating), and there is no
need for accurate positioning of the test structure on
the bench. Finally, the test structure can be turned
at any angle between *=30°, and the principal axis
orientation is determined by the support bars.

It can be shown from the theory of elasticity37-38
that the bending profile w(x) of a beam is ruled by the
well-known differential equation of equilibrium:

dw(x)  M(x)
5x*  EI

(30a)

or

d'w(x) _p(x)
dx* EI’

(30b)
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where M(x) is the bending moment applied to the
beam with respect to the abscissa x, p(x) is the ap-
plied force per unit area, and I is the moment of
inertia of the beam cross section with respect to the x
and y axes, which is considered constant over its
length. By integrating twice and solving for bound-
ary conditions, one can easily find the deflection W at
the center of the beam:

Fa (6> L?
W=E E_E 5 (31)

where L is the distance between support bars and a is
the distance between a support bar and the nearest
loading bar. The upper part of the structure is un-
der compression, whereas its lower part is under trac-
tion. The local strain at the surface of the structure
increases linearly with distance from the neutral axis
of the beam according to

_(ht D) 3%w(x)
2 dac® ’

x=L/2

Ex =

(32)

where ® is the diameter of the polymer-coated fiber

and A is the thickness of the plate. Substitution of

Eq. (30a) into Eq. (32) gives

(A + D) M(L/2)
2 EI

& =

(33)

Since the bending moment at the center of the beam
is M(L/2) = Fa, substitution of Eq. (31) into Eq. (33)
finally gives the following relation between center
deflection and local strain:

&= —12(h + ®) (34)

w

(4a® — 3L%°
The beam-bending theory has the merits of both sim-
plicity and ease of use because most bending prob-
lems can be solved analytically. However, owing to
the overall dimensions of our Bragg grating rosette
with respect to our bending setup, the test structure
on which it is bonded is better described by the thin
plate-bending model rather than by the beam-
bending one. The differential equation of equilib-
rium is then written in two-dimensional coordinates
as38

Sw(x,y) _ dwlx,y) dw(x,y)
duc* dxdy? oyt
12(1 — v?)
:Wp(x,y)- (35)

Solutions for Eq. (35) can be obtained by the inverse
method that relies on assumed solutions for w(x, y)
that satisfy the governing equation and the boundary
conditions. A powerful method is the Fourier series
(Navier or Levy solutions), but manageable solutions
require one to fulfill particular boundary conditions
that are not generally met in practical experiments.
On the other hand, finite-element methods have



proved to be the most flexible for determining the
mechanical behavior of arbitrary test structures and
mapping their state of strain. We performed plate-
bending numerical analysis using a finite-element
software (résistance des matériaux). Under a dis-
placement imposed by the loading bars (as boundary
conditions), we obtained principal strains and princi-
pal axis orientation of arbitrary points on the surface
as a function of plate deflection for several orienta-
tions of the plate on the test bench.

Plate-bending behavior differs considerably from
that of beam bending because of edge effects in the
way that a transverse stress oy takes place in plate
bending but is not noticeable in beam bending.
Moreover, the plate takes the shape of a saddle.
This behavior has been reported by several au-
thors38:39 and can be analytically described in simple
cases. As a consequence of this, the ratio —&y/ex is
inevitably less than the Poisson ratio of the test ma-

terial. This apparent Poisson ratio is given by
€ Oy — VO
= = ————. (36)
SX Ox — VOy

The apparent Poisson ratio was confirmed by finite-
element analysis and was found to be nearly constant
with respect to load. Indeed, the theory of elasticity
always predicts a linear relation between transverse
and longitudinal strains (i.e., Poisson’s law always
holds but with an effective Poisson ratio different
from that of the test material). At any rate, as a
proof of principle, the experiment is as conclusive as
if it were performed on a beam (i.e., small width-to-
length ratio), except that further calculations were
carried out on the basis of an apparent Poisson ratio.

Moreover, numerical analysis shows that the de-
flection of the plate at 0° orientation is identical to
that of its beam equivalent [i.e., Eq. (34) holds for 0°
plate bending], owing to the symmetry of the distrib-
uted applied load. The experimental deflection dif-
fers from that determined by the beam-bending
theory at other orientations, and results obtained by
numerical analysis of plate bending must be consid-
ered instead.

6. Experiment and Discussion

An optical Bragg grating delta rosette was fabricated
and is shown in Fig. 3(a). Each side was 35 mm
long. The three Bragg gratings arranged at 60°
from one another were bonded onto an aluminum
plate as the test structure [Fig. 3(b)] on the reverse
side (tensile face). Seen from the top, the Bragg
gratings were arranged in a counterclockwise config-
uration. The thickness of the plate was h = 4.28
mm, and its Young’s modulus and Poisson ratio were
E = 67.5 GPa and v = 0.34, respectively. The opti-
cal instrumentation has already been described in a
previous publication.2? Light from a broadband su-
perluminescent diode was launched into a single-
mode fiber, in which the three Bragg gratings were
photowritten at 1294.8, 1296.7, and 1297.4 nm. The
outer diameter of the polymer-coated fiber was 280

fiber Bragg grating
epoxy bonding

test

(a) (b)

Fig. 3. Bragg grating (a) delta rosette and (b) epoxy bonding onto
a metallic test plate.

pm. The spectral linewidths of the Bragg grating
gauges were 0.2 nm. Bragg spectra were recorded
with a 64-cm-focal-length scanning monochromator
equipped with a 600-line/mm grating. The spectral
resolution was approximately =5 pm, yielding a
strain resolution of =5 pe.

In a first approach we investigated the use of this
rosette to determine the state of strain. Although
theory [Eq. (23) and Table 1] predicts that the rosette
calculation of principal strains and stresses is inde-
pendent of the rosette orientation with respect to the
principal axis, we intended to verify its reproducibil-
ity. With this aim in mind, we performed several
measurements at various angular orientations and
compared rosette evaluations of the principal strain.
The plate was turned along the bench at 0°, 14°, and
30°. For each angular orientation the plate was pro-
gressively loaded so that the deflection increased in
steps of 0.5 mm. Spectra of the three Bragg gratings
were recorded for each deflection. Figures 4 and 5
show the Bragg grating wavelengths with respect to
the center deflection of the plate for 0° and 30°, re-

spectively. Also shown are the experimental princi-
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Fig.4. Experimental and theoretical evolutions of the Bragg grat-
ing wavelengths under an increased load for 0° orientation (FBG 1
is aligned along the Y principal axis) and experimental and theo-
retical evaluations of the principal strain €.
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Fig.5. Experimental and theoretical evolutions of the Bragg grat-
ing wavelengths under an increased load for 30° orientation (FBG
1 is at 30° with respect to the Y principal axis) and experimental
and theoretical evaluations of the principal strain €.

pal strain €y as calculated from individual Bragg
grating strains with Eq. (23) and the theoretical one
as obtained by numerical analysis. The theoretical
local strains €,°, €,°, and €5° were then deduced by use
of Eq. (27), and the corresponding individual Bragg
grating center wavelengths were obtained with Eq.
(56). They are also drawn in dotted lines for compar-
ison, and it is obvious that agreement between the
experiment and the numerical analysis is good. As
mentioned above, finite-element results are identical
to those obtained with beam-bending calculation for
0° orientation. Experimental values for ey fit both
the calibration (metal-foil resistance strain gauge)
and the plate bending well whatever the orientation.
For 0° and 14° orientation the dimensions of the test
bench were L = 400 mm and ¢ = 111 mm. At 30°
orientation the dimensions were L = 295 mm and a =
66 mm. We estimated strain-to-deflection coeffi-
cients using Eq. (34) and finite-element modeling as
well. For a given displacement imposed by loading
bars, the principal strain €y and deflection W were
reported for each angular orientation of the plate (0°,
14°, and 30°). Principal axis angular orientations «
were 0°, 11°, and 26.5°. Finite-element numerical
analysis gave the principal stresses oy and oy, and
principal strains could be deduced with Eq. (15).
With Eq. (36) we obtained the apparent Poisson ratio
between the two principal strains, which was 0.17.
We compared the theoretical results with the Bragg
grating rosette experimental evaluation of the prin-
cipal strain &y, taking into account a strain-to-
wavelength coefficient of 1.01 pm/pe. The results
are outlined in Table 2.

A quite good agreement is found between experi-
mental evaluation of the principal strain and finite-
element numerical analysis, whereas a great
difference exists when we used the beam-bending
model (except for the special case of 0° orientation).
Figures 4 and 5 show a nonlinearity of the strain
response of grating 1 (mostly submitted to the Pois-
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Table 2. Principal Strain-to-Plate Deflection Coefficients &,/W
(ne/mm) for Various Angular Orientations of the Plate”

Plate
Orientation = Beam-Bending  Numerical = Experimental
(deg) Model Analysis Evaluation
0 127 127 128 = 2
14 127 120 116 = 2
30 225 200 193 =2

“FBG 1, FBG 2, and FBG 3 are arranged in a counterclockwise
configuration.

son strain). We believe this is due to a slight change
in the Poisson ratio during plate bending (see Section
5). Since the relative change in the Poisson ratio is
less than 10%, it leads to a small inaccuracy in the
principal strain measurement (approximately 1%).
As already described, this problem arises because of
plate behavior under bending and is expected to van-
ish for linear structures (rods, tubular members) for
which the Poisson ratio is exactly that of the struc-
ture material.

In a second approach we investigated an innova-
tive way of using this rosette in combination with
uniaxial strain to make a self-temperature-
compensated optical fiber Bragg grating-based strain
gauge. Once again the plate was progressively
loaded, but, as the deflection reached 1 mm, we im-
posed a sudden change in temperature by heating the
plate. After temperature stabilization the loading
continued until the deflection reached 3.5 mm (Fig.
6). The corresponding strain €5 was approximately
435 pe. As expected, every Bragg grating center
wavelength exhibited a step owing to temperature
change. Heating the plate manifested itself in a
thermal-apparent strain added to the real strain
(shown by the dotted line) as it affected each Bragg
grating wavelength. On the other hand, the exper-
imental value of the real strain €y [as calculated by
Eq. (23)] remained unaffected by the change in tem-
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Fig.6. Experimental and theoretical evolutions of the Bragg grat-
ing wavelengths under an increased load for 0° orientation and
demonstration of the self-temperature-compensated measurement
of the uniaxial strain €.



perature. Since the rosette evaluation of the princi-
pal strain was independent of its angular orientation
(as shown in Fig. 5), we therefore realized a uniaxial
strain sensor absolutely independent of temperature
as well as its positioning onto the test structure.
The temperature information can be recovered as
well with Eq. (28), and in the case of Fig. 6 it was
found to be approximately 7 = 0.7 °C.

Let us assume that the Poisson ratio is accurately
known. In addition to spectral resolution, a major
inaccuracy stems from the fabrication tolerance of the
Bragg grating rosette (by means of angular disper-
sion). In our experiment the rosette was accurately
positioned to better than 0.1° so that the relative
error in uniaxial strain was expected to be less than
0.24%, as estimated with Eq. (26). This means that,
for strains ranging from several to 1000 g, the pre-
cision in strain was limited mainly by the spectral
resolution of our instrumentation (=5 pm). There-
fore the error caused by spectral resolution was *+15
€, whereas the error caused by fabrication tolerance
was 2.5 pe. On the other hand, for strains higher
than 1000 g, the precision in strain was determined
by the angular inaccuracy (fabrication tolerance) as
well. For example, for most smart-structure appli-
cations (strain range to as high as 1%), this error
would be approximately =25 pe. As a consequence
of that, the real error of our rosette-based uniaxial
strain sensor was estimated to be, at worst, +5.5 ue
for a strain of 1000 pe and a given spectral resolution
of =1 pm. Using Eq. (29), we found the correspond-
ing precision in temperature to be approximately 0.14
K/pm.

7. Conclusion

For the first time to our knowledge, a Bragg grating
rosette has been designed, fabricated, and tested.
We first investigated this rosette by measuring the
state of strain of a thin plate as the test structure in
a four-point bending setup (i.e., measuring the prin-
cipal strains and orientation of the principal axis).
This rosette competed with its electrical counterparts
in terms of precision and conveyed all intrinsic optical
fiber sensor advantages. Satisfactory results were
obtained that allowed the use of this rosette on plane
structures under different loading conditions, possi-
bly with an extra grating for temperature compensa-
tion. Other structures, such as tie rods or members
of a truss (either plane or tubular), might be equipped
as well.

In addition to this classical use, we have described
an innovative application of this device as a self-
temperature-compensated uniaxial strain sensor
with no angular dependence. The uniaxial strain,
the angular orientation of its principal axis, and the
temperature can be accurately recovered by calcula-
tion. In support of this conception, note that most
extensometric measurements involve only uniaxial
strains. In-plane determination of principal axis
orientation and principal strains are seldom encoun-
tered in industrial applications and are mostly re-
stricted to engineering and laboratory experiments.

The basic idea of this self-compensation scheme is
then to add more information than strictly required
(i.e., three gauges instead of one) and to use the ex-
cess information to get rid of temperature, pressure,
and orientation influence. This concept is, of course,
of great relevance to industrial applications, since
most in situ strain sensors are inherently tempera-
ture dependent and often require accurate position-
ing.

In contrast with other in situ temperature-
compensation methods, the FBG rosette evaluation of
the uniaxial strain makes use of a rigorous calcula-
tion (i.e., deviatoric calculation) that does not rely on
matrix inversion. A great advantage over alterna-
tive methods is that calculation of the uniaxial strain
is inherently independent of temperature. Since it
does not involve the temperature sensitivity of the
transducer (e.g., FBG’s), the rosette-based sensor can
be used over any arbitrary temperature range with-
out requiring frequent recalibrations because of
changes in the temperature-to-wavelength coefficient
of FBG's.

Finally, one can use this sensor for any isotropic
test material simply by adjusting the Poisson ratio.
(One must use an effective Poisson ratio instead of
the structure material when making plate-bending
tests.) The deviatoric equation can be calculated in
real time, or the corresponding signal can be shaped
by a dedicated electronic circuit. In addition to spec-
tral resolution, a major source of inaccuracy stems
from angular fabrication tolerances. The precisions
of our rosette-based uniaxial strain sensor are ap-
proximately 3 pe/pm + 2.5 pe for a strain of 1000 e
and 0.14 K/pm, and maximum errors of approxi-
mately 3 pe/pm and 0.11 K/pm are anticipated for a
perfectly arranged rosette-based uniaxial strain sen-
sor. Typical strain- and temperature-to-spectral-
resolution relative errors are summarized in Table 3
(only for methods involving spectral measurements).
Strain and temperature precisions are limited by the
measurement accuracy, i.e., 1 pe/pm and 0.1 K/pm,
respectively. The great limitation of most methods
requiring matrix inversion is that the inversion is
often poorly conditioned because of a small determi-
nant and, as a consequence, gives large errors and
low accuracy.

The satisfactory performances of this compensat-
ing scheme allow us to be confident about its many
technical applications. Clear advantages over alter-
native methods are angular independence, high ac-
curacy, and self-temperature compensation over a
broad temperature range without recalibration. Al-
though it has been demonstrated with FBG’s as
strain gauges, other transducers (e.g., interferomet-
ric) can be implemented in a similar manner.

However, as a proof of principle, this rosette has
been realized in fiber form. This implementation
turned out to be difficult to handle, and the angular
positioning required a meticulous design. As a con-
sequence, a fiber-based device would preferably be
realized with printed circuit processes on a flexible
substrate (e.g., bonded on an epoxy film). Such a
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Table 3. Comparison of Recovery Analysis Performances of Several Temperature-Compensation Methods of FBG’s Involving Spectral
Measurements in Terms of Relative Error to Spectral Resolution

Relative Errors

Extrinsic Versus

Compensating Method Strain Temperature Intrinsic Reference
Dual overlaid FBG’s at different center 17 pe/pm 1.7 K/pm Intrinsic 22, 23
wavelengths
Bragg grating in a highly birefringent fiber Not indicated Not indicated Intrinsic 24
Two FBG’s of different cladding diameters 17 pe/pm 1 K/pm Intrinsic 25
Two diffraction orders of a FBG 17 pe/pm 1.7 K/pm Intrinsic 26
One rocking filter and one FBG 40 pe/0.1 nm 0.25 K/0.1 Intrinsic 27, 28
nm
Two FBG’s and a long-period grating Not indicated Not indicated Intrinsic 29
Fabry—Perot interferometer and FBG 1.25 pe/pm 0.35 K/pm Extrinsic 30
FBG rosette 3 pe/pm + 0.14 K/pm Intrinsic This
2.5 pe study
Two FBG’s mounted on opposite surfaces of ~1 pe/pm Not measured Extrinsic 32
a cantilever
Passive temperature-compensating package 70 pe error Not measured Extrinsic 33, 34
on 120 °C
range

substrate of small thickness is required to allow for
large elongations (several 10,000 pe) without signif-
icant alteration of the strain distribution in the struc-
ture under test. An even more efficient technology
could be integrated optics on polymers as a means of
achieving high accuracy in fabrication tolerances, re-
producibility, and integration in a mass-produced
process. Indeed, polymer substrates have been
shown to be photosensitive, and channel waveguides
and gratings have been photowritten in such sub-
strates.’® Fibers or channel waveguides of great in-
dex difference between the core and the cladding
(10~2) do not suffer significant curvature losses for a
bending radius as low as several millimeters. Con-
sequently, we can anticipate that the design and
elaboration of integrated rosettes of overall dimen-
sions of approximately 10 X 10 mm? or less may be
possible. This compactness is comparable with or
even smaller than that of their resistive foil counter-
parts.

As a strain transducer the Bragg grating can be
used to sense many other physical parameters by
means of an appropriate strain-transducing mecha-
nism. For example, one might use magnetostrictive
substrates to measure the amplitude of a magnetic-
field vector4© or, alternatively, an electric current (for
example, in a transformer). Such a Bragg grating
rosette-based sensor would be self-temperature com-
pensated and independent of its angular orientation
with respect to the field vector. One might use pi-
ezoelectric substrates or coatings as well to measure
an electric-field vector. A section of fiber containing
a Bragg grating can be bonded onto or embedded into
materials that change size or shape in the presence of
the electric field. One could also use FBG’s coated
with a piezoelectric polymer jacket [e.g., poly-
(vinylidene fluoride)] to perform such a task.
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trale des Arts et Manufactures, Chatenay-Malabry,
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ware obtained from Université du Mans, France) and
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