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Ultrasonic telemetry imaging systems are used to monitor such immersed structures as main vessels of

nuclear reactors. The interaction between acoustic beams and targets involves scattering phenomena,

mainly specular reflection and tip diffraction. In order to assist in the design of imaging systems, a sim-

ulation tool is required for the accurate modeling of such phenomena. Relevant high-frequency scattering

models have been developed in electromagnetic applications, in particular, the geometrical optics (GO),

Geometrical Theory of Diffraction (GTD) and its uniform corrections (UAT and UTD), Kirchhoff approxi-

mation (KA) and Physical Theory of Diffraction (PTD). Before adopting any of them for simulation of scat-

tering of acoustic waves by edged immersed rigid bodies, it is important to realize that in acoustics the

characteristic dimension to the wave length ratio is usually considerably smaller than in electromagnet-

ics and a further study is required to identify models’ advantages, disadvantages and regions of applica-

bility. In this paper their numerical comparison is carried out. As the result, the most suitable algorithm is

identified for simulating ultrasonic telemetry of immersed rigid structures.

1. Introduction

An ultrasonic telemetry imaging system reported in [1] allows

its operators to monitor position of structures immersed in opaque

liquids, ensuring continual safe operation of such structures. One

of its possible applications is in monitoring the core of a sodium-

cooled fast-neutron reactor, a Generation IV nuclear plant design

[2]. Deploying the system in conjunction with this design is partic-

ularly attractive, because sodium’s opacity makes ultrasound a

more effective monitoring agent than light. No significant impedi-

ments to its adoption are envisaged, since ultrasonic techniques

are already widely used in industry for Non-Destructive Evaluation

(NDE) of structural integrity of solid components [3].

Telemetry is the process of determining the distance between

the surface of a probe emitting an acoustic beam and a bright spot

on the target. This is achieved bymeasuring the time of flight of the

echo backscattered from the target. Many parameters influence the

received signal: the incident angle, signal frequency, target geom-

etry and size, material properties of the medium carrying the beam

(such as velocity fluctuations) [1,4], etc. Therefore a simulation tool

[1,5] is required to allow designers to investigate and optimize the

performance of the proposed system.

When an acoustic beam interacts with targets of different

geometries (large planar structures or edged bodies), the most

widely known scattering phenomena that take place are high-

frequency effects of specular reflection and edge diffraction. Sev-

eral high-frequency scattering approximations mainly developed

in electromagnetism [6–11] can be used to model the high-

frequency acoustic wave scattering by immersed rigid targets.

Some of them are based on ray theories and others on integral

formulations.

To start with the specular phenomena, when an acoustic beam

impinges on a smooth (locally plane) surface its reflection/refrac-

tion can be described by the simplest ray theory known as Geomet-

rical Optics (GO) [6,11] using Snell–Descartes law and energy

conservation. When the surface has a complicated shape but can

still be considered locally plane it is convenient to employ the

so-called Kirchhoff approximation (KA) based on the Green’s inte-

gral formalism and referred to in electromagnetism as Physical

Optics (PO) [11–13].
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Diffraction phenomena arise in presence of such surface irregu-

larities as edges. Their quantitative description is provided by the

Geometrical Theory of Diffraction (GTD) originally proposed by

Keller [7]. This is another ray theory, with the directions of dif-

fracted rays governed by the Snell–Descartes law of diffraction.

The GTD [13] states that the amplitudes carried by these rays

can be computed using the stationary phase asymptotics of the

solution of the relevant canonical problem, that is, the problem

that reproduces the main features of the local geometry. The most

widely used canonical problems [12] are diffraction of a plane

wave by a planar wedge and by a rigid half-plane (the 360� wedge).

GO and classical GTD provide good description of reflected/

refracted and diffracted fields, respectively, but fail in transition

zones. For example, if a GTD recipe is applied in a transition zone

(known as penumbra) surrounding the shadow boundary (SB)

between an irradiated and shadow regions the resulting diffraction

coefficients possess non-physical singularities. One approach to

remedying the situation is to develop a generalization of GTD as

is done in the Uniform Geometrical Theory of Diffraction (UTD)

[8]. This offers asymptotics of the diffracted field which are valid

not only in irradiated and shadow regions but inside the penum-

bras as well. Another approach is to develop uniform asymptotics

of the total field. One such solution is offered by the Uniform

Asymptotic Theory (UAT) [9] and another, by the Physical Theory

of Diffraction (PTD) [10].

In this paper the numerical comparison of the above physical

theories is carried out in two-dimensional configurations using

typical parameters encountered in ultrasonic NDE in order to iden-

tify the one best suited for the purpose at hand. Scattering by both

a rigid half-plane and a rigid wedge is considered. Preliminary

works done for the half plane are shown in Proceeding [14]. The

present paper focuses on the wedge scattering problem providing

new results obtained using validated UTD and PTD wedge models

so that five different analytical approximations are compared in an

acoustic case: GTD, UAT, UTD, KA and PTD. For instance, PTD is

shown to surpass KA for the scattering near a wedge surface or

in shadow zones.

2. Approximate solutions to the wedge scattering problem

Consider first a two-dimensional space filled with a homoge-

neous fluid supporting an acoustic speed c and containing a perfect

rigid wedge of angle U irradiated by an acoustic plane wave inci-

dent at an angle h0 with one of the wedge faces (see Fig. 1). Intro-

duce the Cartesian system with the origin at the wedge tip

x0 ¼ ð0;0Þ and the x1-axis running along the irradiated face. Then

any observation point x ¼ ðx1; x2Þ can also be described in terms

of the corresponding polar coordinates ðr; hÞ (Fig. 1).

In ray theory, the resulting total field ut comprises the incident

field ui, reflected field ur and field ud diffracted from the edge.

Fig. 1 details – for the field incident on the upper wedge face –

the illuminated and shadow zones of the incident and GO reflected

fields, which are separated by straight light/shadow boundaries.

Transition zones (also called penumbras) are areas surrounding

shadow boundaries. Area I + R lies inside both incident, reflected

and diffracted fields, ut ¼ ui þur þud for 0 < h < p� h0 and

outside penumbra IP. Area I lies inside both incident and diffracted

fields, ut ¼ ui þud for p� h0 < h < pþ h0 and outside penum-

bras IP and RP. Area S is the total shadow zone of GO; only dif-

fracted rays penetrate it, ut ¼ ud for pþ h0 < h < U and

outside penumbra RP. ISB (RSB) is the light/shadow boundary of

the incident (reflected) field and separates the area illuminated

by incident (reflected) rays from its corresponding shadow zone.

Outside transition zones (designated ‘‘incident IP” and ‘‘reflected

RP” in Fig. 1), the total field can be represented as the sum of the

GO fields and the edge diffracted waves. Penumbra is the neighbor-

hood of the shadow boundary where such a representation of the

total field is inapplicable and the field exhibits a transient behavior.

We start with the edge diffracted field. It is best described by

the classical GTD, which represents it as decreasing as the square

root of both the distance to the edge and wave frequency and

involves the so-called GTD edge diffraction coefficients DGTD [7].

GTD can be obtained as the leading order term in the non-

uniform asymptotic series, which apply in geometrical (illumi-

nated and shadow) regions but not in the transition zones, such

as penumbras. In particular, the GTD diffraction coefficients DGTD

are often infinite at SB of the incident field as well as SBs of the

fields reflected from both wedge faces. By way of an example,

Fig. 2 shows the diffraction coefficient of a wedge of angle

U = 270� for the incidence angle h0 ¼ 50�. In this configuration,

only the horizontal wedge face is illuminated and reflects the inci-

dent field, and the GTD singularities are located at

h ¼ 180� � h0 ¼ 130� (the reflected SB) and h ¼ 180� þ h0 ¼ 230�

(the incident SB).

As mentioned in the Introduction, several uniform theories can

extend the validity of GTD to penumbras.

It has been shown in [15] that to leading order, UAT and UTD

give the identical description of the field scattered from a planar

wedge illuminated by a plane wave. However these theories are

uniform only in the absence of other transition zones outside

penumbras. In particular, both are invalid in caustic regions. In

the case studied here of plane wave scattering from a wedge with

planar faces, the only caustic region is the edge of the wedge. Other

caustics in the edge diffracted field can occur if the edge is curved

Fig. 1. Scatter of a plane wave incident at an angle h0 by a wedge of angle U.

Description of illuminated and shadow areas, transition zones (penumbras) and

shadow boundaries (white dashed arrows).

Fig. 2. GTD diffraction coefficient for U = 270� and h0 = 50�. x = 2p⁄ 1 MHz and

c = 2472 m/s.
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or the incident wave-front is concave at the diffraction point on the

edge. Nevertheless, in the shadow of the reflected field, UAT relies

on fictitious reflected rays [16]. Consequently, UAT fails on caustics

of fictitious reflected rays: When modeling a wedge with planar

faces, a caustic of this nature occurs at the image point of a point

source illuminating the wedge (see Fig. 3.7 in [17]) but no such

caustic arises when the incident wave is plane (see Fig. 3.6 in [17]).

Let us now turn to reflected fields. When dealing with compli-

cated scattering surfaces it is convenient to simulate them using

the Kirchhoff approximation (KA) [11,12]. KA is based on the

assumption that on the wedge the scattered field can be described

using the standard GO. KA provides a correct description of the

specular reflection, can be applicable in a caustic vicinity and dis-

plays no singularities in penumbras. However, the KA amplitudes

of diffracted waves are incorrect. This KA failure can be rectified

using PTD, that is, adding an edge diffracted field with the GTD

coefficient replaced by the difference DGTD � DKA between GTD

and KA wedge diffraction coefficients, where the latter is calcu-

lated using asymptotic evaluation of the KA solution. The differ-

ence DGTD � DKA is finite everywhere, even in penumbras (see

Fig. 3), so that PTD is valid uniformly in all observation directions.

This approximation, initially developed in electromagnetism, has

been recently extended to elastodynamics [18].

3. Numerical results

Unlike UAT and UTD, PTD cannot be used to calculate the higher

order interactions. However the higher order fields are usually so

much weaker than the primary fields as to be of no practical inter-

est. Below we compare scattering models to their leading order

only. Two scatterers are considered, a half-plane and a wedge of

angle U = 270�. All scattered amplitudes are normalized by the

amplitude of the incident wave.

3.1. Scatter by a rigid half-plane

First we compare KA, PTD and exact solution of the problem of

scatter of a plane harmonic wave by a half-plane

fS : x1 > 0; x2 ¼ 0g, that is, the wedge of angle U ¼ 360�. The exact

solution has been obtained by using the Sommerfeld–Malyuzhi-

nets technique [12]. For the half-plane, UAT reduces to the Som-

merfeld’s exact solution, which involves the Fresnel functions

[13]. A typical discrepancy between the KA approximation and

exact Sommerfeld solution can be seen in Fig. 4. The KA error is

symmetric with respect to S, because the integrand in the Kirchhoff

integral has two symmetrical phase stationary points (see [13]).

One gives rise to the GO field reflected from the irradiated side

of the half-plane and another to the fictitious field in the shadow

region, which compensates the incident field there. The KA error

is significant only near the edge, where the GO approximation used

in KA fails. A typical deviation of PTD from the exact solution is

shown in Fig. 5. Comparing Figs. 4 and 5 and taking into account

the difference in their amplitude scales, the largest error is reduced

from 10% for KA to about 0.4% for PTD.

Fig. 6 shows the total field ut simulated using PTD for the same

configuration as in Figs. 4 and 5. There are three geometrical areas:

� h < 180� � h0 (130� – the reflected SB), where both incident and

reflected fields propagate;

� 180� � h0 < h < 180� þ h0 (230� – the incident SB), where only

incident field propagates;

� h > 180� þ h0, where there are no geometrical fields.

Unlike GO, the total PTD field exhibits a smooth variation in the

vicinity of SBs and its edge cylindrical diffracted waves penetrate

the common shadow zone ðh > 180� þ h0Þ.

It follows that PTD combines advantages of both GTD (accurate

modeling of edge diffraction) and KA (accurate modeling of geo-

metrical field whatever the shape of smooth scatterer).

Fig. 3. Difference between the GTD and KA wedge diffraction coefficients for

U = 270� and different incident angles h0. x = 2p⁄ 1 MHz and c = 2472 m/s.

Fig. 4. The discrepancy between the normalized KA and exact amplitudes.

U = 360�, incidence angle h0 ¼ 50� , x ¼ 2p� 1 MHz and c ¼ 2472 m=s.

Fig. 5. The discrepancy between the normalized PTD and exact amplitudes.

U = 360�, h0 ¼ 50� , x ¼ 2p� 1 MHz and c ¼ 2472 m=s.
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3.2. Scatter by a rigid wedge of angle U = 270�

Let us now compare the numerical performance of the models

discussed above when modeling scatter by a rigid wedge of angle

U = 270�. For all wedges other than the half-plane, UAT provides

not the exact solution but the best approximation to it and there-

fore is used as a reference in Figs. 7–10, where we plot the ampli-

tudes of the total field normalized by the incident amplitude at the

distance r = 2k from the wedge tip, with k = 2p=k – the wave

length.

In Fig. 7 we present the total normalized GTD field simulated by

adding to the edge diffracted GTD field the GO fields, both incident

and reflected. The GTD singularities are observed at the shadow

boundaries h ¼ 120� and 240�. The reference UAT solution exhibits

lobes for observation angles h < 180� � h0, where we have interfer-

ence between incident, reflected and diffracted waves, and for

180� � h0 < h < 180� þ h0, where only interference between inci-

dent and diffracted waves takes place. As expected, outside

penumbras, GTD approximation is as accurate as UAT. Fig. 8 con-

firms that UAT and UTD also give identical results.

Fig. 9 illustrates the KA performance, good overall, but erro-

neous in the shadow (h > 240�). As explained above, the KA error

is proportional to DGTD � DKA and therefore there is a consistency

between Figs. 3 and 9: Away from the specular direction, KA loses

accuracy and requires the PTD correction to improve its modeling

of edge diffracted fields. Fig. 9 also demonstrates the lack of self-

consistency in KA: Near the surface the total KA field is far greater

than 2 uiðx0Þ (this double incident normalized amplitude is

represented in Figs. 7–10 by a large circle marked 2). Finally,

Fig. 6. The normalized total PTD field. U = 360�, h0 ¼ 50� ,

x ¼ 2p� 1 MHz and c ¼ 2472 m=s.

Fig. 7. Comparison between radiation patterns predicted by UAT and GTD for a

rigid wedge (gray area). U = 270�, h0 = 60� and r = 2k;

x ¼ 2p� 1 MHz and c ¼ 2472 m=s. The amplitude of the total field normalized by

the incident one is plotted versus the observation angle h in a polar diagram.

Fig. 8. Comparison between radiation patterns predicted by UAT and UTD for a

rigid wedge (gray area). U = 270�, h0 = 60� and r = 2k;

x ¼ 2p� 1 MHz and c ¼ 2472 m=s. The amplitude of the total field normalized by

the incident one is plotted versus the observation angle h in a polar diagram.

Fig. 9. Comparison between radiation patterns predicted by UAT and KA for a rigid

wedge (gray area).U = 270�, h0 = 60�, r = 2k,x ¼ 2p� 1 MHz and c ¼ 2472 m=s. The

amplitude of the total field normalized by the incident one is plotted versus the

observation angle h in a polar diagram.
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Fig. 10 supports the claim that whatever the scattering angle, the

scattered PTD field is identical to UAT.

Thus while modeling scatter by a half-plane KA is a very pow-

erful approximation, the KA error can be significant near – and par-

ticularly on – the half-plane faces, exhibiting symmetry with

respect to the latter. For any other wedge, when only one face is

irradiated the error in the shadow exceeds the error in the irradi-

ated region. When both faces are irradiated, the error is more or

less the same everywhere except near the surface. When this dis-

crepancy is of importance it can be eliminated by employing PTD.

UAT, UTD and PTD have all proven to be efficient methods for

simulating the scattering by the wedge with planar faces. Keeping

in mind that telemetry would need to model structures of complex

geometry, UAT is the most difficult method to implement, since it

involves fictitious reflected rays [16]. UTD requires ray tracing,

which accounts for both reflection and diffraction and is the less

time consumingmethod for large targets. PTD is easy to implement

using the Kirchhoff integration over the insonified surface and a

correction to the edge diffraction field. Finally, unlike UAT and

UTD, PTD remains valid at caustics in the fields reflected by curved

surfaces [16]. Therefore PTD is the most appropriate tool for simu-

lating ultrasonic telemetry of immersed rigid structures.

4. Conclusion

Several well-known high-frequency approximations have been

compared by simulating acoustic scattering by an immersed rigid

wedge. It has been confirmed that for a planar wedge UAT, UTD

and PTD produce predictions that are the same. Taking into

account that PTD requires integration only over the illuminated

part of the scattering surface and thus can be easily applied to

modeling smooth structures of complex geometry, it is concluded

that it is PTD that is most suitable for inclusion in a software tool

for simulating the ultrasonic telemetry imaging of immersed rigid

structures.
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