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The low-frequency electromagnetic scattering pro-
blem of a near-surface hollow spherical inclusion
is solved by means of a modal approach. The
primary field is excited using a current-carrying coil.
The presented solution addresses the full coupling
between the two interfaces of the geometry in a
rigorous way. There is a direct physical interpretation
of the different occurring terms in the formal solution,
which provides a deeper understanding of the
underlying phenomena. The calculation is very fast,
which makes the proposed model suitable for use with
parametric inversion algorithms.

1. Introduction
Low-frequency scattering by spherical inclusions
embedded in a conducting medium can be considered
as a canonical problem, met in a wide range of
applications which range from eddy-current testing
(ECT) of conducting materials to light scattering
from particles in optics and orebody detection in
geophysics. On a second level, the calculation of
the scattering response from such canonical inclusions
constitutes the first step for addressing the more complex
inverse problem of near-surface buried object detection
and dimensioning, problem of great importance for
geophysical applications.
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The scattering from spherical objects above or on planar substrates has been extensively
studied in the domain of optics, owing to its theoretical interest and also its particular importance
for studying surface phenomena. The first general solution for the electromagnetic scattering
of a plane monochromatic wave by a homogeneous sphere in a homogeneous infinite medium
was derived in the classical paper of Mie [1]. Using an ingenious combination of Debye and
Hertz potentials, Bobbert & Vlieger [2] constructed an analytical solution for the problem of light
scattering by a sphere in a non-absorbing medium placed on a plane substrate. The derivation
of the formal solution is achieved without approximating assumptions, yet explicit expressions
are given for a number of limiting cases such as a perfectly conducting substrate, a small
radius as well as a far field region. Videen [3] treats the same problem, but it proceeds to the
approximation that the scattered fields emanating from the sphere impinge upon the substrate
along the normal direction. Further attempts tackling the same or similar problems are also
reported in the literature [4–6].

In all the aforementioned studies, the sphere or the substrate may be of lossy materials,
the treatment of highly conducting media is yet not the primary concern of the analysis. Low-
frequency scattering by spherical objects consisting of, or embedded in, a conductive medium
is a less studied problem (speaking always of analytical or semi-analytical treatment), to the
best of the author’s knowledge. Vafeas et al. [7] have presented an analytical solution for the
scattering by a perfectly conducting sphere in a conductive medium using the low-frequency
approximation. The eddy-current flow in a conducting sphere induced by an arbitrary current
source in the air has been calculated by Theodoulidis et al. [8] based on the second-order vector
potential formulation (SOVP). Yet, like in the case of optical scattering, the addition of a second
boundary of different geometry, such as the planar surface of a half-space, complicates the
problem substantially.

In the particular case of low-frequency excitation and the presence of conducting materials,
the diffusive nature of the scattering problem allows us to consider the field negligible at a
(reasonably long) distance from the excitation, and hence to truncate the solution domain using
a simple Dirichlet or Neumann condition, and solve the problem by means of modal methods.
This technique, referred to in the literature as truncated region eigenfunction expansion (TREE),
has been applied for the solution of a number of important induction problems such as the
eddy-current probe interaction with corner discontinuities [9] or boreholes [10,11].

Based on this technique and applying conversion relations between rectangular and cylindrical
scalar wave functions, the problem of a cylindrical infinitely long pipe embedded in a conducting
half-space is tackled by Skarlatos & Theodoulidis [12]. A key point in this analysis is the
exploitation of the common (translational) symmetry axis between the rectangular and the
cylindrical coordinate systems used for the treatment of the planar and the cylindrical interface,
respectively. In this work, a similar technique is used in order to address the low-scattering
problem by a hollow spherical inclusion in a conducting half-space. There is a substantial
difference however between this and the previous geometry: here the direction of invariance
is the azimuthal angle, thus the use of scalar wave functions is not accessible. This difficulty
is recognized by Bobbert & Vlieger [2], who proceed therefore to use a complicated mixing of
Debye and Hertz potentials, in order to perform the sought decomposition into scalar problems
for the rectangular and spherical coordinate system. Here, in contrast to that work, an analysis
similar to Skarlatos & Theodoulidis [12] is carried out, where, however, direct use of vector wave
functions in the two coordinate systems is made. The conversion between the wave function of
the two systems is based upon the relations presented by Han et al. [13]. The presented approach
is rigorous, in the sense that no approximation is made apart from that of vanishing fields at far
distances from the source.

The paper is organized as follows. After the problem posing and the definition of the vector
wave functions in the cylindrical and the spherical coordinate system in §2, the formal solution is
derived immediately after (§3). Application of the continuity relations at the interfaces provides
the expressions for the development coefficients of the solution in §4. The paper closes with
the results section and the conclusions. An alternative expansion, slightly different from that of
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Figure 1. Spherical air inclusion inside a conducting half-space inspected by a cylindrical coil: (a) three-dimensional view and
(b) lateral viewwith the coordinate system. The solution domain is truncated at theρL limit using a perfectmagnetic conductor
(PMC) condition. (Online version in colour.)

Han et al. [13] for the conversion relations from spherical to cylindrical vector wave functions, is
derived in appendix. The derived expansion involves integration over a real-valued wavenumber
instead of a real-valued spectral angle as in Han et al. [13], which offers increased flexibility when
dealing with conductive media.

2. Mathematical formulation of the problem
The configuration of the considered problem is depicted in figure 1. A spherical inclusion of
radius R is embedded in a conducting, non-magnetic half-space with conductivity σ . The distance
between the centre of the sphere and the half-space interface is z0. The material inside the
inclusion as well as above the half-space is air.

Eddy-current flow is induced in the half-space by means of an air-cored cylindrical coil, whose
axis is normal to the interface. The coil is allowed to move in parallel to the interface at a constant
lift-off. Arbitrary current configurations and complex scan trajectories are also allowed by the
model, they will not be considered here, however, for the sake of simplicity. The analysis is carried
out in the harmonic regime, i.e. the time dependence of the coil current has the form eiωt, ω being
the radial frequency. The frequency f =ω/2π is considered to be low enough in order for the
quasi-static approximation to be valid.

The air half-space above the conductor will be referred to in the text as region 1, the conducting
half-space will be named region 2, whereas the index e will be reserved for reference to the
inclusion volume. We fix the origin of our reference frame to the centre of the spherical inclusion,
the z-axis being normal to the half-space planar interface as shown in figure 1. Given the distance
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between the centre of the inclusion and the half-space interface, this means that the latter
intersects the z-axis at z = z0. The solution domain is truncated at ρL distance from the z-axis, and
a perfectly magnetic conductor (PMC) condition is assumed on the resulting cylindrical boundary
(that is Bφ,z|ρ=ρL = 0).

The source-free induction problem in air is amenable to a magnetostatic formulation via a
magnetic scalar potential, i.e. the magnetic flux density can be written as

B1,e = −∇
{
Φ1
ψe

}
, (2.1)

where Φ1 stands for the potential in air region over the half-space, and ψe is the potential in the
inclusion. Both satisfy the Laplace equation

∇2

{
Φ1
ψe

}
= 0. (2.2)

The potential expression for Φ1 above the half-space comprises the free-space solution Φs
1 (i.e. in

the absence of the conductor) and the reflection from the half-space Φd

Φ1 =Φs +Φd. (2.3)

The magnetic induction inside the conducting medium can be written as a sum of two terms,
each one associated with one interface. Both are derived by a doublet of scalar potentials [14,15],
namely

B2 = ∇ × ∇ × (cWa) + ∇ × (cWb), (2.4)

where c is a constant pivot vector. The scalar potentials Wa,b are met in the literature under
different names, e.g. Debye, Hertz or second-order potentials; however, all definitions describe
more or less the same quantities [15]; in this work, we follow the conventions associated with
second-order potential definition. Both satisfy the homogeneous Helmholtz equation

(∇2 − k2)Wa,b = 0, (2.5)

where k2 = iωμ0σ ≈ iegaμ0σ , ε0 and μ0 being the dielectric permittivity and the magnetic
permeability of free space, respectively.

Observing that the solution in this part of the structure will have to satisfy the continuity
relations on both the planar and the cylindrical surfaces of the problem, we choose to express
the total solution as the superposition of two terms, each one being associated with an interface,
similarly to Skarlatos & Theodoulidis [12]. Equation (2.4) then can be modified as

B2 = ∇ × ∇ × (ezWa) + ∇ × (ezWb) + ∇ × ∇ × (rwa) + ∇ × (rwb), (2.6)

where we have set c := ez and c := r, with ez being the unit vector along the z-direction and r the
position vector. Recall that we are free to express the solution as any linear combination of partial
solutions we wish, under the condition that they will span the corresponding solution space, and
they will satisfy the continuity relations across the surfaces of the geometry.

1Strictly speaking, Φs satisfies the homogeneous Laplace equation. Nevertheless, because we are merely interested in the
solution just above the half-space interface, we restrict the analysis to the source-free region between the coil and the interface,
i.e. z0 < z< zb, zb being the coil base.
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(a) Vector wave functions
The analysis is facilitated if we make use of the vector wave functions. Setting c := ez as a
pivot vector, we define the irrotational L and the solenoidal vector wave functions M, N for the
cylindrical system as follows

L = −∇Φ, (2.7)

M = ∇ × (ezW) (2.8)

and N = k−1∇ × ∇ × (ezW) . (2.9)

M and N satisfy the vector wave equation, that is

∇ × ∇ ×
{

M
N

}
+ k2

{
M
N

}
= 0. (2.10)

From the definition and the vector wave equation we easily derive the reciprocal relations

∇ × M = kN (2.11)

and
∇ × N = −kM. (2.12)

With c := r, r being the position vector, we obtain similar definition relations for the spherical
wavevector functions l, m and n.

In all the above relations, the following notation convention has been tacitly adopted: all
variables associated with the cylindrical coordinate system are denoted using capital letters (i.e.
Φ2, Wa,b, L, M and N), whereas the lower case letters are reserved for variables associated with the
spherical coordinate system (namely ψe, wa,b, l, m and n).

3. Formal solution
The coordinate system chosen for expressing the solution in region 1 is the cylindrical one,
because we need to satisfy the continuity relations on the z = z0 plane. The scalar potentials of
(2.3) can then be expanded in Fourier–Bessel series:

Φs(ρ,φ, z) =
∞∑

m=−∞
eimφ

∞∑
n=1

C(s)
mnJm(κnρ) eκnz (3.1)

and

Φd(ρ,φ, z) =
∞∑

m=−∞
eimφ

∞∑
n=1

D(d)
mnJm(κnρ) e−κnz, (3.2)

where Jm(.) are the cylindrical Bessel functions of the first kind and of order m. The C(s)
mn coefficients

depend solely upon the excitation, i.e. the coil geometry and orientation and their values are
calculated independently [11, equation (4.1)]. The eigenvalues κn are determined by the PMC
truncation condition on ρL, i.e. Bφ,z|ρ=ρL = 0, hence it is

Jm(κnρL) = 0. (3.3)

For the solution in the interior of the spherical inclusion, the most appropriate coordinate
system to work with is the spherical one. Consequently, defining a spherical coordinate system
with origin at the centre of the inclusion, the potential expression in that region can be written as

ψe(r, θ ,φ) =
∞∑

m=−∞
eimφ

∞∑
�=m

D(e)
m�r

�Pm
� (cos θ ), (3.4)

Pm
� (.) being the associated Legendre polynomials of mth order and �th degree.
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The second-order potentials inside the conducting half-space can be expanded in series of
cylindrical and spherical wave functions, as follows

Wa,b(ρ,φ, z) =
∞∑

m=−∞
eimφ

∞∑
n=1

C(a,b)
mn Jm(κnρ) eκnz (3.5)

and

wa,b(r, θ ,φ) =
∞∑

m=−∞
eimφ

∞∑
�=m

D(a,b)
m� kn(kr)Pm

� (cos θ ), (3.6)

where kn(.) are the modified spherical Bessel functions of the second kind and of order n. Note that
only the finite (i.e. vanishing towards z → −∞, or outward) solutions to the Helmholtz equation
have been considered.

Using the vector wave functions definitions and applying the above modal decompositions in
(2.1) and (2.6), we obtain for the magnetic induction in the different regions

B1(r) =
∞∑

m=−∞

∞∑
n=1

[C(s)
mnL(s)

mn(r) + C(d)
mnL(d)

mn(r)], (3.7)

B2(r) =
∞∑

m=−∞

∞∑
n=1

[C(a)
mnN(ao)

mn (r) + C(b)
mnM(bo)

mn (r)]

+
∞∑

m=−∞

∞∑
�=m

[D(a)
m�n

(ao)
m� (r) + D(b)

m�m
(bo)
m� (r)] (3.8)

and Be(r, θ ,φ) =
∞∑

m=−∞

∞∑
�=m

D(e)
m�l

(e)
m�. (3.9)

The vector wave functions in the above relations are obtained from the corresponding scalar
ones of the potential expansions after applying the definition relations (2.7)–(2.9) (as well as the
respective definitions for the spherical wave functions). Hence, L(s)

mn corresponds to the mnth mode
of the Φs potential, and so on. In addition, note the ‘o’ index at the solenoid potential notations,
which stands for outwards (with respect to the pivot direction ez or r) in order to distinguish
the outwards vanishing solution from the inward one. The necessity of this distinction becomes
clear below.

4. Matching the modal expressions at the interfaces

(a) Continuity at the z = z0 plane
In order to address the continuity relations for the magnetic field on the z = z0 plane, we need to
express the spherical modes involved in B2 calculation in terms of cylindrical modes. Following
Han et al. [13], the expansion of the m spherical wave in a basis of cylindrical modes reads

m(o)
m�(r) =

∫∞

0
[am�(κ)M(i)

m (r, κ) + bm�(κ)N(i)
m (r, κ)] dκ , (4.1)

for the mm� wave function, whereas the respective relation for the nm� is easily obtained by
applying the properties (2.11), (2.12) (and the respective ones for m, n), which yields

n(o)
m�(r) =

∫∞

0
[am�(κ)N(i)

m (r, κ) − bm�(κ)M(i)
m (r, κ)] dκ . (4.2)

Note that the above expansions involve the inward (designated by the ‘i’ superscript) evanescent
spherical wave functions. It can be shown that the expansion coefficients are given by the relations
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(their detailed derivation is given in appendix):

am�(κ) = (−i)m[sgn(z)]n−m+1 π

2
κ

k2v

dP�m(cosα)
d(cosα)

(4.3)

and

bm�(κ) = −(−i)m[sgn(z)]n−m π

2
im
κv

P�m(cosα), (4.4)

with cosα= v/k, the spectral variable v being defined by v2 = κ2 + k2. Note that (4.3), (4.4) are
slightly different than those in Han et al. [13]. By virtue of the truncation relation introduced in
(3.3), the above integrals are converted into series, i.e.

m(o)
m�(r) =

∞∑
n=1

[am�nM(i)
mn(r) + bm�nN(i)

mn(r)] (4.5)

and

n(o)
m�(r) =

∞∑
n=1

[am�nN(i)
mn(r) − bm�nM(i)

mn(r)], (4.6)

where the discrete coefficients am�n, bm�n are related by the continuous ones via the relation

am�n = 2κnam�(κn)
[κnρLJm+1(κnρL)]2 , (4.7)

and the same relation for bm�n; ρL is the truncation boundary.
Substituting (4.5), (4.6) into (3.8) yields

B2(r) =
∞∑

m=−∞

∞∑
n=1

[C(a)
mnN(ao)

mn (r) + C(b)
mnM(bo)

mn (r)]

+
∞∑

m=−∞

∞∑
�=m

D(a)
m�

∞∑
n=1

[am�nN(ai)
mn(r) − bm�nM(ai)

mn(r)]

+
∞∑

m=−∞

∞∑
�=m

D(b)
m�

∞∑
n=1

[am�nM(bi)
mn (r) + bm�nN(bi)

mn (r)]. (4.8)

From the Hρ continuity at z = z0 and taking into account the orthogonality of the angular
modes, we obtain for the mode m (after term-rearrangement):

−
∞∑

n=1

[C(s)
mn eκnz0 + D(d)

mn e−κnz0 ]κnJ′m(κnρ)

=
∞∑

n=1

vnκn

k
J′m(κnρ)

{
C(a)

mn evnz0 − e−vnz0

∞∑
�=m

[am�nD(a)
m� + bm�nD(b)

m�]

}

+
∞∑

n=1

im
ρ

Jm(κnρ)

{
C(b)

mn evnz0 − e−vnz0

∞∑
�=m

[bm�nD(a)
m� − am�nD(b)

m�]

}
. (4.9)

In the same fashion, the continuity relations for Hφ and Bz yield

−
∞∑

n=1

[C(s)
mn eκnz0 + D(d)

mn e−κnz0 ]
im
ρ

Jm(κnρ)

=
∞∑

n=1

im
kρ

Jm(κnρ)

{
C(a)

mn evnz0 − e−vnz0

∞∑
�=m

[am�nD(a)
m� + bm�nD(b)

m�]

}

−
∞∑

n=1

κnJ′m(κnρ)

{
C(b)

mn evnz0 − e−vnz0

∞∑
�=m

[bm�nD(a)
m� − am�nD(b)

m�]

}
(4.10)
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and

−
∞∑

n=1

[C(s)
mn eκnz0 − D(d)

mn e−κnz0 ]κnJm(κnρ)

=
∞∑

n=1

κ2
n
k

Jm(κnρ)

{
C(a)

mn evnz0 + e−vnz0

∞∑
�=m

[am�nD(a)
m� + bm�nD(b)

m�]

}
. (4.11)

The derivative of Jm in (4.9) complicates the analysis, therefore we use the Bessel function
identities

± xJm(x) = xJm∓1(x) − mJm(x) (4.12)

and (4.9), (4.10) can be transformed into the following relations

−
∞∑

n=1

[C(s)
mn eκnz0 + D(d)

mn e−κnz0 ]κnJm±1(κnρ)

=
∞∑

n=1

vnκn

k
Jm±1(κnρ)

{
C(a)

mn evnz0 − e−vnz0

∞∑
�=m

[am�nD(a)
m� + bm�nD(b)

m�]

}

∓ i
∞∑

n=1

κnJm±1(κnρ)

{
C(b)

mn evnz0 − e−vnz0

∞∑
�=m

[bm�nD(a)
m� − am�nD(b)

m�]

}
. (4.13)

Weighting (4.13) with the Jm±1 over the interval [0, ρL] and taking into account the relation [16]
∫ρL

0
ρJm±1(κnρ)Jm±1(κn′ρ) dρ = ρ2

L
2

J2
m±1(κnρL)δnn′ , (4.14)

where δnn′ is the Kronecker delta, we arrive at

C(s)
mn eκnz0 + D(d)

mn e−κnz0 = −vn

k

{
C(a)

mn evnz0 − e−vnz0

∞∑
�=m

[am�nD(a)
m� + bm�nD(b)

m�]

}

± i

{
C(b)

mn evnz0 − e−vnz0

∞∑
�=m

[bm�nD(a)
m� − am�nD(b)

m�]

}
. (4.15)

In the same fashion, the application of the orthogonality relation to (4.11) yields

C(s)
mn eκnz0 − D(d)

mn e−κnz0 = −κn

k

{
C(a)

mn evnz0 + e−vnz0

∞∑
�=m

[am�nD(a)
m� + bm�nD(b)

m�]

}
. (4.16)

(b) Continuity on the spherical surface
Because the observation is made on the spherical surface, we need to proceed to the opposite
transformation than before, namely the cylindrical functions have to be expressed in terms of
spherical ones. These conversion relations are given in Han et al. [13], and read

M(o)
m (r, κ) =

∞∑
�=m

[Am�(κ)m(i)
m�(r) + Bm�(κ)n(i)

m�(r)], (4.17)

for the M wave function, and

N(o)
m (r, κ) =

∞∑
�=m

[Am�(κ)n(i)
m�(r) − Bm�(κ)m(i)

m�(r)], (4.18)

for the N one. The expansion coefficients Am� and Bm� are given by the relations

Am�(λ) = −(−1)nim
(2�+ 1)(�− m)!
�(�+ 1)(�+ m)!

k sin2 α
dPm

� (cosα)
d(cosα)

(4.19)
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and

Bm�(λ) = (−1)nim
(2�+ 1)(�− m)!
�(�+ 1)(�+ m)!

imkPm
� (cosα), (4.20)

where the spectral angle α has been defined in the previous subsection.
Substituting, as above, the wave function expressions (4.17)–(4.18) into (3.8) and applying the

continuity relations at the surface of the sphere r = R for the magnetic field components, we obtain
the following relations for the mode m; for Br:

−
∞∑
�=m

D(e)
m��R

�−1Pm
� (cos θ ) =

∞∑
�=m

�(�+ 1)
(kR)2 Pm

� (cos θ )

×
{

D(a)
m�K̂�(kR) + Î�(kR)

∞∑
n=1

[Amn�C
(a)
mn + Bmn�C

(b)
mn]

}
, (4.21)

for Hφ :

−
∞∑
�=m

D(e)
m�R

�−1 dPm
� (cos θ )

dθ

=
∞∑
�=m

D(a)
m�

1
kR

K̂′
�(kR)

dPm
� (cos θ )

dθ
+

∞∑
�=m

D(b)
m�

im
kR sin θ

K̂�(kR)Pm
� (cos θ )

+
∞∑
�=m

1
kR

Î′�(kR)
dPm

� (cos θ )
dθ

∞∑
n=1

[Amn�C
(a)
mn + Bmn�C

(b)
mn]

−
∞∑
�=m

im
kR sin θ

Î�(kR)Pm
� (cos θ )

∞∑
n=1

[Bmn�C
(a)
mn − Amn�C

(b)
mn], (4.22)

and for Hθ :

−
∞∑
�=m

imD(e)
m�

R�−1

sin θ
Pm
� (cos θ )

=
∞∑
�=m

D(a)
m�

im
kR sin θ

K̂′
�(kR)Pm

� (cos θ ) −
∞∑
�=m

D(b)
m�

1
kR

K̂�(kR)
dPm

� (cos θ )
dθ

+
∞∑
�=m

im
kR sin θ

Î′�(kR)Pm
� (cos θ )

∞∑
n=1

[Amn�C
(a)
mn + Bmn�C

(b)
mn]

+
∞∑
�=m

1
kR

Î�(kR)
dPm

� (cos θ )
dθ

∞∑
n=1

[Bmn�C
(a)
mn − Amn�C

(b)
mn]. (4.23)

Î�(.) and K̂�(.) stand for the Schelkunoff’s Bessel functions of the first and second kind,
respectively. These are linked to the modified spherical Bessel via the relations: Î�(x) = xi�(x) and
K̂�(x) = xk�(x).

We introduce now the following orthogonality relations for the associated Legendre
polynomials [17]: ∫π

0
Pm
� (cos θ )Pm

�′ (cos θ ) sin θ dθ = 2
2�+ 1

(�+ m)!
(�− m)!

δ��′ , (4.24)

and
∫π

0

[
dPm

� (cos θ )
dθ

dPm
�′ (cos θ )

dθ
+ m2

sin2 θ
Pm
� (cos θ )Pm

�′ (cos θ )

]
sin θ dθ

= 2�(�+ 1)
2�+ 1

(�+ m)!
(�− m)!

δ��′ , (4.25)

where δ��′ is the Kronecker delta, as usual.
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Applying (4.24) to (4.21), it yields

− D(e)
m�

kR�

�+ 1
= 1

kR

{
D(a)

m�K̂�(kR) + Î�(kR)
∞∑

n=1

[Amn�C
(a)
mn + Bmn�C

(b)
mn]

}
. (4.26)

Multiplying (4.22) with dPm
�′ (cos θ )/dθ and (4.23) with imPm

�′ (cos θ )/ sin θ and combining them,
we obtain

−
∞∑
�=m

D(e)
m�R

�−1

[
dPm

� (cos θ )
dθ

dPm
�′ (cos θ )

dθ
+ m2

sin2 θ
Pm
� (cos θ )Pm

�′ (cos θ )

]

= 1
kR

∞∑
�=m

{
D(a)

m�K̂
′
�(kR) + Î′�(kR)

∞∑
n=1

[Amn�C
(a)
mn + Bmn�C

(b)
mn]

}

×
[

dPm
� (cos θ )

dθ
dPm

�′ (cos θ )
dθ

+ m2

sin2 θ
Pm
� (cos θ )Pm

�′ (cos θ )

]

− 1
kR

∞∑
�=m

{
D(b)

m�K̂�(kR) + Î�(kR)
∞∑

n=1

[Bmn�C
(a)
mn − Amn�C

(b)
mn]

}

× im
sin θ

[
Pm
� (cos θ )

dPm
�′ (cos θ )

dθ
+ dPm

� (cos θ )
dθ

Pm
�′ (cos θ )

]
, (4.27)

which after integrating over the interval [0,π ] and taking (4.25) into account yields

− D(e)
m�R

�−1 = 1
kR

{
D(a)

m�K̂
′
�(kR) + Î′�(kR)

∞∑
n=1

[Amn�C
(a)
mn + Bmn�C

(b)
mn]

}
. (4.28)

Note that the integral of the last term in (4.27) vanishes. In the same fashion, by multiplication of
(4.22) with imPm

�′ (cos θ )/ sin θ and (4.23) with dPm
�′ (cos θ )/dθ , we obtain the last coefficient relation

0 = D(b)
m�K̂�(kR) + Î�(kR)

∞∑
n=1

[Bmn�C
(a)
mn − Amn�C

(b)
mn]. (4.29)

(c) Construction of the discrete system
Summarizing the previously derived coefficient relations, we have

D(d)
mn + vn

k
evnz0 C(a)

mn ∓ i evnz0 C(b)
mn

− e−vnz0

∞∑
�=m

[(vn

k
am�n ∓ ibm�n

)
D(a)

m� +
(vn

k
bm�n ± iam�n

)
D(b)

m�

]
= −C(s)

mn (4.15)

− D(d)
mn + κn

k
evnz0 C(a)

mn + κn

k
e−vnz0

∞∑
�=m

[am�nD(a)
m� + bm�nD(b)

m�] = −C(s)
mn (4.16)

Î�(kR)
∞∑

n=1

[Amn�C
(a)
mn + Bmn�C

(b)
mn] + K̂�(kR)D(a)

m� + k2R�+1

�+ 1
D(e)

m� = 0 (4.26)

Î′�(kR)
∞∑

n=1

[Amn�C
(a)
mn + Bmn�C

(b)
mn] + K̂′

�(kR)D(a)
m� + kR�D(e)

m� = 0 (4.28)

and Î�(kR)
∞∑

n=1

[Bmn�C
(a)
mn − Amn�C

(b)
mn] + K̂�(kR)D(b)

m� = 0. (4.29)
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Following the usual procedure, we truncate the infinite series in order to produce a finite
system of linear equations, whose solution will yield the unknown development coefficients.
General rules about the series truncation criteria have been given in previous works [9,10]. Hence,
we are led to the following finite algebraic system:

dd + Λvca ∓ icb − (ΛvÂ ∓ iB̂)da − (ΛvB̂ ± iÂ)db = −cs

−dd + Λκca + Λκ Âda + Λκ B̂db = −cs

SIAca + SIBcb + SKda + k2RΛ−1
� Rde = 0

S′
IAca + S′

IBcb + S′
Kda + kRde = 0

SIBca − SIAcb + SKdb = 0,

where
Λκ ,v = diag[κn, vn], Λ� = diag[�+ 1], R = RΛ� , SI,K = diag[Î�, K̂�(kR)],

and the coupling matrices A, Â are defined as

A = [e−vnz0 Amn�]T, Â = [
am�n e−vnz0

]T ,

with similar definition for B, B̂. Finally, dd, ca, cb, da, db and de stand for the coefficient vectors.
Note here that the different scattering terms related to the two interfaces as well as their

coupling through the A, B, Â and B̂ matrices provide direct insights into the physics of
the problem, which is a distinct advantage of the semi-analytical solution in respect to the
numerical ones.

Finally, the coil impedance variation owing to the presence of the half-space with the inclusion
can be calculated in the standard way using the reciprocity theorem, which leads to the well-
known expression [15]:

�Z = − iω2πρ2
L

μ0I2
0

∞∑
m=−∞

∞∑
n=0

κnC(s)
mnD(d)

mn. (4.30)

5. Results
The presented model has been applied to the inspection situation depicted in figure 1, where
spherical inclusions with different radii and a highly conducting half-space are considered.
The half-space conductivity is σ = 35.4 MS m−1. The coil inner and outer radius is 2 and 4 mm,
respectively, its length is 1 mm and it is wound with 200 turns. The coil is moved at a constant
lift-off equal to 0.2 mm from the half-space interface.

The results are compared against numerical simulations obtained using the three-dimensional
finite-element method (FEM) package Comsol 3.5a in figure 2 for two frequencies: 1 and 5 kHz.
The first inclusion has 5 mm radius and its ligament from the half-space free surface is 0.5 mm.
The second one is smaller with 1 mm radius and a ligament of 0.1 mm.

As a figure of merit, the truncation zone for the TREE solution can be taken equal to about
10 times the radial extent of the coil (provided that the inclusion volume is entirely contained in
the domain defined by this limit). Truncation radii greater than the previous one have an almost
negligible impact to the accuracy of the results. From the computational point of view, larger ρL

values impose a larger number of radial modes to be taken into account, which leads to a cubic
increase (due to the full system matrix) of the computational time.

The calculation time for the calculation of a complete scan comprising 60 points and for
the above-mentioned truncation limit was at most 5 s for both inclusions and both frequencies.
The respective FEM calculation time instead is estimated to 1.5 min per scan point, both times
being measured using a standard workstation. It should be pointed out that the computational
effort for the semi-analytical solution rises slowly with the number of scan points, because the
system matrix is independent of the coil position, the latter affecting only the right-hand-side
vector of the linear system. Therefore, using LU-variants for the system inversion, the additional



12

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140269

...................................................

0

0.145

1.08

5.85

5.90

5.95

6.00

6.05

1.09

1.10

1.11

1.12

1.13

1.14

1.15

0.150

0.155

0.160

0.165

1 2 3 4 5
x (mm)

(a)

(b)

D
R

 (
W

)
D

R
 (

W
)

1.400

1.405

1.410

1.415

1.420

1.425

1.430

1.435

D
X

 (
W

)
D

X
 (

W
)

3 mm

3 mm

3 mm

3 mm

1 mm

1 mm

1 mm

1 mm

TREE
FEM

TREE
FEM

TREE
FEM

TREE
FEM

6 7 8 9 10 0 1 2 3 4 5
x (mm)

6 7 8 9 10

Figure 2. Semi-analytical (TREE) versus FEM simulation results for spheres of different radii at: (a) 1 kHz and (b) 5 kHz.�R
stands for the real (ohmic) part of the coil impedance owing to the presence of the conductor (the ohmic resistance of the coil
windings being ignored),whereas X is the coil reactance. Solid line stands for semi-analytical results, whereas themarker points
for FEM. (Online version in colour.)

computational cost is merely due to the backwards substitution calculations. This is a well-
reported advantage of semi-analytical solutions [9,10].

The reason for the very small calculation times lies also with the rapid convergence of
the solution series, which allowed us to consider few modes. More precisely, the number of
cylindrical modes did not exceed 80 for κ and 25 for m for all cases, whereas the maximum number
of spherical modes was at most 15. This is a non-surprising remark, because the cylindrical and
spherical wave functions bases used for the solution expansion are partial solutions of the given
geometry, and thus they are already very close to the final solution.

6. Conclusion
A semi-analytical solution to the low-frequency scattering problem for a hollow inclusion in
a conducting half-space is derived. The full coupling between the two interfaces is taken into
account without using approximations, apart from the one of a vanishing field at sufficiently
long distance from the source. The error introduced by this assumption, however, can be made
arbitrarily small just by fixing the truncation distance.

The calculation is very fast, which makes the presented model a suitable candidate for use
with inversion algorithms.

Acknowledgement. This work was conducted in the context of the CIVAMONT collaboration (http://www-civa.cea.fr).

http://www-civa.cea.fr
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Appendix A. Derivation of the conversion relations from spherical to cylindrical
vector wave function
The starting point for the following derivation is the conversion relation from spherical to
cylindrical scalar wave functions given in Chang & Mei [18]:

h(2)
n (kr)Pm

n (cos θ ) = [sgn(z)]n−m
∫∞

0
fmn(λ)Jm(λρ) e−u|z| dλ (A 1)

and

fmn(λ) = in−m+1 λ

ku
Pm

n

(
−i

u
k

)
, (A 2)

where u =
√
λ2 − k2, Re[u] ≥ 0. Using the (more common for the eddy-current induction

problems) k2 sign convention of (2.5) as well as the identities

h(2)
n (−ix) = (−1)nh(1)

n (ix) = −in
2
π

kn(x) (A 3)

(A 1) can be written as

kn(kr)Pm
n (cos θ ) = −i−n[sgn(z)]n−m π

2

∫∞

0
fmn(λ)Jm(λρ) e−u|z| dλ, (A 4)

with,

fmn(λ) = −in−m λ

ku
Pm

n

(u
k

)
. (A 5)

Using the scalar wave function notation, (A 4) can be brought to the more compact form:

wmn(r) =
∫∞

0
cmn(λ)Wm(r, λ) dλ, (A 6)

with

cmn(λ) = (−i)m[sgn(z)]n−m π

2
λ

ku
Pm

n

(u
k

)
. (A 7)

Equations (A 6), (A 7) are our basic relations for the following analysis.
We seek a conversion relation of the form2

mmn(r) =
∫∞

0
[amn(λ)Mm(r, λ) + bmn(λ)Nm(r, λ)] dλ, (A 8)

where the development coefficients anm and bnm are to be determined.
We form the inner product of (A 8) with M−m, and we obtain

∫
V±

M−m(r, λ) · mmn(r) dV =
∫∞

0
amn(λ) dλ′

∫
V±

M−m(r, λ) · Mm(r, λ′) dV

+
∫∞

0
bmn(λ) dλ′

∫
V±

M−m(r, λ) · Nm(r, λ′) dV, (A 9)

where the volume integration is performed over the half-space V+ def= {z ≥ 0}, or V− def= {z ≤ 0}.

2Here, the explicit distinction between inwards and outwards evanescent functions is abandoned, because there is no risk of
confusion.
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We consider each integral separately. We begin with the first integral on the right-hand side.
Using the cylindrical vector wave function definition (2.8), we have

∫
V±

M−m(r, λ) · Mm(r, λ′) dV =
∫

V±
∇ · {W−m(r, λ)ez × ∇ × [ezWm(r, λ′)]} dV

+
∫

V±
W−m(r, λ)ez · ∇ × ∇ × [ezWm(r, λ′)] dV. (A 10)

Making use of Gauss’ theorem and developing the double curl operator of the second integral,
we obtain (the considered integral will be denoted as I1)

I1 =
∮
∂V±

W−m(r, λ){ez × ∇ × [ezWm(r, λ′)]} · dS

+
∫

V±
W−m(r, λ)ez ·

[
∂

∂z
∇Wm(r, λ′) − ez∇2Wm(r, λ′)

]
dV. (A 11)

The boundary ∂V encloses the positive or negative half-space, i.e. it consists of the z = 0
interface and an hemisphere with radius R → ∞. By Sommerfeld condition, it turns out that the
contribution of the latter vanishes. Thus, the previous equation can be written

I1 = ∓
∫

z=0
W−m(r, λ){ez × ∇ × [ezWm(r, λ′)]} · ez dS

+
∫

V±
W−m(r, λ)

(
∂2

∂z2 − k2

)
Wm(r, λ′) dV. (A 12)

The surface integral vanishes, and the remaining term becomes after substitution of the expression
for the scalar cylindrical function3

I1 = −λ′2
∫∞

0
e−(u+u′)z dz

∫ 2π

0
dφ

∫∞

0
ρJ−m(λρ)Jm(λ′ρ) dρ, (A 13)

which using the orthogonality of the Bessel functions, namely

∫∞

0
ρJm(λρ)Jm(λ′ρ) dρ = δ(λ− λ′)

λ
= δ(λ− λ′)

λ′ , (A 14)

can be simplified to the following form

I1 = (−1)mπ
λ

u
δ(λ− λ′), Re[u]> 0. (A 15)

In the same way, we obtain for the second integral of the right-hand side of (A 9) (denoted
as I2)

I2 =
∮
∂V±

[W−m(r, λ)ez × Nm(r, λ′)] · dS +
∫

V±
W−m(r, λ)ez · ∇ × Nm(r, λ′) dV. (A 16)

Using the same arguments we used for I1, we state that the boundary integral vanishes, and for
the second, we obtain (taking (2.12) into account)

I2 = k
∫

V±
W−m(r, λ)ez · Mm(r, λ′) dV = 0, (A 17)

as expected, because M and N are orthogonal to each other.

3Note that the z-signs in the corresponding integral are combined in the same way thus delivering the same expression,
regardless the half-space considered.
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Let us now consider the left-hand side integral of (A 9) (let us denote it I3). Following the same
procedure, we have

I3 =
∮
∂V±

W−m(r, λ){ez × [rwmn(r)]} · dS

+
∫

V±
W−m(r, λ)ez · ∇ × ∇ × [rwmn(r)] dV. (A 18)

The boundary integral vanishes again, and the volume integral that remains can be developed in
the following way

I3 =
∫

V±
W−m(r, λ)ez · [r · ∇∇ + 2∇ − k2r]wmn(r) dV

=
∫

V±
W−m(r, λ)ez · [(ρ + z) · ∇∇ + 2∇ − k2(ρ + z)]wmn(r) dV

=
∫

V±
W−m(r, λ)

[
ρ
∂2

∂z∂ρ
+ z

∂2

∂z2 + 2
∂

∂z
− k2z

]
wmn(r) dV.

We develop now the spherical wave equation on a basis of cylindrical functions according to (A 7)

I3 =
∫∞

0
cmn(λ′) dλ′

∫
V±

W−m(r, λ)

[
ρ
∂2

∂z∂ρ
+ z

∂2

∂z2 + 2
∂

∂z
− k2z

]
Wm(r, λ′) dV

= −sgn(z)
∫∞

0
cmn(λ′)u′ dλ′

∫
V±
ρW−m(r, λ)

∂

∂ρ
Wm(r, λ′) dV

+
∫∞

0
cmn(λ′)(u′2 − k2) dλ′

∫
V±

zW−m(r, λ)Wm(r, λ′) dV

− sgn(z)2
∫∞

0
cmn(λ′)u′ dλ′

∫
V±

W−m(r, λ)Wm(r, λ′) dV. (A 19)

The first integral gives

I4 =
∫

V±
ρW−m(r, λ)

∂

∂ρ
Wm(r, λ′) dV

=
∫∞

0
e−(u+u′)z dz

∫ 2π

0
dφ

∫∞

0
ρ2J−m(λρ)

∂

∂ρ
Jm(λ′ρ) dρ

= (−1)m 2π
u + u′ λ

′ ∂
∂λ′

∫∞

0
ρJm(λρ)Jm(λ′ρ) dρ,

and using the orthogonality relation (A 14), we obtain

I4 = (−1)m 2π
u + u′ λ

′ ∂
∂λ′

[
δ(λ− λ′)

λ

]
= (−1)m 2π

u + u′
λ′

λ
δ′(λ− λ′). (A 20)

The second integral can be written

I5 =
∫

V±
zW−m(r, λ)Wm(r, λ′) dV

= sgn(z)
∫∞

0
z e−(u+u′)z dz

∫ 2π

0
dφ

∫∞

0
ρJ−m(λρ)Jm(λ′ρ) dρ

= (−1)m sgn(z)
2π

λ(u + u′)2 δ(λ− λ′). (A 21)

The calculation of the third integral is straightforward, and it gives

I6 =
∫

V±
W−m(r, λ)Wm(r, λ′) dV = (−1)m 2π

λ(u + u′)
δ(λ− λ′). (A 22)
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Substitution of (A 20)–(A 22) into (A 19) yields

I3 = (−1)m sgn(z)
{

2π
λ

∂

∂λ′

[
cmn(λ′)

λ′u′

u + u′

]
λ′=λ

+ cmn(λ)
[
πλ

2u2 − 2π
λ

]}
. (A 23)

We perform the differentiation taking into account that u =
√
λ2 + k2 and we obtain after some

algebra

I3 = (−1)m+1 sgn(z)π
[

c′
mn(λ) + cmn(λ)

(
λ

u2 − 1
λ

)]
, (A 24)

which upon substitution of the expressions for the coefficients cnm from (A 7) yields

I3 = im sgn(z)n−m+1 π
2

2k2
λ2

u2
dPm

n (u/k)
d(u/k)

. (A 25)

From (A 9), (A 15), (A 17) and (A 25), we obtain our final result for the coefficient amn:

amn = (−i)m sgn(z)n−m+1 π

2k2
λ

u
dPm

n (u/k)
d(u/k)

. (A 26)

For the calculation of the second coefficient, bmn, we return to the general expression for the
mmn development (A 8), and we apply the curl operator on both sides, which using the properties
of the vector wave functions becomes

nmn(r) =
∫∞

0
[amn(λ)Nm(r, λ) − bmn(λ)Mm(r, λ)] dλ. (A 27)

Projecting (A 27) upon M−m as before, we obtain for the left-hand side
∫

V±
M−m(r, λ) · nmn(r) dV =

∫
V±

∇ × [ezW−m(r, λ)] · nmn(r) dV

=
∮
∂V±

W−m(r, λ)[ez × nmn(r)] · dS +
∫

V±
W−m(r, λ)ez · ∇ × nmn(r) dV. (A 28)

The boundary integral vanishes, as in the previous cases, and for the volume integral, we can
write successively

I7 =
∫

V±
W−m(r, λ)ez · [−kmmn(r)] dV = −k

∫
V±

W−m(r, λ)∇ · [wmn(r)r × ez] dV

= k
∫
∂V±

ρW−m(r, λ)wmn(r)eφ · dS − k
∫

V±
ρwmn(r)eφ · ∇W−m(r, λ) dV (A 29)

Again, the boundary integral is zero, as it can be easily verified, and for the remaining term,
we obtain after some manipulations the result

I7 = (−1)mim
πk
uλ

cmn(λ), (A 30)

where the spherical wave function has been developed in terms of cylindrical ones. Returning
now to the projection of (A 27) and substituting the values of the integrals (the right-hand-side
projections have already been calculated during the derivation of the amn expression), we obtain
for bmn

bmn(λ) = −im
k
λ2 cmn(λ). (A 31)

Upon substitution of cmn, we arrive at the final result

bmn(λ) = −(−i)m sgn(z)n−m π

2
im
uλ

Pm
n

(u
k

)
. (A 32)
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