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Abstract—In the context of networks of massively parallel
execution models, optimizing the locality if inter-process com-
munication is a major performance issue. We propose two
heuristics to solve a dataflow process network mapping problem,
where a network of communicating tasks is placed into a set
of processors with limited resource capacities, while minimizing
the overall communication bandwidth between processors. Those
approaches are designed to tackle instances of over one hundred
thousand tasks in acceptable time.

Index Terms—heuristics, process network mapping, manycore
execution optimization

I. INTRODUCTION

With the end of the frequency version of Moore’s law, a

new generation of massively multi-core microprocessors is

emerging. This has triggered a regain of interest for the so-

called dataflow programming models in which one expresses

computation-intensive applications as networks of concurrent

processes (also called agents or actors) interacting through

(and only through) unidirectional FIFO channels. See e.g. [7]

for a recent instantiation of this model.

On top of more traditional compilation aspects, compiling

a dataflow program in order to achieve a high level of

dependability and performance on such complex processor

architectures involves solving a number of difficult, large-

size discrete optimization problems amongst which graph

partitioning, quadratic assignment and (constrained) multi-

flow problems are worth mentioning [14].

In this paper, we focus on the problem of mapping a

dataflow process network (DPN) on a clusterized parallel

microprocessor architecture composed of a number of nodes,

each of these node being a small SMP, interconnected by an

asynchronous packet network.

A DPN is modeled by a graph where the vertices are tasks

to place, and the edges represents communication channels

between tasks. Vertices are weighted with one or more quan-

tities which correspond to processor resources consumption

and the edges are weighted with an inter-task communication

outflow. The aim of our problem is to maximize inter-task

communications inside SMPs while minimizing inter-node

communication under capacity constraints to be respected in

terms of task resource occupation on the SMPs.

We present in this paper two methods able to tackle large

instances of that problem in a reasonable amount of time. The

rest of the paper is organized as follows. Sect. II formally

states the DPN mapping problem and locates our work in the

literature. Sect. III and Sect. IV portray the two methods we

developped. Sect. V presents the results of our approach and

Sect. VI allows us to conclude and provide some ideas for the

evolution of our methods.

II. THE DPN MAPPING PROBLEM

A. Problem statement

Let T denote the set of tasks in the DPN and N the set

of nodes. Let R denote the set of resources offered by the

nodes (e.g., memory capacity, processing capability). Also, let

wtr denotes the consumption of tasks t in resource r, qtt′

denote the bandwidth between tasks t �= t′ and dnn′ denote the

routing distance between nodes n �= n′ . Also, for simplicity

sake and with a slight loss of generality, we assume that all

nodes are identical and we denote by Cr the capacity of any

of the nodes for resource r.

Given the variables

xtn =

{

1 iff task t is assigned to node n,

0 otherwise,

our DPN placing problem can then be expressed as the

following mathematical program:
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Minimize
∑

t∈T

∑

t′ �=t

∑

n∈N

∑

n �=n′

xtnxt′n′qtt′dnn′ ,

s. t.
∑

n∈N

xtn = 1 ∀t ∈ T, (1)

∑

t∈T

wtrxtn ≤ Cr ∀n ∈ N, r ∈ R, (2)

xtn ∈ {0, 1} ∀t ∈ T, n ∈ N.

Constraints of type (1) simply express that each task must

be assigned to one and only one node and constraints of type

(2) requires that the node capacity is not exceeded.

This generalized quadratic assignment problem is straight-

forwardly NP -hard in the strong sense notably by restriction

to the Node Capacitated Graph Partitioning Problem [5] (arbi-

trary network topology and bandwidths as well as equidistant

nodes), to the Quadratic Assignment Problem (in the case
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where the capacity constraints allow to assign one and only

one task per node and where the internode distance is arbitrary)

as well as to the bin-packing problem. This list emphasizes the

numerous sources of difficulties when tackling this problem.

In our work, we will only work with one resource.

In terms of instance size, in our application context, we have

to be able to map networks of over a hundred thousand of

tasks on architectures having several hundreds of nodes. Such

an order of magnitude rules out exact resolutions methods:

the best known methods for the node capacitated graph par-

titioning problems are limited to graphs with a few hundreds

of vertices, and the best known algorithms for the QAP are

limited to instances of size around 30 [10]. Therefore, in our

specific context, heuristic approaches are required to provide

results for our problem on large graphs in reasonable time.

B. Related works

Partitioning with graphs which contain several hundreds of

thousands of vertices is a well studied problem. The Path

Optimization parallel algorithm [2] is a variation of the hill

climbing algorithm and is able to find a good partitioning of

several tens of thousands of tasks in a reasonable amount of

time. However, it does not place the partitionned tasks.

Parallel solvers are able to solve large instances which

contain millions of vertices [8], [11]. Those approaches deal

with load balancing constraints and don’t consider resource

capacity constraints.

Previous works established two solvers for the DPN map-

ping problem in the context of building a cyclo-static dataflow

compilation toolchain for parallel microprocessor architectures

targeting the embedded market [1].

A first method is based on progressive construction for

the multi-resource Node Capacited Graph Paritioning Problem

([14], [12]). The method consists of two phases: a partition-

ing phase and a placement phase. The partitioning phase is

a GRASP approach [4]. It is an affinity-based randomized

iterative process which creates a satisfying partitioning of the

tasks graph. As this process may make unfortunate choices

during its execution, it is run several times using different

randomization parameters in a multi-start process. Only the

best solution is kept. The second part of the algorithm consists

in a simulated-annealing-based quadratic assignment problem

(QAP) heuristic which assigns one partition of the task graph

to each of the SMPs. This first algorithm is fast and used at

the early development cycle. It also uses a fusion principle.

A task to node affinity function and an node to node affinity

function are used in the process. If the affinity of the best node

to node affinity is higher than the best vertex to node affinity

and if there is enough space in one of the nodes, then a fusion

occurs. Otherwise, the task is placed in the candidate node.

A second approach [6] is based on a parallel simulated

annealing. This is a single-phase heuristic which directly

assigns tasks to the SMPs. It provides better results but it

takes considerably more time than the previous method even

though parallelism allows to drastically reduce the execution

time.

The two methods are quite efficient while dealing with

a reasonable number of tasks. However, those methods do

not scale with instances which contains more than a hundred

thousand of tasks. This is why we propose two methods which

are able to deal with those instances.

Those methods are based on graph spanning. This is due to

the fact that tasks graphs are not random graphs but show a

pecular structure that we want to exploit.

III. GREEDY TASK WISE PLACEMENT METHOD

A. Affinities

In order to identify a good task assignment, we used a metric

[3] which is defined as an affinity between two subsets. A

subset consists in a task, a node or a group of tasks.

Let T1, T2 two subsets of the set of tasks T of the DPN.

The affinities αT1T2
of T1 to T2 is:

αT1T2
=

∑

t1∈T1

∑

t2∈T2

qt1t2 .

B. Distance affinities

When iteratively choosing on which node a task must be

placed, an intuitive way is to place it as close as possible

from its neighbour tasks which are already placed. For this, we

introduce the notion of distance affinity. For any DPN mapping

solution, the distance affinity βtn between a task t and a node

n is the following:

βtn =
∑

n′

∑

t′

xt′n′xtnqtt′ ×
1

2×d
nn

′+1

Locally maximizing this function when chosing a node to

assign a task to, intuitively tends to minimize the DPN

mapping objective function.

C. Description of the algorithm

In this method, all tasks are assigned one after another using

the distance affinities computation properties. It is a one phase

placement.

Initially, the task, which has got the sum of the weights

of adjacence edges maximum, is placed in the first avalaible

node. All its unassigned neighbors are pushed into a FIFO

queue and their corresponding distance affinities towards the

selected node are computed.

Next, The task with the highest task to node affinity are

selected and removed from the queue. If two or more tasks

have the same affinity, the priority corresponds to the FIFO

order. The selected task is then placed in the node with whom

it has the greatest affinity. As long as there are no saturated

node, this strategy is applied.

Then, sooner or later, some nodes becomes saturated. All

tasks whose greatest affinity corresponds to a saturated node

are removed from the queue. All unsaturated nodes which

are in the neighborhood of the saturated node are selected.

A pre-generated ordering of all tasks, generated by breadth

first traversal, is used to choose as many unassigned tasks as

we selected nodes. Basically each of the first unassigned tasks

in the ordering are assigned to a different selected node.
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The unassigned neighbors of those tasks are placed in the

queue and their respective affinities are updated.

This process repeats as long as there are unassigned tasks.

The method is shown in Algorithm 1.

Algorithm 1 Greedy Task Wise Placement

1 /*
2 Q : a FIFO queue which contains the neighborhood of V

3 Q_BFT : A queue which contains the result of

4 the BFT algorithm

5 T2NA : A |V|x|N| matrix which

6 contains all tasks to

7 nodes affinities.

8 v : candidate vertex

9 n : candidate node*/

10

11 v = vertexWithHighestSumOfWeightsOfAdjacencyEdges()

12 Q = enQueue(neighbors of v)

13 assignToNode(v,0, assignment)

14 updateAffinities(T2NA, neighbor of v)

15 Q_BFT = BFT(v,|V|)

16 while(unsassigned tasks left)

17 (v,n) = deQueueTaskwithHighestAffinity(Q)

18 if(n is not saturated)

19 enQueue(neighbors of v,Q)

20 assignToNode(v,n)

21 updateAffinities(T2NA, neighbor of v)

22 else

23 removeAllTasksFromQ

24 WithHighestAffinityToSaturatedNode(T2NA,n)

25 while(i < numberOfAvailableNode(neigbors of n))

26 n = neighbor(V,i)

27 v = dequeue(Q_BFT)

28 Q = enQueue(neighbors of v)

29 assignToNode(v,n)

30 updateAffinities(T2NA,neighbors of v)

31 i++;

32 end while

33 end if

34 end while

IV. SUBGRAPHS PLACEMENT METHOD

This second approach is a two phase method. Instead of

assigning tasks one by one like the previous method, we

generate a subgraph of connected tasks which are then placed

on a node. The connected subgraph obtained is assigned to a

node depending on the affinity between the subgraph and the

nodes.

A. Description of the algorithm

The task with the lower number of neighbors is selected.

This task is used as the starting task. We defined a size for

the subgraph we want to generate.

Subgraphs are generated by performing a breadth first

traversal of the unassigned tasks, starting from a promising

task, until a certain total size (int terms of resouce occupation)

is reached. Empiric experimentation showed that choosing a

size of maximal remaining capacities for all clusters multiplied

by a factor of 1

2
gave the best results.

The breadth first strategy for graph traversal selects the

closest tasks from the initial task.

Once the subgraph has been built, the affinities between the

subgraph and all nodes are computed using the relation cited

in III-A. The subgraph is assigned to the node which has the

strongest affinity and enough space.

Name # tasks # nodes node capacity

grid12x12 144 4 40

grid23x23 529 16 40

grid46x46 2,116 64 40

grid100x100 10,000 256 40
TABLE I

GRID SHAPED TASK TOPOLOGIES

This process repeats until all tasks are assigned.

Algorithm 2 presents the algorithm in pseudo code.

Algorithm 2 Subgraph Placement method

1 /*
2 remCap(n) : remaining capacity for node n

3 G : The task graph

4 V : A subgraph of tasks

5 C : maximal remaining capacity

6 StNA : A |V|x|N| matrix which contains

7 all subgraph to nodes affinities.

8 v : candidate vertex

9 n : candidate node

10 A : affinity*/

11

12 v = TaskWithTheLowestDegree()

13 assignToNode(v,0)

14 while(Unassigned tasks left)

15 C = max remCap for all nodes.

16 V = BFT(G,C)

17 (A,n) = computeSubgraphToNodeAffinity(StNA, V)

18 assignToNode(V,n)

19 end while

V. EXPERIMENTAL RESULTS

A. Execution platform

The target system is a P.C based on the Intel Xeon E5/Core

i7 processor running at 2.0 GHz. As our algorithms are purely

sequential, only one CPU core is used.

B. Instances

Two kinds of task graph topologies were used. First, a set

of grid shaped task topologies, which correspond to dataflow

computational networks like matrix products. (Table I). The

other kind of task graph is generated out of logic gate

networks resulting in the design of microprocessors. These

configurations of task networks typically can be found in real

life complex dataflow applications (Table II).

The node layout is a square torus, hence the number of

nodes in all instances in a square value.

For each pair (t, t′) of tasks of the grid, the bandwidth

qtt′ is set to 1 if tasks t and t′ are adjacent in the task

grid, and 0 otherwise. For graphs generated out of logic gate

networks, the edge weights are the number of arcs between

the corresponding elements in the original multigraph.

For each pair of nodes (n, n′), the distance dnn′ is the

Manhattan distance between nodes n and n′.

In those experimentations, all instances are limited to one

resource and the resource occupation of every tasks in arbi-

trarily set to 1.
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Name # tasks # nodes node capacity

b12 1,065 36 40

b17 24,171 256 100

b18 114,561 400 300

b19 231,266 576 410
TABLE II

LOGIC GATE NETWORK TOPOLOGIES

Name # tasks
P&P GTWP

Sol. Val. run time Sol. Val. run time

grid12x12 144 37 0.02 s 41 2.3 ms

grid23x23 529 220 0.05 s 338 5.2 ms

grid46x46 2,116 2,500 2 s 2,306 0.17 s

grid100x100 10,000 45,613 240s 16,000 3 s
TABLE III

P&P. AND GTWP APPROACH WITH GRID SHAPED TASK TOPOLOGIES

Name
P&P GTWP

Sol. Val. run time Sol. Val. run time

b12 1,200 4.85 s 1,598 9.6 ms

b17 135,000 3,100 s 109,879 88 s

b18 832,538 40 h 18 min 395,624 2163 s

b19 - - - -
TABLE IV

P&P AND GTWP APPROACH WITH LOGIC GATE NETWORK TOPOLOGIES

Name
P&P Subgraph

Sol. Val. run time Sol. Val. run time

grid12x12 37 0 .02 µs 75 382 µs

grid23x23 320 0.05 s 338 2.46 ms

grid46x46 2,500 2 s 2,565 13 ms

grid100x100 45,613 240 s 18,790 0.33 s
TABLE V

P&P AND SUBGRAPH APPROACH WITH GRID SHAPED TASK TOPOLOGIES

Name
P&P Subgraph

Sol. Val. run time Sol. Val. run time

b12 1,188 4.85s 2,205 48.46 ms

b17 135,000 3,100s 155,396 3.89 s

b18 832,538 40 h 18 min 1,936,952 40.55 s

b19 - - 5,613,634 413.56 s
TABLE VI

P&P AND SUBGRAPH APPROACH WITH LOGIC GATE NETWORK

TOPOLOGIES

Name
GTWP Subgraph

Sol. Val. run time Sol. Val. run time

grid12x12 41 2.3 ms 75 382 µs

grid23x23 338 5.2 ms 338 2.46 ms

grid46x46 2,306 0.17 s 2,565 13 ms

grid100x100 16,000 3 s 18,790 0.33 s

b12 1,598 9.6 ms 2,205 48.46 ms

b17 109,879 88 s 155,396 3.89s

b18 395,624 2,163 s 1,936,952 40.55 s

b19 - - 5,613,634 413.56 s
TABLE VII

GTWP AND SUBGRAPH APPROACH WITH GRID SHAPED TASK

TOPOLOGIES AND LOGIC GATE NETWORK TOPOLOGIES

C. Computationnal results

We compare our methods with that of [14]. We denote this

method as Partition and Place (P&P).

All tables display the solution objective value and the

execution time of the methods we cited. The tables display

either the application of the algorithms on grids shaped task

topologies (Table III, IV) or on logic gate network topologies

(Table V, VI). Table VII shows the result on either the grid

shaped task topologies or the logic gate network topologies.

On Table III we can observe that for small instances,

the P&P algorithm provides better results than the GTWP

algorithm whereas that the last one is faster. However when

the number of tasks is higher than 2000, the GTWP begins to

provide better results and far better run times.

On Table IV, the GTWP algorithm seems to have the same

behaviour than cited above. The higher the number of tasks,

the more the solution quality of the GTWP method increases

compared to the solution quality of the P&P algorithm, with a

relative speedup of 67 for the b18 instance. One fact that calls

our attention is the fact that the GTWP algorithm works fine

either on logic gate network topologies or grids shaped task

topologies. However, the algorithm can not give any results in

a reasonable amout of time for instances of 200000 tasks.

Table V and Table VI shows the result of the Subgraph

algorithm. The runtimes are several orders of magnitude faster

than the P&P approach, while providing solutions whose

quality tends to get comparatively similar or better on the

largest instances.

The difference between our methods are illustrated in Table

VII which contains the grid shaped task topologies and the

logic gate network topologies. The GTWP method provides

better results than the subgraph method, while the subgraph

method runs faster than the GTWP method and scales easily

on very large instances.

The increase in terms of compared solution quality between

our methods and the P&P algorithm finds its explanation in

two different aspects. First, as the partitioning phase of P&P

does not take node distance into account, tasks are gathered

together with no knowledge of the destination processor topol-

ogy. Thus, choices made during this phase may undermine the

overall solution quality. In the opposite, the distance affinity

notion we use in the GTWP approach allows us to take

profit of the topology and avoid many bad choices. Second,

even not taking profit from the node distances, the subgraph

placement method has the advantage that it tries to avoid

placing singletons or very small subgraphs, while the last

10% (or perhaps more) of the tasks to be assigned in P&P

may probably not be efficiently assigned, leading to a drop in

quality.

VI. CONCLUSION

The goal of this study was to evaluate new heuristic methods

to tackle large instances of the DPN mapping problem which

emerge from the cyclo-static dataflow parallel programming

paradigm. Being able to provide good placements is crucial
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for execution performance of large-sized dataflow programs on

massively parallel architectures which are currently emerging.

We presented two heuristic methods based on progres-

sive construction, and compared the execution results with

those obtained from a solver coming from a previous work

and currently used in a cyclo-static dataflow programming

toolchain. Both methods run much faster than the one to

which it is compared to, by several orders of magnitude.

Both methods show good scalability, as they provide relatively

better solutions on large instances.

We are conscious that the solutions we obtained are of

relatively low quality. A study seems necessary to develop

an optimization method, possibly taking profit from locality

for parallel acceleration, using the methods we proposed for

the generation of initial solutions.
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