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Abstract. A complete method for classification of materials from im-
precise chemical data is proposed. The method consists in a clustering
method to find the suitable terms of the various linguistic variables and
in a decision tree induction to learn rules for an explainable classifica-
tion. Both methods are adaptations from classic methods to the case of
imprecise data. Finally, results on simulated data are presented in the
expectation of real data.

Keywords: Fuzzy partitioning, clustering, fuzzy decision tree, fuzzy
rules, imprecise data, explainable material classification

1 Introduction

Customs and ports security is a major issue in Europe. Indeed, many illegal or
dangerous substances such as drugs, weapons, explosives pass through customs.
Unfortunately, systematic container inspections are impossible in practice be-
cause of the cost and time that would be required. The volumes passing daily
through the major European ports such as Rotterdam, Antwerp or Hamburg are
indeed enormous: for example, 461.2 million tons of goods passed through the
port of Rotterdam in 2016.

In this paper, we use tagged neutrons to obtain the chemical composition of a
volume of the container. From this chemical composition, we want to determine
the materials present in the container. In order to bring more credibility to the
final software used by the customs officers, we will also provide a justification
for this classification. Fuzzy rules allow to avoid the “black box” effect since
customs officers have access to a real explanation of the classification made by
the software, and close to natural language : “the container may contain drug
(confidence degree : x) because the quantity of carbon is high, the quantity of
nitrogen is low and the quantity of oxygen is medium” for instance.

The proportions are obtained by different treatments that are beyond our
control. Thus, the input data are imprecise and are accompanied by a measure
of this inaccuracy. Fuzzy logic thus seems appropriate for the exploitation of
such data.

Given the time required and the authorizations needed to use a neutron
generator, we will have a small learning dataset, even if all classes of relevant
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materials will obviously be represented. The idea is therefore to use fuzzy de-
cision trees [4], which have been applied successfully on various classification
problems [1, 13]. The scarcity of training data and the intrinsic inaccuracy due
to the preprocessing preclude conventional statistical learning approaches such
as neural networks, SVM, etc. which also do not provide an explanation to users.

In this article, we adapt to imprecise data the classic two steps workflow
consisting in using clustering methods to create relevant terms from data and
then in building a decision tree to get fuzzy classification rules.

The paper is structured as follows: section 2 describes the context of the
application that motivates this work. Then, section 3 describes the method to
induce rules from imprecise data. Section 4 presents the results of the different
experiments we conducted. Finally, section 5 draws the conclusions of this paper.

2 Application context

2.1 Neutron inspection for container digging

The H2020 project C-BORD (effective Container inspection at BORDer control
points) aims at facilitating the digging of containers at borders by exploiting
different technologies: e-noses, X-rays, photo-fission and tagged neutrons. The
goal is to detect dangerous (explosives, nuclear materials, ...) or illicit (drugs,
contraband, ...) substances.

In this paper, we focus on the classification of materials with tagged neutron
inspection. As shown in figure 1a, a device produces a neutron beam to focus on
a certain volume (called voxel) of the container. The neutrons interact with the
nuclei of the atoms contained in the voxel, producing new particles that can be
detected by the matrix sensors which are positioned on the side of the container.
These particles are thus characteristic of the atoms encountered in the examined
voxel.

The processing of the raw data is not the topic of this article but we quickly
describe the principle in figure 1b. After different pretreatments, a global spec-
trum is obtained. In comparison with the characteristic spectra of each of the
studied atoms, this spectrum is decomposed into individual spectra by a Bayesian
process which makes it possible to deduce the chemical composition of the voxel,
expressed in percentages. This process is based on simulation and we can eas-
ily get the mean and the standard deviation for each proportion in order to
characterize the inaccuracy of the reconstruction. Figure 2 shows the result of
these treatments for an exposure to ceramics, and in which the inaccuracy is
represented by “box plots”.

Our work consists in exploiting this information in order to recognize the
materials contained in the voxel.

2.2 Previous work

The difficulty of recognizing materials from the chemical composition lies in
several points :
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Fig. 1: Neutron inspection workflow

Fig. 2: Chemical composition obtained from ceramics simulation

– Data is scarce because few acquisition campaigns can be conducted. That
also explains why few papers address the recognition of materials from their
chemical composition.

– The inaccuracy of the chemical composition makes the task difficult for con-
ventional statistical models

– The device is insensitive to hydrogen atoms.

For these reasons, previous works proposed visual analytics methods to rep-
resent the content of the voxels. In [2], the authors proposed a Voronoi diagram
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Fig. 3: Screenshots of the different visualizations introduced in [2]

to highlight the proximity, in terms of chemical composition, of the current voxel
with voxels previously inspected and whose content is known (see figure 3). Thus,
it is not a question of recognizing the materials present in the container but of
displaying visually close and known containers in order to deduce the contents.

This approach has the advantage of not requiring learning or parameteriza-
tion since it relies on the manual selection of a neighborhood. In figure 3, we can
also see two classical representations that have been used in conjunction with
this method. These are projections of the current voxel on two triangles: a trian-
gle called “materials triangle” indicates the proximity of the voxel with metals,
ceramics and organic materials, while a so-called “alert triangle” presents the
ratios between carbon, nitrogen and oxygen. This last triangle makes it possible
to distinguish between drugs and explosives. The main drawback of the visual
analytics approach is that the operator must be able to interpret the different
representations himself.

In practice, the mastering of these representations, particularly the Voronoi
graph, can be difficult for operators who are not familiar with these visualization
techniques. As part of the C-BORD project, we want to go further and propose
a list of materials, and an explanation of the decision. It is to overcome these
different difficulties that we want to use a fuzzy expert system.

3 Rule induction for classification

In order to effectively classify the materials while generating rules which are
understandable by a human, we chose to use a fuzzy decision tree inspired by
the one defined by C. Z. Janikow in [11]. Each node is split, by a feature which
was not used yet, into N child-nodes corresponding to the associated fuzzy terms.
The maximum depth of the tree is thus the number of available features if no
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pruning is performed. In our case, the features are the different chemical elements
the system can detect.

The rule induction follows a classic 2 steps workflow but the different al-
gorithms have been adapted to take into account data imprecision: firstly, the
method extracts from data the various terms that will be involved in the deci-
sion tree with clustering methods. Then, the tree is inducted. Finally, rules are
created and used in a fuzzy expert system to perform the classification of new
materials.

3.1 Fuzzy partition learning

To create rules which will provide the end-user with an explanation of the mate-
rial classification, we have to define terms which will enable the building of the
tree and will then appear in the premises of the rules. Nevertheless, crisp terms
would not represent the physical reality for which strict boundaries between
different compounds are irrelevant. That is why fuzzy terms are used. Except
for the extreme terms which are trapezoidal, we opted for classical triangular
overlapping terms that form a strong partition of the definition domains of the
stoichiometric percentage of each element, namely [0, 100]. Triangular-shaped
terms are used because more complex shapes, like trapezoidal or pentagonal
shapes, reduce the performance and even the accuracy in some cases.

The best methods to learn linguistic variables terms turned out to be cluster-
ing approaches. For example, using entropy-minimization-based methods gave
poorer results, due to the difficulty to minimize the fuzzy entropy (see 4) which
is not a convex function of the fuzzy sets parameters.

The basic idea is to cluster the data, feature by feature (chemical element),
as if they were one-dimensional data, and build fuzzy terms over the resulting
clusters. Once the clusters are built, the mode of a fuzzy triangle is simply set to
the mean of its corresponding cluster ; the spread is then induced by the other
terms’ modes through the constraint of the strong partition.

We tested existing algorithms and adapted them to the fuzzy case by the use
of dissimilarities between distributions able to take into account the whole distri-
bution of the data and not only an aggregated value. Distances or dissimilarities
have already been defined and used with imprecise or uncertain data. A distance
consisting in the sum of the center Euclidian distance and the spread Euclidian
distance of the imprecise data was used in [5] and [7] but this implies a loss
of the information provided by the whole distribution. Moreover, even though
it might have been replaced by the deviation distance, the spread distance does
not make a lot of sense in the case of normal distributions whose spreads are
theoretically infinite, and in our case imposed by the domain boundaries. Gullo
et al. [9] proposed an uncertain dissimilarity which corresponds, in the univari-
ate case, to compute the double integral of the Euclidian distance of each pair
((x, f1(x)), (x, f2(x))) of points of the two distributions. We defined a simpler
dissimilarity, in order to improve the performance.

The dissimilarity used is inspired by the Jaccard distance : d(A,B) = 1 −
|A∩B|
|A∪B| , where A and B are two sets. The sets are here replaced by the probability
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distributions representing two imprecise data, the cardinality by the integral of
the distribution, the intersection and union respectively by the min and max.
Thus, for two imprecise data x and y represented by the densities of probability

fx and fy respectively, the dissimilarity becomes : d(x, y) = 1−
∫ b
a
min(fx(t),fy(t))∫ b

a
max(fx(t),fy(t))

,

where a and b, elements of R ∪ {−∞,+∞}, are the bounds of the definition
domain of the data, 0 and 100 in our case. Since each distribution is built in
such a way that its integral on [0, 100] is equal to 1, we have :∫ b

a

max(fx(t), fy(t)) +

∫ b

a

min(fx(t), fy(t)) =

∫ b

a

fx(t) +

∫ b

a

fx(t) = 2

Thus, d(x, y) = 1 −
∫ b
a
min(fx(t),fy(t))

2−
∫ b
a
min(fx(t),fy(t))

. This formula is quite close and gives

similar results to the simpler one :

d(x, y) = 1−
∫ b

a

min(fx(t), fy(t)) (1)

Hence, we chose to use this second formula to define the dissimilarity between
two imprecise data1. Figure 4 shows the similarity between two distributions,
drawn in red.

Fig. 4: Similarity between two imprecise data

We also tried to use the T-norm product instead of the min in the definition
of the dissimilarity and it gave very similar results.

We then ran the k-medoids algorithm [12] using this dissimilarity instead of
the traditional Euclidian distance which would have only used the information
given by the aggregated value of each distribution - generally the mean.

3.2 Fuzzy decision tree induction

To build the tree while taking into account the imprecision of the data, we
represent these data by Gaussian probability distributions. Since the definition

1 This dissimilarity is actually a distance for continuous distributions but we will not
show it in this paper for reasons of space.
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domain of the data (proportion in each chemical element) is bounded ([0, 100]),
the Gaussian distributions are transformed so that their integral on this bounded
domain equals 1 and that the distribution thus keeps its probabilistic sense on
the interval [0, 100] beyond which the values, which are percentages, do not
have any sense. To do so, each distribution is divided by its integral on [0, 100] :

f(t) = norm(t) ∗
∫ +∞
−∞ norm∫ 100
0

norm
= norm(t)∫ 100

0
norm

where norm is the probability density

of the normal law.

We also tried a possibilistic approach, representing the imprecise data by
triangular possibilistic distributions but the accuracy was lower, that is why we
chose to focus on the probabilistic approach in this paper.

Once the fuzzy terms are learnt, we have to define how to compute the
membership degrees of the imprecise examples, modeled by distributions, to each
of these terms, which represent the nodes of the tree. We adapted integration
techniques for uncertain data and crisp terms ([6], [15]) to our imprecise data
and fuzzy terms - the membership degree is defined as the integral of the product
of the density of the imprecise distribution with the membership function of the
fuzzy term. If f is the density of the distribution representing the imprecision
associated with the proportion of an element e in an example x, and µv(t) the
membership degree of the value t to the fuzzy term v, the membership degree of
the imprecise example x to the fuzzy term v is :

µ̃v(x) =

∫ 100

0

f(t)µv(t)dt

For the sake of reading, we will write µv (without tilde) in the following to refer
to the membership degree of an imprecise example.

This integral, illustrated in figure 5 where the imprecision distribution is
dilated by a factor 10 for a better visibility, takes into account the whole contin-
uous spectrum of probable values for the proportion of e in x, and is basically
the weighted average of the membership degrees of these probable values to the
fuzzy term n.

Fig. 5: Integral of the product imprecision-fuzzy term
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Given the membership degree of an imprecise example x to the fuzzy terms
corresponding to each chemical element, we can define the membership degree
of x to each node of the tree. To do so, we chose the product as a T-norm,
because it gave better results than other T-norms, like the minimum. Hence, the
membership degree of an example x to a node n is the product of the membership
degrees of x to the fuzzy terms associated to n and to the ascendants of n. Thus,
we have the recursive definition :{

dn0
(x) = 1

dn(x) = dN (x)× µv(x)
(2)

where n0 is the root of the tree, N is n’s father node, v is the fuzzy term
associated to the node n and µv(x) is the membership degree of x to the fuzzy
term v.

To select the next feature to use, we use the fuzzy entropy introduced by
Peng et al. in [14].

We consider the “fuzzy frequency” of a class c in a node n :

frc/n =

∑
xi∈c dn(xi)∑
xi
dn(xi)

(3)

where {xi, i ∈ [|1, T |]} is the training set and the “membership frequency” of

the examples to the node n : frn =
∑

xi
dn(xi)∑

nj

∑
xi

dnj
(xi)

where {nj , j ∈ [|1, F |]} is

the set of the “siblings” nodes of n, including n.
The fuzzy entropy, according to an element e, used at a node N having the

children {nj , j ∈ [|1, F |]}, these nodes corresponding to each fuzzy term relative
to e, is then defined as :

E = −
∑
nj

frnj

∑
ck

frck/nj
log(frck/nj

) (4)

where {ck, k ∈ [|1,K|]} is the set of the classes of the problem.

When the tree is built, we create a rule for each of its leaves : the premise is
the conjunction of the fuzzy terms associated with the nodes leading from the
root to the leaf, and the consequence is the most representated class in the leaf.

3.3 Recognition of new samples

Once the tree has been constructed using the training data, the classification of
the testing data is quite simple. Given an imprecise example x, we compute the
membership degree of x to each leaf l of the tree, using the very same definition
we used for the training data (equations 2). For each class c, this membership
degree is multiplied by the fuzzy frequency frc/l of c conditionally to l (see
definition 3), using the same formula as in [3], frc/l being in fact the certainty
factor defined in [3]. Using the weighted voting method [10], these results are
then summed up for each class, over all the leaves, to obtain the confidence
degree conf(x ∈ c) of x ∈ c. The algorithm finally classifies x in the class c
maximizing conf(x ∈ c).
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4 Experiments

4.1 Data simulation

Since the physical experiments supposed to provide us with real data could not
be realized at the moment of the writing of this paper, we generated simulated
data. To do so, we used the theoretical stoichiometric percentages of each element
in each material (class) which provided us with reference values for each pair
(class, element). To create an example x of a class c, a value m is randomly
generated for each element e in an interval around the reference value of the
pair (c, e), whose span is proportional to the reference value, the proportionality
coefficient being called degree of imprecision in the following. The mean value
of the Gaussian representing the imprecise proportion of e in x is set to m.
A standard deviation is then randomly generated in an interval whose span is
proportional to the one of the interval used to generate the mean.

To generate the data, we used the chemical formulæ of seventeen explosives
and nine drugs, with a degree of imprecision of 15%. Since the real data will be
few due to the financial and temporal costs of the physical experiments, we chose
to generate only ten examples per class to create a data set. Then, a five-fold
cross-validation is performed on the set. The following results are averaged on
the tests of ten different data sets.

4.2 Comparison of fuzzy partitioning algorithms

One of the most influential parameters of the fuzzy partition in terms of accuracy
of the whole classification process is the number of fuzzy terms constituting the
partitions of each chemical ratio domain. Thus, we ran tests with k-medoids
algorithm using the previously defined dissimilarity (see 1) over the grid of all
the combinations of numbers of terms between 2 and 14, for elements C, N and O
only, imposing five fuzzy terms for the other elements. Indeed, C, N and O ratios
are the most discriminative features in our problem so we focused on them to run
quicker tests. The graphic 6 shows the dependence of the correct classification
rate of the tree on the numbers of fuzzy terms partitioning C, N and O chemical
ratio domains. We can easily see that the accuracy increases when the number
of fuzzy terms increases, until a certain threshold. For N and O, this threshold
is about 12, whereas it is surprisingly low for C - around 6. The best results are
actually obtained for number of terms between 5 and 7 for C, and between 11
and 14 for N and O - several of these combinations give the best classification
rates, between 84.5% and 85%.

We then tested the clustering algorithm called affinity propagation [8], us-
ing the similarity associated with the previously defined dissimilarity : s(x, y) =∫ b

a
min(fx(t), fy(t)). Affinity propagation does not take the number of clusters

(thus fuzzy terms) in parameter but a parameter called preference that increases
the number of clusters when it is high. Giving the same preference to the clus-
tering for the partitions of C, N and O ratios give worse results than the best
obtained with k-medoids. But in the light of k-medoids tests, we tried to give
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Fig. 6: Correct classification rate against number of fuzzy terms

smaller preference to C partition and greater for N and O partitions, and results
similar to the best ones of k-medoids were obtained (between 84% and 85%).

We can conclude that k-medoids algorithm is preferable for this problem
since it gives results as good as affinity propagation but the parameter to be
optimized - the list of the numbers of fuzzy terms - is discrete whereas affinity
propagation preference is continuous.

In order to improve the robustness of our method, it would have been inter-
esting to split the training set in two parts in order to learn the fuzzy terms from
different data from the ones used to build the tree. But since our data are very
few, we decided to learn the fuzzy terms and the tree from the whole training
set.

4.3 Results analysis

From the grid-based test over the combinations of numbers of fuzzy sets for C, N
and O, we determined the best combination in terms of accuracy : respectively 5,
14 and 12 terms for C, N and O. Figure 8 is a confusion matrix that summarizes
the results of the classification using k-medoids with this optimal combination
of numbers of fuzzy sets regarding C, N and O, and 5 fuzzy terms for the other
elements. We note that the algorithm classes quite correctly both the explosives
(seventeen first classes from the top in ordinate) and the drugs (six last classes).
This method does represent an improvement compared to the classic algorithms
which do not take the imprecision of the data into account. As we can see on
figure 7, the correct classification increases up to 14%, this difference being higher
for more imprecise simulated data.

We ran the method with the same numbers of fuzzy terms on a more complex
data set composed of 38 classes of drugs, explosives and benigns. The accuracy
obtained is 75% (see the confusion matrix on figure 9).
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Fig. 7: Gain obtained when taking the imprecision of the data into account

Fig. 8: Confusion matrix for drugs
and explosives

Fig. 9: Confusion matrix for drugs,
explosives and benigns

5 Conclusion

In this article, we introduced a workflow for explainable material recognition
from their chemical composition and based on both a decision tree induction
and linguistic variables learning. The method takes into account the imprecision
of data during the learning phase and the exploitation of the decision tree. It
performs better for high imprecision: the classification rate is up to 84% for a
classification into 26 classes.

We have several opportunities to enhance our method’s accuracy in fur-
ther work. We may improve our clustering technique taking the samples’ labels
into account. Using pruning techniques but also random forests could make the
method more accurate. We will also study more sophisticated techniques than
the sum we are using for aggregating the results of each leaf of the tree. As far
as the rules are concerned, we might generate simpler rules corresponding to
intern nodes of the tree. We shall also test the possibilistic approach with other
measures and methods more adapted to it.

At this stage of our work, the method has been evaluated on simulated data
while we are performing real data acquisition on pure elements, chemical prod-
ucts, drug and explosive simulants. This will be a first step since in real life
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container voxels, several materials will be present. We will then have to deal
with recognition of mixtures and not only mono-material samples.

Acknowledgment

This research has been funded by the project H2020 C-BORD. We warmly thank
S. Moretto, C. Fontana, F. Pino, A. Sardet, C. Carasco, B. Prot and V. Picaud
for their contributions before our work, for their availability and their expertise.

References

1. Akiyama, T., Inokuchi, H.: Application of fuzzy decision tree to analyze the atti-
tude of citizens for wellness city development. In: 2016 17th International Sympo-
sium on Advanced Intelligent Systems (2016)

2. Aupetit, M., Allano, L., Espagnon, I., Sannié, G.: Visual analytics to check marine
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