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Abstract

Maintaining the level of integrity of pipeline networks to guarantee at
least a reliable and safe service is a challenge operators of such networks
are facing everyday. TIGF is one of the French operator which man-
ages 5000km of pipelines in the south-west quarter of France. This paper
presents the work from our collaboration. It results in a decision-making
tool which automatically ranks the pipeline sections regarding the risk
of deterioration (damages and corrosion) and the gravity of the conse-
quences, indicating which pipeline sections should be excavated. The tool
relies on a fuzzy expert system which gathers 26 input variables, processes
more than 300 rules, classifies the risk of deterioration into 7 classes and
estimates the gravity. The rules are a formalization of human experts:
the fuzzy logic helps to tackle the vagueness of their knowledge and the
measurement inaccuracy of some of the 26 input variables. The method
has been tested on past excavations to assess its performances.
Keywords: Corrosion, pipeline networks, risk assessment, decision-making,
fuzzy expert system
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1 Introduction

Everywhere in the world, high-pressure pipelines are used to transport gaz from
the production and storage sites to the customers. The major challenge with
such networks of pipelines is to maintain their level of integrity to guarantee
at least a reliable and safe service. Regarding the conditions of the pipelines
(ground, buried, subsea etc.) and their environment (soil, coating etc.), different
kinds of corrosion may damage them [6, 8, 14]. The phenomenon is too complex
and too little understood to be modeled analytically, or only in specific context
(coating material, soil type and features, pipe age, ...).

However, different measures can help to identify which pipeline sections are
affected by a certain type of corrosion. We can distinguish several approaches
to exploit these measures. Bayesian techniques have been used to incorporate
uncertainty and measurement errors [4, 5, 14] and to either compute the prob-
abilities of corrosion occurrence and consequences or to assess the size of the
corrosion. Other papers introduce a probabilization of physical models like [9]
which predicts the corrosion remaining life. All those methods are also related
to Monte-Carlo simulation to overcome the lack of data and suffer from the
difficulty to choose the most proper distributions. Another way of taking the
uncertainty and inaccuracy into account is performed by fuzzy logic [11, 10, 15]:
various qualitative and quantitative factors are considered in assessing the se-
curity of pipeline network. The authors fuzzify classical models used in risk as-
sessment. We can also cite [1] in which the authors introduce an expert system
to suggest the adequate coating regarding several quantitative and qualitative
parameters. It ranks all the available materials and the most suitable one is
chosen. In a more anecdotal way, other papers apply Multi-Attribute Utility
Theory (MAUT) [3] and machine learning [7] to risk assessment.

In this article, we present an application of fuzzy expert system to tackle
both the recognition of the type of deterioration and the risk assessment. Fuzzy
expert systems can handle a cold start, i.e. the lack of data at the start of
the project, knowledge vagueness and measurement uncertainty. Moreover, as
corrosion depends on environmental conditions, the decision making tool can be
easily adapted from a region to another.

We focus on the network managed by our partner, TIGF, responsible of the
pipeline network in the south-west quarter of France. The whole network is
buried and TIGF is facing corrosion of different natures. Ground inspection
must help them to ensure a section of the network is affected by corrosion. The
difficulty resides in the fact that several criteria have to be merged to make the
decision. Our approach is based on knowledge modeling and testing on data.

The paper is structured as follows. The next section introduces the context
of corrosion of non-piggable pipelines. Then, section 3 motivates the choices
made for the decision support system (DSS) which has been built for TIGF
in order to assess risk and corrosion types. Section 4 describes the knowledge
modeling of human experts with fuzzy logic and introduces the user interface of
the system. The results of the application of the tool are presented in section
5. Finally, we draw a conclusion and some perspectives to this work.
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2 The case-study

Pipeline pigging is an effective way to accurately locate steel defects and metal
loss. Unfortunately, this method is inappropriate for some pipe configurations,
such as small diameter or multi-diameter pipes. Therefore, above ground in-
spection surveys are conducted to gather information about the whole network
condition. TIGF mainly uses the Direct Current Voltage Gradient (DCVG)
technique.

We explain in this paragraph the principle of the DCVG technique. If the
pipe is exposed at holidays in its protective coating, the current impressed by
the cathodic protection system will flow from the soil into the bare steel. It
results in voltage gradients in the soil surrounding the defect. The DCVG
method consists in pulsing the input current signal and detecting associated
voltage gradients in the soil above the pipeline, that betray the presence of a
soil-metal interface. To this end, an operator performs regular measures with
a milli-voltmeter of the voltage drop between two electrodes placed on the soil
surface at a distance that remains constant (about 1.5 meters). As the operator
approaches a coating defect, he observes an increasing pulsing signal. This signal
finally stabilizes then decreases as the defect is passed.

Each defect severity is characterized by its value of %IR, which is computed
from DCVG measures. Then, thanks to calibrated references, the size of the
steel surface exposed can be estimated.

DCVG surveys return alerts on the pipeline protective coating. However, it
does not inform about the cathodic protection state, nor does it imply a real
metal deterioration. To better assess the risk of a pipeline defect, TIGF gathers
additional data:

• the pipeline specific features (age, type of coating,. . .);

• the pipeline environment (presence of stray currents, soil resistivity, soil
bacteria,. . .);

• the history of the pipeline cathodic protection.

All of this information is carefully examined with multiple risks in mind. In
addition to mechanical attacks and high-voltage damages, a typology of 5 differ-
ent types of corrosion is considered (see figure 1): stray current corrosion, corro-
sion caused by alternating current (AC corrosion), corrosion under a disbonded
shielding coating, bacterial corrosion and insufficient cathodic protection. Fi-
nally, the gravity of the consequences that a severe metal defect would have is
a crucial parameter that is also carefully taken into consideration. A pivotal
factor is the pipeline proximity from any public location or infrastructure.

Conducting a systematic analysis of the thousands of coating defects that
are detected each year by DCVG surveys is a real challenge. Indeed, since the
excavation of a pipeline section is very expensive, only few anticipated defects
can be checked. Thus, it requires to apply a wide expertise in a consistent fash-
ion to a large variety of configurations. In this context, a decision support tool
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Figure 1: Example of different corrosion shapes and surfaces.

offers clear benefits.

3 Decision support system design

3.1 Technology choice

The proposed DSS assists human experts in identifying the most critical coating
defects for excavation. There are quite a lot of available measurements or infor-
mation (26 variables per coating defect): some of them are qualitative, others
are quantitative. There are a lot of individuals (several thousands of defects)
in the first data set but very few of them were labeled at the beginning of the
study (around 50 for one DCVG survey). There are 7 risks of metal deterio-
ration. This data set is unbalanced since one deterioration type represents two
thirds of actual defects and some are missing. Moreover, each defect should not
be considered independent from the others because a set of defects (even a lot
of them sometimes) can be detected at different locations of the same pipeline.
Their features are then correlated. Thus, it was not possible to learn the fea-
tures of the defects because of the small number of labeled individuals available
at the beginning of the study nor to apply clustering techniques because of
the difficulty to find a distance dealing with both quantitative and qualitative
features and separating pipeline sections with or without deterioration.

Despite these observations, the DSS should be usable immediately because
it is not conceivable to wait a series of yearly acquisition campaigns. Thus,
it has to exploit the expert background and experience at TIGF. It will allow
to formalize and to structure this knowledge on the one hand, and to treat all
the coating defects in an homogeneous and systematic way on the other hand.
Unfortunately, underground corrosion phenomena comprehension is much more
a matter of vague and uncertain knowledge and understanding than a precise
and definitive knowledge. Indeed, there are multiple factors implied in corrosion
formation and it is a local phenomenon because it depends on soil features.
Moreover, coating used for pipes as well as the type of protections changed over
the last 70 years because of acquired experience on coating ageing and corrosion
and improvements of materials.

Obviously, the DSS should improve the effectiveness of realized excavations
compared to the ones decided without it. Moreover, a higher success rate will
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allow TIGF to reduce the number of excavations following DCVG surveys.
Taking into account these different points, we proposed to use a fuzzy expert

system to model expert knowledge. It may be designed from expert interviews
before the availability of a data set. Fuzziness is helpful to deal with vagueness
and uncertainty. Two other features pleaded for a fuzzy expert system. Firstly,
the DSS is not a black box: its suggestions are justified thank to activated rules
and can be understood by the user. Secondly, if we found out that modeled
knowledge is imprecise or incorrect, it can be updated by only changing associ-
ated fuzzy rules. These ones are saved in external files and automatically loaded
at the next start of the DSS. Thus, expert knowledge can be refined with new
experiences and the virtuous circle of knowledge improvement is possible.

3.2 DSS life cycle

There are five steps in the design and exploitation of the DSS:

1. System design: the DSS is designed with human experts at TIGF.
Knowledge is gathered and modeled with fuzzy rules. A dedicated graphic
user interface (GUI) is specified and implemented. During this phase, we
decided to use some features that were available in the databases but not
extracted for this purpose yet. Then, the first annual DCVG survey with
actual values was formatted more or less automatically to be used by the
DSS.

2. Manual corrections: The DSS results are evaluated and analyzed with
the first data set. Some rule improvements are identified by comparing the
actual values of the defects to what was modeled by knowledge elicitation.
Then, more data are collected and formatted during this step. Several
annual DCVG surveys are automatically extracted. There are 330 labeled
metal defects in this second data set (including the first one). Knowledge
update is natural when using fuzzy rules, and is very easy by using the
GUI [12] of our fuzzy expert system. We followed two ways to discover
corrections to apply. Firstly, parameters used for defining fuzzy sets of
some variables are refined by a statistical analysis when sufficient data are
available. Secondly, this data set enables to question about the influence
of some parameters on some risks.

3. First exploitation: The DSS is used to evaluate the excavations to se-
lect for the next yearly DCVG survey. The software is used to navigate
between coating defects, visualize, analyze and understand possible risks.
Moreover, reports are automatically generated on most possible risks.

4. Automatic improvements: Data registered in case of swabbing of
pipelines at accessible location (in particular, at manholes) are automati-
cally extracted with their actual values. The latter are much more numer-
ous than the labeled ones obtained by DCVG survey (several thousands).
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Optimization of fuzzy rules is then possible with the second and the third
data sets for the most frequent observed risks. After validation by human
experts at TIGF, correction of fuzzy sets are made with the dedicated
GUI [12]. This step is not introduced in this article.

5. Full exploitation: After fine tuning of fuzzy rules by optimization, the
DSS is used to choose the defects to excavate for the next year. Efficiency
and usefulness of the DSS can be assessed by different considerations:
success rate of realized excavations, spent time to select defects to be
excavated, justification of decisions and evolution of repair costs. The
latter depend on the number of defects selected for excavation which will
decrease in several years if the success rate raises.

4 Knowledge modeling and visual tool

4.1 Human expert knowledge modeling

The DSS evaluates the criticity of each coating defect in a large variety of con-
figurations in a structured and systematic way. The work conducted to make
the knowledge of human experts fully explicit. First of all, we identified nine
indicators including seven risks of deterioration which must be distinguished.
Some works close to the pipe may simply damage it if there is no mechanical
protection. Another pipe damage may arise because of a close high-voltage line.
Moreover, five corrosion types are considered: stray current corrosion, corrosion
caused by alternating current, corrosion under a disbonded shielding coating,
bacterial corrosion and insufficient cathodic protection. The development of
each corrosion type is multi-factorial: it depends on intrinsic factors of the pipe
(age, type of coating, ...) and extrinsic factors given by environmental features
(presence of stray currents, soil resistivity, soil bacteria,...). The %IR based on
DCVG measure gives an information about the estimated surface of the coating
defect of the pipe. The estimated risks are considered with a factor that indi-
cates a higher risk of deterioration based on background (history of the pipeline)
and a factor that assesses the severity of a potential metal defect (its proximity
from any public location or infrastructure). All this information is available
in knowledge management systems at TIGF in different forms: either quanti-
tative, categorical or boolean. Only one part of this information was already
used to assess the risk of each coating defect. In some cases, only the simplest
raw information was used such as the presence of bacteria in the soil while a
concentration was known.

After having identified the different inputs and outputs of the DSS, we have
to understand the influence of each input on the outputs. During the interviews,
a lot of expressed knowledge was in the form “the higher the value of X, the
higher the risk of A” like in the rule “the higher the age of the pipe, the higher
the risk of the corrosion of type A”, or at the contrary the form “the lesser the
resistivity, the higher the risk of the corrosion of type A”. We could have used
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Figure 2: Fuzzy sets for risk level, in this case for alternating current corrosion

powerful and synthetic fuzzy rules like fuzzy gradual rules or those based on “all
the more” clauses [2] for instance. However, there were generally several factors
that influence each risk and we did not know which relation between the inputs
and the outputs should be chosen. Thus, we decided to adopt a grid structure
for modeling the input - output relations for each module of fuzzy rules. Indeed,
it is very easy to understand for the corrosion domain experts who were not used
to fuzzy logic. Moreover, it is simple to update a conclusion according to one (or
several) influencing parameter(s). However, we did not follow a strict flat grid
structure approach. When possible, intermediate variables were introduced in
order to synthesize pieces of information at intermediate level. The latter ones
are used into other modules of fuzzy rules thanks to chaining. This provides a
hierarchical structure of the fuzzy system [13] that makes it more concise and
understandable. It is used for instance for establishing a bacterial risk due to the
soil characteristics. This risk depends on 4 input variables of pipe environment.
Then, the bacterial risk is considered with the coating material to determine
the bacterial corrosion risk of the pipe.

Thus, we modeled each variable (either input or output) by a linguistic
variable and built fuzzy rules to make the expert knowledge more explicit. We
chose to model each risk of pipe deterioration with the same set of fuzzy sets (see
figure 2): the risks come from null to very high with 4 intermediate levels. The
risk suggested by the pipeline history is rated with the same levels. With the
Mamdani inference system, the numerical defuzzified value of each risk belongs
to [0, 100]. A boolean alert about the history is given by coupling the potential
corrosion risk with the one implied in the history of the pipe close to the coating
defect when known. Indeed, an old mechanical attack does not tell anything
on a possible corrosion due a bacteria for instance. Finally, the severity of the
consequences is evaluated with four fuzzy terms from low to critical.

The table 1 shows the risk level of one type of corrosion according to four in-
put variables for one specific coating. There are 24 rules for this example, which
is a minimum because we used only 2 terms for each parameter. It represents
a gradual influence of each parameter on the risk level. The worst case occurs
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Level of Diameter is S Diameter is S Diameter is L Diameter is L
risk & age is low & age is high & age is low & age is high

Resistivity is H Null Null Very low Low
& surface is S
Resistivity is L Null Very low Low Medium
& surface is S
Resistivity is H Very low Low Low Medium
& surface is M
Resistivity is L Very low Low Medium High
& surface is M
Resistivity is H Low Medium Medium High
& surface is L
Resistivity is L Low Medium High Very high
& surface is L

Table 1: Example of risk level determination of corrosion under a disbanded
shielding coating for pipeline with bituminous coating according to four input
variables. For Diameter: S = small, L = large; for Resistivity: L = low, H =
high; for surface: S = small, M = medium, L = large

when the diameter of the pipe is large, the pipe is old (more than 50 years old),
the resistivity is low and the estimated defect surface is large.

On the one hand, the number of possible items of qualitative variables is
given by the specifications of the database system. They are often described
by two or four terms, but sometimes by many more like in the case of the
coating type. We often had to use the same granularity to build the fuzzy
rules. Sometimes, we were able to group some items to build fuzzy sets, like
the one shown in figure 3 telling which coating type is sensitive to stray currents.

On the other hand, quantitative variables description is more flexible because
of their continuous domain. We often restrict their description to two or three
fuzzy sets due to the number of combinations to consider, like in the case of the
estimated defect surface (see figure 4). Indeed, the number of fuzzy rules grows
exponentially according to the number of inputs, and it becomes difficult to
tell if a parameter is more important than another for each corrosion risk. We
ended the modeling with a little more than 300 rules for assessing 9 indicators.

4.2 Visual tool for case assessment

A GUI (figure 5) has been designed for the end-users according to their spec-
ifications. It is dedicated to the analysis and priorization of DCVG defects.
It embeds the inference engine that applies fuzzy rules onto all DCVG defects
loaded for analysis. It offers a synthetic view of them with 9 visual indicators.
Seven of them stand for an assessed deterioration risk. The two last ones con-
sider an alert about the history of the pipe and its surroundings and the severity
level of the consequences of a potential pipeline failure. The list of DCVG de-
fects can be sorted by these scores so that the most critical cases stand out in
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Figure 3: Coating types that are sensitive to stray currents

Figure 4: Fuzzy sets defined for the estimated defect surface
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Figure 5: Dedicated user interface with a synthetic view of all the DCVG defects
(left part), and a detailed view of a particular defect with its parameter values
and the inferred corrosion risks (right part).

a straightforward manner. When a particular defect is selected, its parameter
values, the defuzzified values of each indicator and associated activated rules
are displayed in specific areas. It is worth mentioning that this feature greatly
simplifies feedback integration. Moreover, it improves DSS comprehension and
adoption.

5 Results

The DSS helps human experts at TIGF to identify and sort the most critical
coating defects obtained by a DCVG survey. Before having a field experience
return, the evaluation of the DSS results is based on the previous DCVG surveys.
Assuming that a threshold decision rule is applied on the higher risk of each
coating defect, DSS performance can be assessed like a boolean classification
method : either the decision of excavation is correct – that is to say that there
is a real metal deterioration of the pipe or its cathodic protection is insufficient
–, or the decision is incorrect. The different metrics are then the sensibility (or
recall) and the precision defined by the equations 1 and 2 using the notation of
the well known confusion matrix (see table 2).

Sensibility = TP/(TP + FP ) (1)

Precision = TP/(TP + FN) (2)
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System decision
Positive Negative

Actual value
Real defect True Positive (TP) False Negative (FN)
No defect False Positive (FP) True Negative (TN)

Table 2: Confusion matrix

hhhhhhhhhhhhMetrics
Threshold

T =0 T = 70 T = 89

Precision 20% 35% 73%
Sensibility 100% 55% 34%

Table 3: Results according to a threshold T

Applying a null threshold on the highest risk of each defect is the situation
of reference, before having the DSS. In that case, only 20% of excavations are
correctly realized (65 cases on 330 excavations). When we use a high threshold
(T = 70) on the risks estimated by the DSS, 35% of the excavated pipes would
have really been damaged. A little bit more than half of actual defects are
retrieved (36 on 65). With a higher threshold (T = 89%), the selection is
even more severe. The precision raises up to 73%, that is to say nearly three
excavations out of four would have been decided correctly. However, the rate of
actual defects retrieved is only of 34% (24 cases on 65). The goal of the DSS is
to help the end-user to better decide which pipe should be excavated. Thus, the
goal is to improve the precision of the realized excavations (more actual defects
for pipes that are excavated).

6 Conclusion

In this paper, we have presented a decision-making tool which has been designed
for TIGF, an operator of pipeline network. The goal is to help experts to
decide which pipeline section to excavate. The proposed solution relies on a
fuzzy expert system which takes the decision regarding 26 criteria and processes
more than 300 rules to assess the risk of 7 deterioration types, and two factors
indicating if there was an historical damage of the same type and the gravity
of the consequences of such a deterioration. The software gives the clues of the
decision with charts and the activated rule list, which allows human experts
to make the final decision from this explanation of the ranking. Moreover, the
software is able to automatically generates reports.

Fuzzy logic is used here to take into account the vagueness of the knowledge
of human experts, gathered by iterative interviews: the rules are close to natural
language thanks to the linguistic variables and the fuzzy sets avoid using crisp
thresholds which have low sense for an experience-based knowledge. Moreover,
the ground measures are performed by different workers with different tools and
thus come with measurement uncertainty which are easily handled with fuzzy
logic.

The results show an improvement of the decision thanks to the tool while it
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is only a formalization of the knowledge of experts at TIGF: up to 73% of the
decisions are accurate and reveal a real defect.

Contrary to other methods, this approach is adaptable to other pipeline
network operators: since it relies on a fuzzy expert system, the rule base can be
easily adapted to another region of the world if human experts are available to
share their knowledge.

The perspectives of this work consist in improving the tool to make it capable
of taking advantage of past results to parameterize the rule base and learn new
rules.
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