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Abstract—Automated manufacturing systems are increasingly
required to be flexible in order to support an increasing num-
ber of products and product variations, as well as shortening
product life cycles. However, even though many manufacturing
resources are multi-purpose, they are integrated in an automation
infrastructure that may require significant effort to adapt. In this
contribution, we show how new functionality can be deployed
on manufacturing resources at runtime. For this, we make
use of model verification for code analysis, Software-Defined
Networking (SDN) to establish new communication pathways for
collaboration, and a novel OPC UA-based scripting environment
that supports runtime changes to information models and under-
lying functionalities.

I. INTRODUCTION

The increasing number of product variants leads to multi-
purpose production resources which could be used for more
for different production scenarios [1]. However, much of
the flexibility on the level of individual resources is lost in
automated systems where the behavior and interaction between
resources is hard coded.

In this contribution, make use of flexible object-oriented
information models based on OPC UA to deploy new func-
tionality in manufacturing settings at runtime of the system.
In order to provide the required flexibility, we integrated
OPC UA with the Lua scripting language. The safety of the
deployed code artifacts is ensured by static code analysis.
Furthermore, we use Software-Defined Networking to establish
new communication pathways if the new functionality requires
assets on the shopfloor to interact.

This paper is structured as follows. In Section II, we discuss
the background of our work as well as related results from
recent years. We then introduce the flexible manufacturing use
case that motivated our work in Section III. The main body of
the paper then describes the architecture and implementation of
the verification and deployment infrastructure in Section IV and
Section V. The paper concludes with a summary in Section VI.

II. BACKGROUND AND RELATED WORK

A. Runtime Deployment of Functionality in Automation

Many software systems can change their behavior at runtime,
ranging from mere configuration to scripting, loading of shared
libraries, and finally more exotic approaches for Dynamic
Software Updating (DSU) [2]. In automation, the differences
between configuration, programming and scripting are often

blurry, e.g., with operators loading G-code for numerical-
control milling machines between part runs. The authors of [3]
give an overview of the use of downtimeless system evolution
of control applications based on IEC 61499. Vogel-Heuser et al.
[4] discuss the evolution of software in automated production
systems in general and touch upon runtime adaptation. In
this work we however only consider the addition of new
functionality, which avoids many problems that have to be
addressed otherwise [5].

B. Software and Service Verification

The evolution of infrastructures towards more agile soft-
wares where applications can be dynamically downloaded and
deployed raise major issues related to the correctness and
the safety of the newly deployed application as well as the
correctness and the safety of the orchestration of services
provided by applications [6]. Verification of software and
services addresses these issues.

In a black box verification approach, only interfaces are
visible and testable. In a white box approach, binaries or even
source code are also accessible. Bozkurt et al. [7] give an
overview on testing solutions in service-centric frameworks.
Some of them are based on formal verification, i.e. based on
model checking. Model-based test case generation has been
proposed for the integration of services based on orchestration
with BPEL [8], [9], [10]. A symbolic execution is also used.
A service is executed symbolically using a set of possible
input values for testing service composition using Web Service
Choregraphy Description Language [11] or BPEL processes
[12]. Model checking approaches were also used for BPEL
testing and transformation [13], for verifying timed properties
on service interoperabily [14], for verifying multibusiness
interactions [15] or for verification using Petri nets for testing
BPEL [16], [17].

C. Software Defined Networking

Software Defined Networking (SDN) aims at simplifying
and securing the creation of new communication pathways
via “programmable networks” [18]. In contrast to traditional
network management solutions, SDN differentiates between
the data-plane layer where network hardware is interacting,
and the control-plane layer used for management of software



defined networks that overlay the physical connectivity. So-
called south-bound protocols bridge the control- and data-plane.
SDN is commonly associated with the OpenFlow south-bound
protocol [19]. However, many vendors have developed custom
extensions and protocols in recent years.

In this work, we make use of the NEON SDN protocol devel-
oped at CEA LIST [20]. NEON enables the fast configuration
of new devices and services deployment within seconds in
initially unconfigured infrastructure contexts, while remaining
compatible with other configuration and management south-
bound protocols such as OpenFlow.

Note that SDN is different, albeit related, to autoconfiguration
of network connections and discovery mechansims. See for
example [21] for such applications in a manufacturing setting.

III. USE CASE SAFE AND FLEXIBLE HUMAN-MACHINE
INTERACTION

The use case considered in this work consists of a production
cell containing a robotic manipulator and a camera (see
Figure 1 on the left). The robotic manipulator, called Sybot,
was designed for human-machine interactions without safety
barriers. The Sybot has 2 main modes of operation: a learning
mode where it follows the lead of an operator to learn how
to perform the task. In this mode, the robot records all the
information about the trajectory that must be followed and the
actions that must be performed. In the second mode, the Sybot
repetitively reproduces the learned actions and trajectories.

Most importantly, the Sybot has to ensure human safety.
When the Sybot detects a contact collision while in the second
mode (automatic mode), it stops the current trajectory and
waits for directives from the human operator. However, this
safety guard may not be sufficient, e.g. when the robot uses a
sharp tool where a contact may be detected too late. Our goal
within this use case is to ensure additional safety properties
in the production cell by using the camera to create a safety
zone around the Sybot.

The Sybot can be quickly moved between cells and adapted
to a new task. This flexibility should not be lost by tightly
integrating the Sybot with the camera. Instead, we want the
possibility to connect the camera and the Sybot wirelessly
and to deploy the following functional behavior at runtime:
The camera streams a live video-feed to an algorithm that
was configured to detect humans in the defined safety area.
Whenever an intrusion is detected, the fail-safe of the Sybot is
tripped. Static code analysis and Software-Defined Networking
is used to ensure the functional correctness.

IV. SYSTEM ARCHITECTURE

The main components of the architecture are show in
Figure 1. In the following, we describe their use as well as
interaction patterns based on the use case scenario.

The scenario is described in RobotML (Robot Modeling
Language) [22], a Domain Specific Modelling Language
(DSML) from the robotics context. The OPC UA-based
orchestration initially is agnostic to any specific scenario until
the RobotML description of the production scenario is loaded.

Fig. 1. Systems architecture for the runtime deployment of functionality.
Dashed lines denote wireless connectivity based on the NEON SDN framework.
Blue arrows denote either communication via OPC UA or local inter-process
communication.

Fig. 2. The OPC UA interface of the newly loaded functionality. Also the
structure of the interface, such as object types and method types, are loaded
dynamically at runtime.

Furthermore, a description of possible new functionalities and
reconfigurations of the production cell are loaded using the
same description language. It also indicates the parts of critical
applications that need to be verified before their deployment.

The current scenario, as well as the loadable functionalities
are reflected in the OPC UA information model of the
integration server (see Figure 2). Note that many aspects
of an OPC UA information mode, such as object types and
method types, are not hard-coded but all generated from the
configuration that is supplied at runtime. When the deployment
or change of functionality is requested, the following steps are



performed:
1) Verify code-fragments that were marked as critical with

a static code analysis tool.
2) Establish eventually required communication path ways

between components via the SDN infrastructure.
3) Copy (and compile) the program source code on the

target device.
4) Adapt the information model in the Object-Memory

Server that some components use to exchange runtime
data.

5) Trigger the execution / integration of the new function-
ality on the target devices.

V. TECHNICAL IMPLEMENTATION

A. OPC UA Scripting Environment

The OPC Unified Architecture (OPC UA) [23] is an
industrial machine to machine communication protocol based
on a platform independent service-oriented architecture. The
development of complex technical solutions based on OPC UA
today often requires many iterations during development. In
order to support faster iterations, it is necessary to minimize
the friction induced by the integrating technology. In order
to do so in manufacturing environments, Fraunhofer IOSB
integrated an open source OPC UA SDK [24] written in C99
into the Lua programming language [25]. Given its nature, and
in reference to the infamous VBScript Excel Macros driving
many office-floor processes, the resulting scripting environment
has been named “uascript”. The idea behind this is to avoid
hard-coding behavior that is not part of a core stack. This
simplified development and allows easy loading of new scripted
functionality at runtime.

Lua is famed for being a very compact and easy to learn
language. It is notably used for scripting in C++-based game
engines with soft-realtime requirements. Furthermore, many
recent applications from embedded and Internet-of-Things
contexts chose Lua due to its speed and small memory footprint.
The integration of an OPC UA SDK with Lua brings the
following advantages:

• Easy access to native OPC UA data types: OPC UA
defines a type system to specify the data structures that
are serialized into binary messages. In uascript, UA data
types are represented in native C in the background. But
the integration provides automatic conversion of Lua data
and the standard syntax can be used for member-access
of structures and array-indexing. Furthermore, uascript
provides garbage-collection of the UA data types.

• Dynamic development and introspection: uascript can be
used as a shell for dynamic development and introspection
at runtime. This is especially useful for exploring the
design space of technical solutions and as a pedagogical
tool for teaching the UA standard since all UA messages
(being instances of structured UA data types) can be
directly introspected and edited.

• Embeddable: Not only can uascript be used as a standalone
scripting environment, it can also be embedded into

Fig. 3. Architecture of uascript-based OPC UA-enabled applications.

existing applications. As an example, Fraunhofer IOSB
integrated the uascript interpreter into the V-Rep virtual
robot experimentation platform [26]. In addition to the
usual Lua-scripts driving V-Rep simulations, Fraunhofer
IOSB is able to dynamically add UA servers and clients
to the simulation that handle the communication with
external components.

• Native speed: The underlying client and server are the
unmodified C99-implementations provided by open62541
library and run in a separate thread. Blocking synchroniza-
tions are used only for callbacks from the native library
back into the uascript environment. Examples for this are
methods in the UA information model implemented as
Lua functions or variables with an external data source
implemented in Lua.

In conclusion, uascript provides a highly flexible integration
platform that reduces the cognitive load and removes the usual
write/compile/deploy cycle by the integration of OPC UA
into a scripting language. See Figures 4 and 5 for some
examples. uascript also simplifies the loading of new scripted
code-fragments at runtime. For these advantages, it was used to
build the orchestration server. It can run on a regular computer,
as well as on mobile platforms and even on a low-end Raspberry
Pi computer.

Besides using OPC UA for machine-to-machine interaction,
a visual dashboard has been developed to show an overview
of the scenario and to allow operators to interact with the
system. The dashboard is based on an existing ProVis.Visu1

visualization system based on the C++ UA Toolkit by Unified
Automation.

B. Verification of the Camera Software

In this work, we assume that source code is available. Our
approach is also based on verification. The system is first
modeled as a composition of physical devices (e.g. robot

1http://www.iosb.fraunhofer.de/servlet/is/35793/



-- define a callback method
function hello_world(object_id, arg1)

return "Hello " .. tostring(arg1.value)
end

-- initialize the server with a port number
server = ua.Server(48480)

-- add a method node
string_arg = ua.types.Argument()
string_arg.dataType = ua.types.String.typeId
string_arg.valueRank = -1
input_args = { string_arg }
output_args = { string_arg }
attr = ua.types.MethodAttributes()
attr.displayName = ua.types.LocalizedText("", "Hello World")
attr.executable = true
browsename = ua.types.QualifiedName(1, "hello_world")
nodeid = ua.types.NodeId(1, "helloworld")
parent = ua.nodeIds.Objects
parent_reference = ua.nodeIds.HasComponent
server:addMethodNode(nodeid, parent, parent_reference,

browsename, attr, hello_world,
input_args, output_args)

server:run()

Fig. 4. OPC UA server defined in uascript with method-callback back into
the Lua-based scripting environment.

client = ua.Client()
client:connect("opc.tcp://127.0.0.1:4840")

cmr = ua.types.CallMethodRequest()
cmr.objectId = ua.nodeIds.Objects
cmr.methodId = ua.types.NodeId(1, "helloworld")
cmr.inputArguments = { ua.types.Variant("Peter") }
res = client:call({cmr})
print(res)

client:disconnect()

Fig. 5. Client in uascript calling the method in the server.

arm, camera, etc.) that provide functionalities which will be
embedded within services. Each critical function is related to
its source code. Such models will configure the service oriented
framework, that will embed the source code and deploy it as a
service that could be called and executed. The service oriented
framework integrates an analysis framework that checks the
correctness before allowing the deployment. Such operation
is performed offline and allow in one hand to extract the
application models and on the other hand to validate that the
source code is bug free.

The validation approach we adopt does not require manually
source code annotation. We validate code against generic prop-
erties such as such as absence of deadlock, assertion violation,
memory leaks, buffer overflow, null-pointer dereference, non-
termination. Code validation allows also to document the source
code by automatic generation of abstract views such as control
flow graphs or dependency graphs.

The human detection algorithm used in this scenario is
a naive threshold filter that discriminates each pixel of the
frame into black and white classes. This optimum threshold
is automatically calculated for each frame thanks to the Otsu
method that minimizes the intra-class variance after building
the image histogram. On top of this method, and because we
are dealing with a video stream, we take the mean threshold

Fig. 6. The Para-C plugin for the Frama-C static code analysis framework.

value between the current frame and the last frame to avoid
clipping effects. Then, a parallel section of code generates the
new black-or-white image using a fixed number of threads.
Finally, we calculate the percentage of black pixels in the
picture and we decide whether an object is detected or not by
comparing this percentage with a given threshold percentage.
This threshold is later called the detection threshold.

The detection threshold is set by the user and has to be tightly
adapted to the lightning properties of the scene and the expected
detection sensitivity. The intrusion will increase the number
of black pixels up to a given point after which the detection
threshold will be met. Of course, the used algorithm is not the
most performing one. Detection algorithms have been widely
studied in the literature and ready-to-use implementations are
available in proprietary and open source frameworks such
as OpenCV. For example there exist complex algorithms that
perform motion detection, tracking and 3-D scene reconstitution
with IR or multi-camera matching. However, we use our own
implementation of the Otsu filter for source code validation.
Our main objective is to have a fully automated verification.
This obviously excludes proprietary projects and impose certain
constraints on source code.

We used a Frama-C/Para-C tool, dedicated to multithreaded
source code verification. Frama-C [27] is a framework for
modular analysis of C programs. It is composed by a set of
interoperable program analyzers that perform static analysis,
deductive verification, and testing for safety and security critical.
At this step of development, Frama-C/Para-C requires regular
ANSI C code that excludes most - if not all - open source
image filter implementations relying on C++ libraries. Also,
some actual limitations of the Frama-C/Para-C plugin require a
tight management of parallelism (for example a static number
of POSIX threads and a clear declaration of thread creation and
destruction). We choose Frama-C/Para-C for two main reasons.
The first one is to implement a fully automated source code
verification on parallel code. Indeed, bugs due to parallelization
introduce behavioral problems but also can induce security
failures that can be exploited for cyber attacks [28].

Para-C was built on Frama-C layer (cf. Figure 6) and can
use each of plug-ins provided by this later. Frama-C does not
detect any parallelism. The first step performed by Para-C is
a semantic interpretation of the parallel API used within the
source code. Then information about the application parallelism
is generated. The para-C plugin is an ongoing project. It is
developed for two kinds of purpose. The first one is a source
code documentation purpose, where the parallel code is parsed,
then its software architecture is generated throughout different



graphs (i.e. thread control flow graph, data dependency graph
etc.). Para-C also calculates metrics that provide information
about the application such as the number of created threads, the
number of shared resources, atomic and parallel regions within
the source code. The second purpose of para-C is to validate
parallel software applications and to check whether they are
bug-free. It verifies some safety properties according to some
parallel patterns such as absence of deadlocks, atomicity or
race conditions.

The connection to OPC-UA was easy and Frama-C/Para-
C service was connected to be used from the OPC-UA
orchestration server (cf. Figure 1). It is considered as an internal
validation service that is automatically called before each new
application deployment. When bugs are detected, deployment
is not allowed, connection between devices does not occur
and the called service is not allowed to execute. Of course,
it is impossible in the current state of the state of the art to
make fully automated verification in different properties and
different kind of source code. Our experimentation have been
realized on our own simplified source code which allows to
automate the analysis. On a more complicated and realistic
source code, this task will be impossible. But having such
internal validation framework remains justifiable. The dedicated
validation framework within the OPC-UA orchestrator service
will unified the validation process and make it easier to assess.
It will also save and enhance the know-how by establishing a
tool based validation procedure. Some of validation procedures
can require manual annotations (for instance, specifying pre and
post conditions to make precise verification), at that moment
the Frama-C framework will help to build verification and
validation patterns that may be re-used on different source code.
Hence, having a unified and integrated platform is practical,
specially when validation costs are still consumes a large part
of development cost.

C. Software Defined Networks

The SDN architecture defines three interaction levels: the
infrastructure level, the SDN controller, and high-level services.
The infrastructure level comprises the physical communicating
devices that support data traffic generation and exchange. These
devices could be the robots, cameras, network switches and
routers in the factory. To support the SDN architecture, we
provide a SDN-software called NEON. NEON establishes and
maintains the communication with the SDN controller, collects
the network interfaces states and capabilities of all devices,
and is able to interpret and activate commands coming from
the SDN controller. The SDN controller is the link between
high-level applications and the infrastructure. Its role is to
collect all information from the architecture, to generate an
abstracted view of the system to high-level services and to
interpret high-level actions into concrete network actions to be
pushed to the infrastructure. The high-level services layers has
a direct access to the SDN controller through a Northbound
API. This API provides a wide range of output information on
different format (JSON-based REST API, binary, JSON-based
CLI). The output information could be used to monitor the

configuration of the network and traffic performance at near
to real time. High-level services could also push commands to
request a new configuration or advanced information such as
the average signal strength on a specific wireless link. It is also
possible for high-level services to push network actions directly
on infrastructure devices. Such actions are not interpreted by
the SDN controller and could target the realization of a specific
task related to the device function, i.e., execution of a high-level
method not related to network services. For the latter capability,
a plugin system allows to enhance the SDN controller and/or
the NEON software with new high-level functionalities.

D. Object Memory Server

Object Memories, as specified by the W3C Object Memory
Modeling Incubator Group [29], are data repositories represent-
ing physical objects in a digital environment, allowing them
to keep a history of their statuses, interactions and changes
over time. The Object Memory Server (OMS) [30] serves as
an access point to such memories, providing various interfaces,
such as a web frontend, an OPC UA server or a representational
state transfer (REST) interface. All access methods enable
different agents, be it humans, machines or other artifacts,
to manipulate memories utilizing a tractable memory block
system that is open to many different types of content, from
human-readable text over image formats to binary data. The
focus of both the OMS and the Object Memories themselves
lies on flexibility regarding formats, content and access.

In the context of the developed framework the OMS is used
on the orchestration layer to distribute runtime information to
support monitoring functions. In order to achieve this, memories
for all production cells are created automatically on start-up,
using the high-level RobotML description of the scenario. At
the beginning, these memories contain mostly information
relevant for the whole production environment, such as the
linked object’s identifier or network interface status. During
runtime they are updated continually with current events, thus
for example, when the camera detects an intrusion it is logged in
its memory where it can be accessed later for trouble-shooting
or information. Within the scenario, the OMS is reachable via
an OPC UA, as well as a RESTful interface.

VI. SUMMARY

In this paper, we show how recent results from static code
analysis and Software-Defined Networking, as well as the
ability to use flexible information models in automated systems
with OPC UA, can be leveraged to deploy new functionality
in manufacturing environments at runtime. We develop an
overall systems architecture and give details on the technical
implementation of its constituent components. The approach
is applied and validated in a manufacturing use case based on
a robot for close human-machine interaction and a camera for
surveillance of safety areas. These—initially unrelated—assets
are combined at runtime in order to increase the safety area
surrounding the robot.

In future work, we intend to integrate the results for
safe deployment of functionality at runtime in this paper



with the Plug & Produce paradigm. Then a description of the
skills of manufacturing assets can be leveraged to derive
executable automaton procedures that are combined in a
planning system to achieve the manufacturing goals at hand
[31]. That way, also topological changes in manufacturing
scenarios can be supported by intelligent software systems to
enable a more flexible use of companies’ manufacturing assets.
Furthermore, the description of the scenario and the newly
available functionality is currently encoded in RobotML. To
simplify the use in manufacturing-related environments, the
container format could be exchanged with AutomationML.
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