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Abstract—The purpose of this work is to validate, by com-
paring numerical and experimental results, the ability of the 
Westervelt equation to predict the behavior of ultrasound 
beams generated by phased-array transducers. To this end, the 
full Westervelt equation is solved numerically and the results 
obtained are compared with experimental measurements. The 
numerical implementation of the Westervelt equation is per-
formed using the explicit finite-difference time-domain method 
on a three-dimensional Cartesian grid. The validation of the 
developed numerical code is first carried out by using experi-
mental data obtained for two different focused circular trans-
ducers in the regimes of small-amplitude and finite-amplitude 
excitations. Then, the comparison of simulated and measured 
ultrasonic fields is extended to the case of a modified 32-ele-
ment array transducer. It is shown that the developed code is 
capable of correctly predicting the behavior of the main lobe 
and the grating lobes in the cases of zero and nonzero steer-
ing angles for both the fundamental and the second-harmonic 
components.

I. Introduction

Most simulations of nonlinear acoustic fields are based 
on the popular Khokhlov–Zabolotskaya–Kuznetsov 

(KZK) equation [1]–[3]. Much work has been done on the 
application of this equation; see, for example [4]–[19]. The 
parabolic approximation underlying the KZK equation 
restricts the domain of validity and the accuracy of this 
equation. The KZK equation is valid for directional sound 
sources at distances beyond a few source radii and in re-
gions close to the axis of the source (up to about 16° off 
the central propagation axis in the far field [5]). A detailed 
discussion of the domain of validity of the KZK equation 
for plane and focused sources can be found, for example, 
in [3]–[5]. The limitations of the KZK equation hamper its 
use in the field of modern medical ultrasound sources. The 
development of medical ultrasound transducers and novel 
imaging modalities, such as harmonic imaging, requires 
computational models that allow one to accurately predict 
three-dimensional nonlinear acoustic fields with a steered 
propagation axis varying over a wide range of angles. These 
requirements motivate interest in approaches that are free 
of the limitations of the parabolic approximation inherent 

in the KZK equation; see the discussion of this problem 
in [20]. One such approach is to use the Westervelt equa-
tion [21], which is derived from the full equations of fluid 
motion by keeping terms up to quadratic order [3]. Quite 
a few numerical simulations using the Westervelt equa-
tion have been conducted. Hallaj and Cleveland [22] used 
the finite-difference time-domain (FDTD) method to get a 
numerical solution of the Westervelt equation for a sound 
source having the form of a spherical cap (bowl) with azi-
muthal symmetry about the axis of the source. A discus-
sion of advantages of this method as applied to wave-prop-
agation problems can be found in [23]. It should be noted 
that numerical simulations in the time domain rather than 
in the frequency domain are highly desirable if the propa-
gation medium is dispersive and has frequency-dependent 
attenuation, as is the case with human tissues. A discus-
sion of numerical methods based on the frequency-domain 
representation of the Westervelt equation can be found in 
[24]. Hallaj and Cleveland [22] performed the numerical 
integration of the Westervelt equation on a polar cylindri-
cal grid, i.e., their computational scheme consisted of two 
spatial dimensions, r and z. Karamalis et al. [25] also used 
the FDTD method for the numerical implementation of 
the Westervelt equation on a 2-D spatial grid. They made 
simulations of ultrasound wave propagation and the sub-
sequent generation of 2-D ultrasound images showing a fe-
tus and anechoic regions embedded in a highly scattering 
medium. It should be noted that neither [22] nor [25] com-
pared numerical results with experimental measurements. 
2-D FDTD computational schemes were also applied in 
[26] and [27]. In [26], Huang et al. used the Westervelt 
equation to calculate the pressure field generated by a 
single-element, spherically focused transducer. This field 
was then used to model the process of ultrasound heating 
in tissues with vascular structure. Numerical predictions 
were validated by a comparison with in vitro experiments 
employing nonuniform flow-through tissue phantoms. In 
[27], Purrington and Norton used the Westervelt equa-
tion to model nonlinear ultrasound propagation in a lay-
ered medium simulating mammalian tissue. The purpose 
of their study was to compare results that are obtained 
when the tissue is described as a thermoviscous fluid with 
those when the tissue is described as a dispersive medium 
with frequency-dependent attenuation and phase velocity. 
No comparison with experiments was made in their study.

Examples of three-dimensional implementations of the 
Westervelt equation can be found in [28]–[30]. In [28], 
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Connor and Hynynen used numerical solutions of the 
Westervelt equation to study the role of thermal lensing 
effects in high-intensity focused ultrasound treatment. 
Their computational scheme is an extension of the axi-
symmetric scheme by Hallaj et al. [31], which was realized 
on a polar cylindrical grid, to a fully 3-D cylindrical mesh 
(r, θ, z). It should be mentioned that their simulations do 
not include configurations with nonzero steering angles 
and have not been validated experimentally. Pinton et al. 
[29] performed simulations of nonlinear wave propagation 
in a heterogeneous attenuating medium. They demon-
strated that the FDTD method could accurately represent 
nonlinear ultrasonic propagation from a diagnostic trans-
ducer and that it could simulate heterogeneities in speed 
of sound, attenuation, nonlinearity, and density. Their nu-
merical solutions were verified with water tank measure-
ments of a commercial diagnostic ultrasound transducer 
and good agreement between the simulated and measured 
results was found with respect to the position and ampli-
tude of the main lobe and side lobes for both the funda-
mental and harmonic components of the acoustic field. 
However, their investigations did not consider beams with 
nonzero steering angles and situations in which grating 
lobes were generated. Huijssen and Verweij [30] applied an 
approach different from the FDTD method. It is based on 
the iterative solution of the lossless Westervelt equation in 
which the nonlinear term is treated as a contrast source. 
The iterative scheme involves the repetitive solution of 
the linear wave equation, where the spatiotemporal con-
volution of Green’s function with the nonlinear contrast 
source is calculated in each iteration. It is demonstrated 
by numerical examples that the proposed method makes 
it possible to calculate effectively the nonlinear acoustic 
field generated by phased-array transducers with a steered 
propagation axis. However, the simulations presented in 
[30] do not include situations in which grating lobes are 
generated, and are not subjected to experimental valida-
tion.

The purpose of our work is to fill in the gaps in the 
preceding investigations. To this end, first, we carry out 
an FDTD implementation of the full (including the dis-
sipation term) Westervelt equation on a 3-D Cartesian 
grid, which allows one to model transducers of any con-
figuration and any spatial variants of wave propagation. 
Second, we present simulations for both focused circular 
and steered phased-array transducers. Third, for phased-
array transducers, we perform simulations for both zero 
and nonzero steering angles under conditions in which the 
generation of grating lobes is observed, the computational 
domain being far beyond the limits of validity of the KZK 
equation. Finally, all our simulations are validated by a 
comparison with experimental measurements made for the 
fundamental and the second-harmonic components of the 
ultrasound field.

The finite-difference formulation used in our simula-
tions is described in Section II. The results of the simu-
lations and their comparison with experiments are pre-

sented in Section III. Concluding remarks are provided in 
Section IV.

II. Numerical Model

The Westervelt equation is taken in the following 
form [3]:
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where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplace op-
erator, p is the sound pressure, c is the sound speed, t is 
time, δ is the acoustic diffusivity, ρ is the fluid density, and 
β = 1 + B/2A is the coefficient of nonlinearity, with B/A 
being the parameter of nonlinearity of the fluid. The first 
two terms in (1) describe linear lossless wave propagation. 
The third term describes loss resulting from the viscos-
ity and the heat conduction of the fluid. The fourth term 
describes nonlinear distortion of the propagating wave 
caused by finite-amplitude effects.

The numerical implementation of (1) was performed 
using the explicit FDTD method on a 3-dimensional Car-
tesian grid. The terms of (1) were approximated by the 
following finite-difference equations [32]:

	
∂
∂
≈
∆

− ++ −
2

2 2
1 11

2
p
t t

p p pi j k
n

i j k
n

i j k
n

( )
( ),, , , , , , 	 (2)

	

∂
∂

≈
∆

− + + −+ − +

2

2 2 1 1 2
1

12
30 16

p
x x

p p p pi j k
n

i j k
n

i j k
n

i j( )
[ ( ), , , , , , , ,kk

n

i j k
np − −2, , ],

			

		  (3)

	

∂
∂

≈
∆

− + + −+ − +

2

2 2 1 1 2
1

12
30 16

p
y y

p p p pi j k
n

i j k
n

i j k
n

i j( )
[ ( ), , , , , , , ,kk

n

i j k
np − −, , ],2

			

		  (4)

	

∂
∂
≈

∆
− + + −+ − +

2

2 2 1 1
1

12
30 16

p
z z

p p p pi j k
n

i j k
n

i j k
n

i j k( )
[ ( ), , , , , , , , 22

2

n

i j k
np − −, , ],

			

		  (5)

	

∂
∂
≈
∆

− + −− − −
3

3 3
1 21

2
5 18 24 14

p
t t

p p p pi j k
n

i j k
n

i j k
n

i j k
n

( )
( , , , , , , , ,

33

43 + −pi j kn, , ),

	 (6)

	

∂
∂

=
∂
∂





 +

∂
∂

≈
∆

− −

2 2

2

2 2

2

2

2 2

2

p
t

p
t p

p
t

t
p pi j k
n

i j k
n

( )
[( , , , ,

11 2 1 12) ( )]., , , , , , , ,+ − ++ −p p p pi j k
n

i j k
n

i j k
n

i j k
n

	

		  (7)

Here, the indices i, j, and k denote the spatial dimensions 
x, y, and z, respectively, n stands for the temporal dimen-
sion, ∆x, ∆y, and ∆z are the spatial discretization steps, 
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and ∆t is the temporal discretization step. It should be 
mentioned that the finite-difference formulation given by 
(2)–(7) is of second-order accuracy in time and of forth-
order accuracy in space. Such schemes have demonstrated 
that they are able to provide sufficiently accurate numeri-
cal results [22], [29], [33].

To model the input signal from a focused circular trans-
ducer, we apply the planar pressure source approximation 
[34], according to which the pressure produced by a trans-
ducer with radius a and focal length d on the plane at z 
= 0 is calculated as in (8), see above, where p0 is the peak 
pressure amplitude, F(t) is a given function of time (e.g., a 
Gaussian pulse) that has a maximum magnitude of unity, 
r is the distance from the center of the transducer, and α 
is the aperture angle.

The directivity of a linear array transducer with N 
emitting elements is modeled using focusing time delays 
for its elements. The propagation time during which the 
signal from the mth element reaches a given focal point is 
calculated as follows [35]:
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where d is the focal length, αs is the steering angle, px is 
the pitch, and m = 1, 2, …, N. The focusing delay for the 
mth element is then defined as Δtm = tmax – tm, where 
tmax is a maximum of tm. Note that positive values of αs in 
(9) are measured from the central axis z of the array trans-
ducer toward the positive direction of the x-axis, along 
which the emitting elements are assumed to be arranged, 
so that for αs > 0, tmax = t1. The directivity of an array 
transducer with a different geometry can be modeled in a 
similar way, projecting the emitting elements of the trans-
ducer onto the plane z = 0 and introducing appropriate 
focusing delays.

III. Simulations and Experiments

A. Circular Transducer

The validation of the developed numerical code was 
first carried out for the case of a focused circular trans-
ducer. The results of comparison of measured and simu-
lated acoustic fields are presented in Figs. 1 and 2. Fig. 
1 exemplifies the case of small-amplitude (linear) excita-
tion. The sound source used in the experiment is a custom 
transducer with the piezoelectric ceramic from Meggitt 

(Kvistgaard, Denmark). The radius of the transducer is 
a = 23.5 mm and the focal length is d = 48.6 mm. A 
10-cycle Gaussian pulse, centered at 1 MHz, was gener-
ated using Matlab (The MathWorks Inc., Natick, MA) 
and then transmitted through a GPIB port (National In-
struments Corp., Austin, TX) to an arbitrary function 
generator (33220A, Agilent Technologies Inc., Palo Alto, 
CA). The signal was then amplified using a power ampli-
fier (150A100B, Amplifier Research, Souderton, PA) and 
transmitted to the transducer mounted in a water bath. 
The on-source pressure amplitude p0 was estimated by 
fitting the measured axial pressure profile with that cal-
culated by means of Field II, software that is considered a 
standard in the modeling of linear wave propagation [36]. 
As a result, p0 was found to be 5 kPa. The transmitted sig-
nals were measured at different distances in the ultrasonic 
field using a calibrated needle hydrophone (0.075 mm, 
Precision Acoustics Ltd., Dorchester, UK) mounted on a 
XYZ positioning system (TriOptics GmbH, Wedel, Ger-
many). The received signals were displayed on a digital 
oscilloscope (Tektronix, Beaverton, OR) and transferred 
to a personal computer through a GPIB port. The axial 
pressure profile was measured with the spatial step size 
1 mm ± 0.005 mm, and the lateral pressure profile was 
measured with the spatial step size 0.5 mm ± 0.005 mm. 
The accuracy of measurement of signal amplitudes was 
13%. This value corresponds to the hydrophone calibra-
tion error specified in the manufacturer’s datasheet.

The parameters used in the simulations were: c = 
1480 m/s, δ = 4.5 × 10−6 m2/s, ρ = 1000 kg/m3, and β 
= 3.5. These values correspond to water. Fig. 1(a) shows 
the measured (circles) and the simulated (solid line) axial 
pressure profiles. Fig. 1(b) shows the measured and the 
simulated lateral pressure profiles in the focal plane. The 
axial distance z is normalized by the focal length d, and 
the lateral distance x is normalized by the transducer ra-
dius a. The pressure is normalized by the on-source pres-
sure amplitude p0. The computational domain spanned 
an area with −53.7 mm ≤ x, y ≤ 53.7 mm and 0 ≤ z ≤ 
zmax = 77.8 mm. The simulation was performed with the 
following discretization steps: ∆t = 0.01/f = 10−8 s, ∆x 
= ∆y = 0.2λ = 0.296 mm, and ∆z = 0.1λ = 0.148 mm, 
where f is the driving frequency and λ = c/f is the sound 
wavelength. As reported in studies on the numerical in-
tegration of the Westervelt equation (see, for example, 
[24] and [30]), the maximum size of the temporal step is 
usually estimated by the Nyquist rate: Δt = 1/(2fmax), 
where fmax is the frequency of the highest harmonic to be 
tracked. The size of the spatial steps is usually set to be 10 
to 20 steps per wavelength. In each specific case, however, 
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the choice of the step sizes is determined by the specific 
conditions of a simulated situation and is based on the 
tradeoff between accuracy and computational effort. We 
used the same approach, i.e., the choice of the aforemen-
tioned step sizes was based on an attempt to get satisfac-
tory agreement with experiments at a minimal possible 
computation time. The same rule was used when choosing 
the discretization step sizes in simulations described later. 
The number of time steps was set to be equal to Nts = 
(Tpro + Tsig + Tdel)/∆t, where Tpro is the time during 
which sound propagates from z = 0 to zmax, Tsig is the du-
ration of the driving signal, and Tdel is the delay between 
the signals that are emitted from the center of the trans-
ducer and from the edge of the transducer. As one can 
see in Fig. 1, the simulated curves and the experimental 
data are in good agreement and the main characteristics 
of the measured pressure profiles are well predicted by the 
numerical results. To quantify the difference between the 
experimental measurements and the simulations, we cal-
culated the L2 norm error [24], which is defined as
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where piexp and pisim are experimental and simulated val-
ues, respectively. For the curves in Figs. 1(a) and 1(b), the 
L2 norm errors were found to be ε = 0.14 and 0.06, respec-
tively. It should be noted that the experimental data in 
Fig. 1(a) do not demonstrate minima in the prefocal re-
gion which are present on the simulated curve. This is 
explained by the influence of noise, which was substantial 
because a weak signal was used to get the regime of linear 
wave propagation.

The case of finite-amplitude (nonlinear) excitation is 
exemplified in Fig. 2. The sound source is a piezoelectric 
transducer (Sofranel, Sartrouville, France) with radius a 
= 13.4 mm and focal length d = 57 mm. The experimen-
tal procedure was similar to that described previously. 
The center frequency and the on-source pressure ampli-
tude were set to be 2.25 MHz and 54 kPa, respectively. To 
estimate the value of the on-source pressure amplitude, 
the measured signal was filtered at the fundamental fre-
quency and then the axial pressure profile of this filtered 
signal was fitted with that calculated by Field II [36]. 
Field II is known to be a program for the modeling of 
linear wave propagation. Therefore, it should be empha-
sized that its use in the aforementioned operation is pos-
sible because it is applied to the linearized signal involving 
the fundamental component alone. The data presented in 
Fig. 2 show the axial pressure profiles for the fundamental 
and the second-harmonic components. The simulation was 
performed in an area with −27.6 mm ≤ x, y  ≤ 27.6 mm 
and 0 ≤ z ≤ 85.5 mm. The discretization steps were set 
to ∆t = 0.01/f = 0.44444 × 10−8 s, ∆x = ∆y = 0.2λ = 
0.13156 mm, and ∆z = 0.04λ = 0.02631 mm. The number 
of time steps Nts was calculated by the same equation as 
used in Fig. 1. The experimental and theoretical curves for 
the fundamental component were obtained by filtering in 
the range from 1.5 to 3 MHz (Matlab, Butterworth filter, 
order 3). Similarly, the second harmonic was extracted 
using a band-pass filter in the range from 3.5 to 5.5 MHz. 

Fig. 1. A comparison of the simulated (solid lines) and measured (circles) pressure profiles for a circular focused transducer (a = 23.5 mm, d = 
48.6 mm) at a center frequency of 1 MHz and the on-source pressure amplitude p0 = 5 kPa: (a) axial profile and (b) lateral profile in the focal plane.

Fig. 2. A comparison of the simulated (solid lines) and measured (circles) 
axial profiles for the fundamental and the second-harmonic components. 
The sound source is a circular focused transducer (a = 13.4 mm, d = 
57 mm) excited at 2.25 MHz and p0 = 54 kPa.
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As one can see, the behavior of the second harmonic of 
the pressure filed is well predicted by the numerical cal-
culation. The L2 norm errors for the fundamental and the 
second harmonic are ε = 0.08 and 0.12, respectively. It 
should be noted that the simulation of the nonlinear case 
requires a smaller step size in the z direction. To repre-
sent the second harmonic correctly, the step size should 
provide about 10 samples per spatial wavelength that cor-
responds to the second harmonic frequency. This observa-
tion agrees with the comment made in [30], namely that 
the fine discretization is the main issue of finite-difference 
methods, which necessitates a great computational effort 
in such cases as the simulation of the three-dimensional 
nonlinear wave propagation. Discussion of this problem as 
applied to the KZK equation can be found in [37].

B. Phased-Array Transducer

Comparisons of experimental and numerical results ob-
tained for a phased array transducer are presented in Figs. 
3–6. The experiments were performed using a 128-element 
PZT linear-array probe (Vermon, Tours, France) with a 
pitch of 305 µm and an elevation of 7.12 mm. The probe 
was centered at 4 MHz, with a fractional bandwidth of 
60% at −3 dB. In our experiments, however, the probe 
was not excited at its center frequency. As an excitation 
signal, a 20-cycle Gaussian pulse with a center frequency 
of 2.5 MHz was used. This frequency was chosen so that 
both the fundamental and second harmonic fall within the 
passband of the transducer. The pulse was generated using 
Matlab and then transmitted to a 128-channel fully pro-
grammable ultrasound system (WaveMaster, M2M, Les 
Ulis, France) equipped with analog transmitters. To verify 
theoretical predictions, the probe was adapted to gener-
ate grating lobes. Hence, only 1 of 4 elements was driv-
en, so the probe functioned as a 32-element linear,array 
transducer. The transmit focal law was calculated by the 

program package CIVA (CEA, Gif-sur-Yvette, France) to 
obtain a focal length of 40 mm. The propagating signals 
received from the hydrophone were displayed on a digi-
tal oscilloscope and then transferred to Matlab for post-
processing (signal filtering). During every measurement, 
to decrease the noise level, 16 consecutive signals were 
averaged. The axial pressure profiles were measured with 
the spatial step size 0.5 mm ± 0.005 mm, and the lateral 
pressure profiles were measured with the spatial step size 
0.25 mm ± 0.005 mm.

Figs. 3–5 illustrate the case of a zero steering angle, 
where the sound beam propagates along the central axis 
of the transducer. The computation domain had the fol-
lowing limits: −39 mm ≤ x ≤ 39 mm, −6 mm ≤ y ≤ 
6 mm, and 0 mm ≤ z ≤ 60.3 mm. The discretization steps 
were set to ∆t = 0.01/f = 0.4 × 10−8 s, ∆x = 0.23λ = 
0.13616 mm, ∆y = 0.25λ = 0.148 mm, and ∆z = 0.05λ 
= 0.0296 mm. The number of time steps was calculated 
as Nts = (Tpro + Tsig + Δtmax)/∆t, where Δtmax is the 
maximum focusing delay given by (9). Fig. 3 shows the 
axial pressure profiles for the fundamental and the sec-

Fig. 3. Case of a 32-element array transducer. A comparison of the simu-
lated (solid lines) and measured (circles) axial profiles for the fundamen-
tal and the second-harmonic components. The focal length is 40 mm and 
the steering angle is 0°. The excitation is a 20-cycle Gaussian pulse with 
a center frequency of 2.5 MHz. The simulated curves were obtained at 
the on-source pressure amplitude 340 kPa and the pitch 1262 µm.

Fig. 4. Lateral profile in the focal plane for the same case as in Fig. 3: (a) 
fundamental component and (b) second-harmonic component. The solid 
lines show the simulated curves and the circles indicate the experimental 
measurements.
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ond-harmonic components, which were obtained using a 
band-pass filter (Matlab, Butterworth filter, order 3) in 
the ranges from 1.75 to 3.25 MHz and from 4 to 6 MHz, 
respectively. The L2 norm errors for the fundamental and 
the second harmonic are ε = 0.09 and 0.2, respectively. 
Fig. 4 shows the lateral pressure profiles in the focal plane 
for the fundamental and the second-harmonic components 
for the same case as in Fig. 3. The L2 norm error for the 
data in Fig. 4(a) is 0.15. The presence of strong noise in 
Fig. 4(b) interferes with an adequate evaluation of the L2 
norm error. The side peaks in Fig. 4 are grating lobes. 
The value of the pitch was intentionally set to be large 
enough to check whether the developed code is capable 
of capturing the grating lobe generation. In the case un-
der consideration, the location of the grating lobes is ex-
pected, according to the equation of grating lobes [38], 
to be at about 28° (21 mm) from the central propagation 
axis. Note that the grating lobes are located far outside 
the 16° validity region of the KZK equation. In Fig. 5, 
the measured and simulated waveforms at the focal point 
and spectra corresponding to these waveforms are pre-
sented. As one can see, Figs. 3–5 demonstrate satisfactory 
agreement between the experimental and numerical re-

sults. The position and the form of the main lobe and the 
grating lobes are well predicted for both the fundamental 
and the second-harmonic components. There is a differ-
ence in the peak amplitude of the second harmonic. This 
disagreement is especially visible in Fig. 3. One possible 
explanation is as follows. Fig. 4(b) reveals that the central 
peak of the second harmonic is very narrow in the lateral 
direction, and hence even a very small deviation from the 
central axis in the process of measurement can result in 
understating the peak amplitude. Such a deviation can be 
caused by accumulating errors in the experimental spa-
tial step size as the lateral distance is measured from the 
maximum negative value of x.

Fig. 6 shows the measured and simulated lateral pres-
sure profiles in the case in which the steering angle is 
20°. The dimensions of the computation domain were 
−48.7 mm ≤ x ≤ 48.7 mm, −6 mm ≤ x ≤ 6 mm, and 
0 mm ≤ x ≤ 40.5 mm. The discretization steps were set to 
∆t = 0.01/f = 0.4 × 10−8 s, ∆x = 0.23λ = 0.13616 mm, 
∆y = 0.25λ = 0.148 mm, and ∆z = 0.06λ = 0.03552 mm. 

Fig. 5. (a) Simulated and measured waveforms at the focal point for the 
case shown in Fig. 3. (b) Spectra corresponding to the waveforms shown 
in Fig. 5(a). The solid lines show the simulated curves and the circles 
indicate the experimental measurements.

Fig. 6. Case of a 32-element array transducer. A comparison of the simu-
lated (solid lines) and measured (circles) lateral profiles at the steering 
angle equal to 20°: (a) fundamental component and (b) second-harmonic 
component. The on-source pressure amplitude is 400 kPa. The other pa-
rameters are as in Fig. 3. The profiles were obtained at a distance from 
the transducer equal to the focal length (40 mm).
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The number of time steps was determined in the same 
way as in the case of zero steering angle. The pressure 
profiles were obtained at a distance from the transducer 
equal to the focal length (40 mm). In this case, the posi-
tion of the main lobe is expected to be at about 14.5 mm 
(20°) to the left of the central axis. The first-order grat-
ing lobe is expected, according to the equation of grating 
lobes [38], to be at about 5 mm (7.3°) to the right of the 
central axis, and the second-order grating lobe, at about 
29.7 mm (36.6°). Thus, the second-order grating lobe is 
located far beyond the validity region of the KZK equa-
tion. Fig. 6 shows a satisfactory fit of the simulated curves 
to the experimental data for both the fundamental and 
the second harmonic. The L2 norm error for the data in 
Fig. 6(a) is 0.3.

The characteristic computational time in the cases 
shown in Figs. 3–6 is 7 to 9 h. The calculations were per-
formed on a personal computer HP Compaq 6200 Pro MT 
PC (Hewlett-Packard Co., Palo Alto, CA) with a 2.90-
GHz Intel Pentium G850 CPU (Intel Corp., Santa Clara, 
CA) and 4 GB of RAM.

IV. Conclusions

A numerical code has been developed to model acous-
tic fields generated by ultrasound transducers. The code 
is based on a 3-dimensional numerical solution of the full 
Westervelt equation. The numerical scheme was realized 
by using the explicit finite-difference time-domain (FDTD) 
method. The main purpose of the work was to verify, by 
comparing numerical and experimental results, the abil-
ity of the Westervelt equation to predict the behavior of 
nonlinear ultrasound beams generated by phased-array 
transducers. Simulations and experimental measurements 
were carried out for cases that were not investigated in the 
preceding works in which similar numerical approaches 
were used. In particular, the developed code was applied 
to simulating the generation of grating lobes at zero and 
nonzero steering angles in cases in which the grating lobes 
are located far beyond the validity region of the KZK 
equation.

The initial validation of the developed numerical code 
was carried out by using experimental data obtained for 
two focused circular transducers having different diam-
eters and focal lengths. The first transducer, driven at a 
center frequency of 1 MHz, was used to measure the axial 
and lateral pressure profiles in the case of small-amplitude 
excitation. The second transducer, driven at 2.25 MHz, 
was used in the regime of finite-amplitude excitation to 
measure the axial pressure profiles for the fundamental 
and the second-harmonic components. In both linear and 
nonlinear cases, good agreement between the measured 
and the simulated data was demonstrated.

Experimental measurements were then carried out for 
a modified 32-element linear-array transducer. The speci-
fications of the transducer were modified so as to generate 
grating lobes. Pressure profiles for the fundamental and 

the second-harmonic components were measured at 0° and 
20° steering angles. The conditions of wave propagation 
were set in such a way that the grating lobes were gener-
ated far beyond the validity region of the KZK equation. 
Comparison of the experimental and numerical results has 
shown that they are in satisfactory agreement for both the 
fundamental and the second-harmonic components in all 
the cases tested.

The results of the present work confirm that a 3-D 
FDTD implementation of the Westervelt equation is ca-
pable of providing adequate simulation of nonlinear ultra-
sound fields generated by phased-array transducers. This 
approach allows one to predict with satisfactory accuracy 
nonlinear wave propagation even in relatively complicated 
situations, namely when the propagation of an ultrasonic 
beam at a nonzero steering angle is accompanied by the 
generation of grating lobes which are located at large an-
gles from the central propagation axis. The shortcoming 
of the presented approach is that it requires quite a small 
step size along the main propagation axis (z-axis) to catch 
higher harmonics correctly; the step size decreases with 
increasing excitation frequency. As a result, the simula-
tion of 3-D nonlinear wave propagation can be very time 
consuming at high frequencies. Solving this problem could 
be the objective of further work.
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