Michaël Marcozzi
email: m.marcozzi@imperial.ac.uk

Sébastien Bardin
email: sebastien.bardin@cea.fr

Nikolai Kosmatov
email: nikolai.kosmatov@cea.fr

Mike Papadakis
email: michail.papadakis@uni.lu

Virgile Prevosto
email: virgile.prevosto@cea.fr

Loïc Correnson
email: loic.correnson@cea.fr

Time to Clean Your Test Objectives

Keywords: engineering → Software testing and debugging, • Theory of computation → Program analysis, Coverage Criteria, Infeasible Objectives, Redundant Objectives

Testing is the primary approach for detecting software defects. A major challenge faced by testers lies in crafting e cient test suites, able to detect a maximum number of bugs with manageable e ort. To do so, they rely on coverage criteria, which de ne some precise test objectives to be covered. However, many common criteria specify a signi cant number of objectives that occur to be infeasible or redundant in practice, like covering dead code or semantically equal mutants. Such objectives are well-known to be harmful to the design of test suites, impacting both the e ciency and precision of the tester's e ort. This work introduces a sound and scalable technique to prune out a signi cant part of the infeasible and redundant objectives produced by a panel of white-box criteria. In a nutshell, we reduce this task to proving the validity of logical assertions in the code under test. The technique is implemented in a tool that relies on weakest-precondition calculus and SMT solving for proving the assertions. The tool is built on top of the Frama-C veri cation platform, which we carefully tune for our speci c scalability needs. The experiments reveal that the pruning capabilities of the tool can reduce the number of targeted test objectives in a program by up to 27% and scale to real programs of 200K lines, making it possible to automate a painstaking part of their current testing process.

CCS CONCEPTS

• Software and its

INTRODUCTION

Context. Heretofore, software testing is the primary method for detecting software defects [START_REF] Ammann | Introduction to Software Testing[END_REF][START_REF] Mathur | Foundations of Software Testing[END_REF][START_REF] Glenford | The Art of Software Testing[END_REF][START_REF] Zhu | Software Unit Test Coverage and Adequacy[END_REF]. It is performed by executing the programs under analysis with some inputs, and aims at nding some unintended (defective) behaviors. In practice, as the number of possible test inputs is typically enormous, testers do limit their tests to a manageable but carefully crafted set of inputs, called a test suite. To build such suites, they rely on so-called coverage criteria, also known as adequacy or test criteria, which de ne the objectives of testing [START_REF] Ammann | Introduction to Software Testing[END_REF][START_REF] Zhu | Software Unit Test Coverage and Adequacy[END_REF]. In particular, many white-box criteria have been proposed so far, where the test objectives are syntactic elements of the code that should be covered by running the test suite. For example, the condition coverage criterion imposes to cover all possible outcomes of the boolean conditions appearing in program decisions, while the mutant coverage criterion requires to di erentiate the program from a set of its syntactic variants. Testers need then to design their suite of inputs to cover the corresponding test objectives, such as -for the two aforementioned cases -condition outcomes or mutants to kill.

Problem. White-box testing criteria are purely syntactic and thus totally blind to the semantics of the program under analysis. As a consequence, many of the test objectives that they de ne may turn out to be either (a) infeasible: no input can satisfy them, such as dead code or equivalent mutants [START_REF] Ammann | Introduction to Software Testing[END_REF], or (b) duplicate versions of another objective: satis ed by exactly the same inputs, such as semantically equal mutants [START_REF] Papadakis | Trivial Compiler Equivalence: A Large Scale Empirical Study of a Simple, Fast and E ective Equivalent Mutant Detection Technique[END_REF], or (c) subsumed by another objective: satis ed by every input covering the other objective [START_REF] Paul Ammann | Establishing Theoretical Minimal Sets of Mutants[END_REF][START_REF] Kurtz | Analyzing the validity of selective mutation with dominator mutants[END_REF][START_REF] Papadakis | Threats to the Validity of Mutation-based Test Assessment[END_REF], such as validity of a condition logically implied by another one in condition coverage.

We refer to these three situations as polluting test objectives, which are well-known to be harmful to the testing task [START_REF] Papadakis | Threats to the Validity of Mutation-based Test Assessment[END_REF][START_REF] Papadakis | Trivial Compiler Equivalence: A Large Scale Empirical Study of a Simple, Fast and E ective Equivalent Mutant Detection Technique[END_REF][START_REF] Weyuker | More Experience with Data Flow Testing[END_REF][START_REF] Woodward | Experience with Path Analysis and Testing of Programs[END_REF][START_REF] Yates | Reducing the E ects of Infeasible Paths in Branch Testing[END_REF] for two main reasons:

• While (early) software testing theory [START_REF] Zhu | Software Unit Test Coverage and Adequacy[END_REF] requires all the criterion objectives to be covered, this seldom re ects the actual practice, which usually relies on test suites covering only a part of them [START_REF] Gligoric | Guidelines for Coverage-Based Comparisons of Non-Adequate Test Suites[END_REF]. This is due to the di culty of generating the appropriate test inputs, but also to infeasible test objectives. Indeed, testers often cannot know whether they fail to cover them because their test suites are weak or because they are infeasible, possibly wasting a signi cant amount of their test budget trying to satisfy them. • As full objective coverage is rarely reached in practice, testers rely on the ratio of covered objectives to measure the strength of their test suites. However, the working assumption of this practice is that all objectives are of equal value. Testing research demonstrated that this is not true [START_REF] Paul Ammann | Establishing Theoretical Minimal Sets of Mutants[END_REF][START_REF] Bertolino | Automatic Generation of Path Covers Based on the Control Flow Analysis of Computer Programs[END_REF][START_REF] Chusho | Test Data Selection and Quality Estimation Based on the Concept of Esssential Branches for Path Testing[END_REF][START_REF] Papadakis | Threats to the Validity of Mutation-based Test Assessment[END_REF], as duplication and subsumption can make a large number of feasible test objectives redundant. Such coverable redundant objectives may arti cially de ate or in ate the coverage ratio. This skews the measurement, which may misestimate test thoroughness and fail to evaluate correctly the remaining cost to full coverage.

Goal and Challenges. While detecting all polluting test objectives is undecidable [START_REF] Paul Ammann | Establishing Theoretical Minimal Sets of Mutants[END_REF][START_REF] Papadakis | Threats to the Validity of Mutation-based Test Assessment[END_REF], our goal is to provide a technique capable to identify a signi cant part of them. This is a challenging task as it requires one to perform complex program analyses over large sets of objectives produced by various criteria. Moreover, duplication and subsumption should be checked for each pair of objectives, a priori putting a quadratic penalty over the necessary analyses. Although many studies have demonstrated the harmful e ects of polluting objectives, to date there is no scalable technique to discard them. Most related research works (see Tables 1,[START_REF] Ammann | Introduction to Software Testing[END_REF] and Section 8) focus on the equivalent mutant problem, i.e. the particular instance of infeasible test objectives for the mutant coverage criterion. These operate either in dynamic mode, i.e. mutant classi cation [START_REF] Schuler | E cient mutation testing by checking invariant violations[END_REF][START_REF] Schuler | Covering and Uncovering Equivalent Mutants[END_REF], or in static mode, i.e. Trivial Compiler Equivalence (TCE) [START_REF] Papadakis | Trivial Compiler Equivalence: A Large Scale Empirical Study of a Simple, Fast and E ective Equivalent Mutant Detection Technique[END_REF]. Unfortunately, the dynamic methods are unsound and produce many false positives [START_REF] Papadakis | Mitigating the e ects of equivalent mutants with mutant classi cation strategies[END_REF][START_REF] Schuler | Covering and Uncovering Equivalent Mutants[END_REF], while the static one does not deal with all forms of mutation and cannot detect subsumed mutants (whereas it handles duplicates in addition to infeasible ones). The LUncov technique [START_REF] Bardin | Sound and Quasi-Complete Detection of Infeasible Test Requirements[END_REF] combines two static analyses to prune out infeasible objectives from a panel of white-box criteria in a generic way, but faces scalability issues.

Sound Scale

Kind of Pollution Criterion Inf. Dupl. Subs. Genericity Mutant class. [START_REF] Schuler | Covering and Uncovering Equivalent Mutants[END_REF] × × × × TCE [START_REF] Papadakis | Trivial Compiler Equivalence: A Large Scale Empirical Study of a Simple, Fast and E ective Equivalent Mutant Detection Technique[END_REF] × × LUncov [START_REF] Bardin | Sound and Quasi-Complete Detection of Infeasible Test Requirements[END_REF] × × ×

LClean (this work) Proposal. Our intent is to provide a uni ed, sound and scalable solution to prune out a signi cant part of polluting objectives, including infeasible but also duplicate and subsumed ones, while handling a large panel of white-box criteria in a generic manner. To achieve this, we propose reducing the problem of nding polluting objectives for a wide range of criteria to the problem of proving the validity of logical assertions inside the code under test. These assertions can then be veri ed using known veri cation techniques. Our approach, called LClean, is the rst one that scales to programs composed of 200K lines of C code, while handling all types of polluting test requirements. It is also generic, in the sense that it covers most of the common code-based test criteria (described in software testing textbooks [START_REF] Ammann | Introduction to Software Testing[END_REF]) and it is capable of using almost any state-of-the-art veri cation technique. In this study, we use weakest-precondition calculus [START_REF] Dijkstra | A Discipline of Programming[END_REF] with SMT solving [START_REF] De | Satis ability Modulo Theories: Introduction and Applications[END_REF] and identify 25K polluting test objectives in fourteen C programs.

LClean introduces two acute code analyses that enable focusing the detection of duplicate and subsumed objectives over a limited amount of high-hit-rate pairs of objectives. This makes it possible to detect a signi cant number of redundant objectives while avoiding a quadratic penalty in computation time. The LClean tool is implemented on top of the Frama-C/LTest platform [START_REF] Kirchner | Frama-C: A Program Analysis Perspective[END_REF][START_REF] Marcozzi | Taming Coverage Criteria Heterogeneity with LTest[END_REF], which features strong conceptual and technical foundations (Section 3). We speci cally extend the Frama-C module dedicated to proving code assertions to make the proposed solution scalable and robust.

Contributions.

To sum up, we make the following contributions:

• The LClean approach: a scalable, sound and uni ed formal technique (Sections 2 and 4) capable to detect the three kinds of polluting test objectives (i.e. infeasible, duplicate and subsumed) for a wide panel of white-box criteria, ranging from condition coverage to variants of MCDC and weak mutation. • An open-source prototype tool LClean (Section 5) enacting the proposed approach. It relies on an industrial-proof formal verication platform, which we tune for the speci c scalability needs of LClean, yielding a robust multi-core assertion-proving kernel. • A thorough evaluation (Sections 6 and 7) assessing (a) the scalability and detection power of LClean for three types of polluting objectives and four test criteria -pruning out up to 27% of the objectives in C les up to 200K lines, (b) the impact of using a multi-core kernel and tailored veri cation libraries on the required computation time (yielding a speedup of approximately 45×), and (c) that, compared to the existing methods, LClean prunes out four times more objectives than LUncov [START_REF] Bardin | Sound and Quasi-Complete Detection of Infeasible Test Requirements[END_REF] in about half as much time, it can be one order of magnitude faster than (unsound) dynamic identi cation of (likely) polluting objectives, and it detects half more duplicate objectives than TCE, while being complementary to it.

Potential Impact. Infeasible test objectives have been recognized as a main cost factor of the testing process [START_REF] Weyuker | More Experience with Data Flow Testing[END_REF][START_REF] Woodward | Experience with Path Analysis and Testing of Programs[END_REF][START_REF] Yates | Reducing the E ects of Infeasible Paths in Branch Testing[END_REF]. By pruning out a signi cant number of them with LClean, testers could reinvest the spared cost in targeting full coverage of the remaining objectives. This would make testing more e cient, as most faults are found within high levels of coverage [START_REF] Frankl | Further Empirical Studies of Test E ectiveness[END_REF]. Pruning out infeasible test objectives could also make the most meticulous testing criteria (e.g. mutation testing) less expensive and thus more acceptable in industry [START_REF] Papadakis | Trivial Compiler Equivalence: A Large Scale Empirical Study of a Simple, Fast and E ective Equivalent Mutant Detection Technique[END_REF]. Furthermore, getting rid of redundant objectives should provide testers with more accurate quality evaluations of

MOTIVATING EXAMPLE

Figure 1 shows a small C program inspired by the classic triangle example [START_REF] Glenford | The Art of Software Testing[END_REF]. Given three integers x, , z supposed to be the sides of a valid triangle, it sets variable t pe according to the type of the triangle: equilateral (t pe = 2), isosceles (t pe = 1) or scalene (t pe = 0). Figure 1 also illustrates fourteen test objectives from common test criteria labelled from l 1 to l 14 . l 1 and l 2 require the test suite to cover both possible decisions (or branches) of the conditional at line 6. For example, covering l 2 means to nd test data such that, during test execution, the location of l 2 is reached and the condition x != y || y != z is true at this location, which ensures to execute the else branch. Similarly, l 5 and l 6 require the tests to cover both decisions at line 12. These four objectives are speci ed by the Decision Coverage (DC) criterion for this program. l 3 and l 4 (resp., l 7 and l 8) require the tests to cover both truth values of the rst condition in the compound condition on line 6 (resp., line 12). They are imposed by Condition Coverage (CC) -the similar test objectives imposed by CC for the other conditions are not shown to improve readability. l 9 and l 10 provide examples of objectives from Multiple Condition Coverage (MCC) for conditional at line 12. MCC requires the tests to cover all combinations of truth values of conditions. Finally, objectives l 11 to l 14 encode some Weak Mutants (WM) of the assignment on line 15 (see Bardin et al. [9,Theorem 2] for more detail).

We can easily notice that l 9 and l 10 put unsatis able constraints over x, and z. They are thus infeasible objectives and trying to cover them would be a waste of time. Other objectives are duplicates, denoted by ⇔: they are always covered (i.e. reached and satis ed) simultaneously. We obviously have l 3 ⇔ l 7 and l 4 ⇔ l 8 since the values of x and do not change in-between. Although syntactically di erent, l 13 and l 14 are also duplicates, as they are always reached together (we call them co-reached objectives) and satis ed if and only if t pe 0. Finally, we refer to objectives like l 11 and l 12 as being trivial duplicates: they are co-reached, and always satis ed as soon as reached. While we do not have l 1 ⇔ l 5 , covering l 1 necessarily implies covering l 5 , that is, l 1 subsumes l 5 , denoted l 1 ⇒ l 5 . Other examples of subsumed objectives can be found, like l 6 ⇒ l 2 . Duplicate and subsumed objectives are redundant objectives that can skew the measurement of test suite strength, as it should be provided by the test coverage ratio. For example, considering the objectives from the DC criterion, the test suite composed of the single test (x = 1, = 2, z = 1) covers l 2 and l 5 but not l 1 and l 6 , which implies a medium coverage ratio of 50%. The tester may be interested to know the achieved level of coverage without counting duplicate or subsumed objectives. Here, l 2 and l 5 are actually subsumed by l 1 and l 6 . If the subsumed objectives are removed, the coverage ratio falls down to 0%. Discarding redundant objectives provides a better measurement of how far testers are from building an e cient test suite, only with the necessary inputs for covering the non-redundant objectives (l 1 and l 6 in this case).

The main purpose of this paper is to provide a lightweight yet powerful technique for pruning out infeasible, duplicate and subsumed test objectives. To do so, our approach rst focuses on infeasible objectives. In Figure 1, one can notice, for instance, that the problem of proving l 9 to be infeasible can be reduced to the problem of proving that a code assertion !(x!=y && y==z && x==z) at line 11 will never be violated. Our approach then delegates this proof for each objective to a dedicated veri cation tool. While infeasibility should be checked once per objective, duplication and subsumption require one to analyse all the possible pairs. To avoid quadratic complexity, we focus on detecting duplicate and subsumed pairs only among the objectives that belong to the same sequential block of code, with no possible interruption of the control ow (with goto, break, . . .) in-between. By construction, the objectives in these groups are always co-reached. In Figure 1, l 1 -l 10 and l 11 -l 14 are two examples of such groups. Examples of duplicate and subsumed objectives within these groups include l 3 ⇔ l 7 , l 4 ⇔ l 8 , l 11 ⇔ l 12 , l 13 ⇔ l 14 , l 1 ⇒ l 5 and l 6 ⇒ l 2 . We call them block-duplicate and block-subsumed objectives. On the other hand, l 1 and l 13 are duplicate (at line 14, type is nonzero if and only if x, y, and z are equal), but this will not be detected by our approach since those labels are not in the same block. (loc 0 , s 0), . . . , (loc n , s n) where the loc i denote successive (control-)locations of P (≈ statements of the programming language in which P is written), loc 0 refers to the initial program state and the s i denote the successive internal states of P (≈ valuation of all global and local variables and of all memory-allocated structures) after the execution of each loc i .

BACKGROUND 3.1 Test Objective Speci cation with Labels

A test datum t reaches a location loc at step k with internal state s, denoted t k P (loc, s), if P(t) has the form σ • (loc, s) • ρ where σ is a partial run of length k. When focusing on reachability, we omit k and write t P (loc, s).

Given a test objective c, we write t P c if test datum t covers c. We extend the notation for a test suite TS and a set of test objectives C, writing TS P C when for any c ∈ C, there exists t ∈ TS such that t P c. A (source-code based) coverage criterion C is de ned as a systematic way of deriving a set of test objectives C C(P) for any program under test P. A test suite TS satis es (or achieves) a coverage criterion C if TS covers C(P). Labels. Labels have been introduced in [START_REF] Bardin | E cient Leveraging of Symbolic Execution to Advanced Coverage Criteria[END_REF] as a code annotation language to encode concrete test objectives. Several common coverage criteria can be simulated by label coverage, in the sense that for a given program P and a criterion C, every concrete test objective from C C(P) can always be encoded using a corresponding label.

Given a program P, a label ∈ Labs P is a pair (loc, φ) where loc is a location of P and φ is a predicate over the internal state at loc. There can be several labels de ned at a single location, which can possibly share the same predicate. More concretely, the notion of labels can be compared to labels in the C language, decorated with a pure (i.e. side-e ect-free) boolean C expression.

We say that a test datum t covers a label (loc, φ) in P, denoted t L P , if there is a state s such that t reaches (loc, s) (i.e. t P (loc, s)) and s satis es φ. An annotated program is a pair P, L where P is a program and L ⊆ Labs P is a set of labels for P. Given an annotated program P, L , we say that a test suite TS satis es the label coverage criterion (LC) for P, L , denoted TS L P, L LC, if TS covers every label of L (i.e. ∀ ∈ L : ∃t ∈ TS : t L P). Criterion Encoding. Label coverage simulates a coverage criterion C if any program P can be automatically annotated with a set of corresponding labels L in such a way that any test suite T S satis es LC for P, L if and only if TS covers all the concrete test objectives instantiated from C for P. The main bene t of labels is to unify the treatment of test requirements belonging to di erent classes of coverage criteria in a transparent way, thanks to the automatic insertion of labels in the program under test. Indeed, it is shown in [START_REF] Bardin | E cient Leveraging of Symbolic Execution to Advanced Coverage Criteria[END_REF] that label coverage can notably simulate basic-block coverage (BBC), branch coverage (BC), decision coverage (DC), function coverage (FC), condition coverage (CC), decision condition coverage (DCC), multiple condition coverage (MCC) as well as the side-e ect-free fragment of weak mutations (WM'). The encoding of GACC comes from [START_REF] Pandita | Guided Test Generation for Coverage Criteria[END_REF]. Some examples are given in Figure 1. Co-reached Labels. We say that location loc is always preceded by location loc if for any test datum t, whenever the execution P(t) (loc 0 , s 0), . . . , (loc n , s n) passes through location loc at step k (i.e. loc = loc k) then P(t) also passes through loc at some earlier step k ≤ k (i.e. loc = loc k) without passing through loc or loc in-between (i.e. at some intermediate step i with k < i < k). Similarly, loc is said to be always followed by location loc if for any t, whenever the execution P(t) passes through loc at step k then P(t) also passes through loc at some later step k ≥ k without passing through loc or loc in-between. Two locations are co-reached if one of them is always preceded by the other, while the second one is always followed by the rst one. Note that we exclude the case when one of locations is traversed several times (e.g. due to a loop) before being nally followed by the other one. In a sequential block of code, with no possible interruption of the control ow inbetween (no goto, break, . . .), all locations are co-reached. We nally say that two labels are co-reached if their locations are co-reached.

Polluting Labels

In the remainder of the paper, test objectives will often be expressed in terms of labels. This work addresses three kinds of polluting labels: infeasible, duplicate and subsumed. A label in P is called infeasible if there is no test datum t such that t L P . In other words, it is not possible to reach its location and satisfy its predicate.

We say that a label subsumes another label (or is subsumed by) in P, denoted ⇒ , if for any test datum t, if t L P then t L P as well. Finally, two labels and are called duplicate1 , denoted ⇔ , if each of them subsumes the other one. For the speci c case where both labels and belong to the same group of co-reached labels in a block, we call a duplicate (resp., subsumed) label block-duplicate (resp., block-subsumed).

Notice that if a label is infeasible, it subsumes by de nition any other label . We call this phenomenon degenerate subsumption. If is feasible, it should be kept and covered. In this case, the truly polluting objective is rather than . That is the reason why it is necessary to eliminate as many infeasible labels as possible before pruning out subsumed labels.

The Frama-C/LTest Platform

Frama-C [START_REF] Kirchner | Frama-C: A Program Analysis Perspective[END_REF] is an open-source industrial-strength framework dedicated to the formal analysis of C programs. It has been successfully used in several safety and security critical contexts. The tool is written in OCaml, and represents a very signi cant development (around 150K lines for the kernel and the main plug-ins alone).

Frama-C is based on a small kernel that takes care of providing an abstract representation of the program under analysis and maintaining the set of properties that are known about the program state at each possible execution step. These properties are expressed as ACSL [START_REF] Baudin | ACSL: ANSI/ISO C Speci cation Language[END_REF] annotations. On top of the kernel, many plug-ins can perform various kinds of analysis, and can interact with the kernel either by indicating that a property ϕ holds, or by asking whether some other property ψ is true (in the hope that another plug-in will be able to validate ϕ later on).

In the context of this paper, we are mainly interested in the four following (open-source) plug-ins. LAnnotate, LUncov and LReplay are part of Frama-C/LTest [START_REF] Bardin | An All-in-One Toolkit for Automated White-Box Testing[END_REF][START_REF] Marcozzi | Taming Coverage Criteria Heterogeneity with LTest[END_REF]. LAnnotate annotates the program with labels according to the selected criterion. LUncov combines weakest-precondition and value analysis to detect infeasible test objectives. LReplay executes a test suite and computes its coverage ratio. WP is a plug-in implementing weakest-precondition calculus [START_REF] Barnett | Weakest-Precondition of Unstructured Programs[END_REF][START_REF] Hoare | An axiomatic basis for computer programming[END_REF] in order to prove that an ACSL assertion holds.

THE LCLEAN APPROACH

The LClean technique involves three main steps (cf. Figure 2) preceded by a preprocessing phase. The rst step aims at detecting infeasible label-encoded objectives. The second step targets trivial block-duplicate labels, while the third step focuses more generally on block-subsumed and block-duplicate labels.

Given a program P and a coverage criterion C that can be simulated by labels, the preprocessing consists in generating the corresponding labels L. For C programs, this is done by the LAnnotate plug-in of Frama-C. The LClean approach itself operates on the annotated program P, L and marks polluting labels so that they can be pruned out.

Step 1: Infeasible Labels

LClean systematically explores P, L and replaces every label (loc, φ) by an assertion assert(!φ), whose predicate is the negation of the label condition. The resulting assertion-laden code is Figure 2: Process view of the LClean approach with main steps and substeps sent to a deductive veri cation tool designed for proving that the received program is correct w.r.t. the de ned assertions, i.e. that none of them can be violated during a possible run of the program. In practice, the veri cation tool returns the list of the assertions that it was able to prove correct. Since each assertion is by construction the negation of a label condition, the corresponding labels are formally proven to be infeasible, and are marked as so. These marks will be both used as a nal result of the approach and as internal information transmitted to the next two steps of LClean. Regarding Figure 1, LClean indeed detects that l 9 and l 10 are infeasible. Prior to Steps 2 and 3, LClean performs the detection of blocks of co-reached locations. We illustrate it using the sample program of Figure 3. First, a basic syntactic analysis detects six blocks in the program: the global block of each of the two functions, the two branches of the outer conditional (line 7), and the then branches of the two nested conditionals. Second, a call-graph analysis discovers that the rst function is only called once in the whole program, so that its outer block can be seen as executed as a part of the block containing the function call. The two blocks can then be merged. Finally, a conservative control-ow interruption analysis detects that the exit(0); statement at line 9 may interrupt the control-ow within the then branch of the outer conditional. The corresponding block is thus split into two blocks, gathering respectively the statements before and after the exit(0); statement. The identied blocks enabling us to conclude that there are four groups of mutually co-reached labels: {l 2 }, {l 3 , l 4 , l 1 }, {l 5 , l 6 } and {l 7 }.

Detection of Co-reached Labels

void calledOnce () { // l1: φ 1 code1; } int main (int i) { // l2: φ 2 if (i>0) { // l3: φ 3 if (i==5

Step 2: Trivial Block-Duplicate Labels

As in Step 1, LClean systematically explores P, L and replaces labels by assertions. Except for the labels marked as infeasible in Step 1, which are simply dropped out, each label (loc, φ) is replaced by an assertion assert(φ). This time, the predicate is directly the label condition. The resulting assertion-laden code is sent to the veri cation tool. The proven assertions correspond to labels that will be always satis ed as soon as their location is reached. Afterwards, LClean identi es among these always-satis ed-when-reached the groups of co-reached labels (cf. Section 4.2). The labels within each of the groups are trivial block-duplicates, and they are marked as being clones of a single label chosen among them. Again, these marks will be both nal results and internal information transmitted to the next step. For the example of Figure 1, LClean will identify that l 11 and l 12 are trivial block-duplicate labels. Similarly, if we assume that all predicates φ i are always satisi ed for the code of Figure 3,

Step 2 detects that l 3 , l 4 and l 1 are trivial duplicates, and l 5 and l 6 are as well. As a subtle optimization, LClean can detect that label l 2 is always executed simultaneously with the outer conditional, so that l 2 will be covered if and only if at least one of the labels l 3 and l 6 is covered. l 2 can thus be seen as duplicate with the pair (l 3 ,l 6) and is marked as so.

Step 3: Block-Subsumed Labels

Within each group of co-reached labels, the labels previously detected as infeasible by Step 1 are removed and those detected as trivial block-duplicates by Step 2 are merged into a single label. Afterwards, every label i = (loc i , φ i) remaining in the group is replaced by a new statement int vl i = φ i ;, which assigns the value of the label condition to a fresh variable vl i . Then, for each pair (i , j) i j of co-reached labels in the group, the assertion assert(vl i =⇒ vl j); is inserted at the end of the corresponding block of co-reached locations. If this assertion is proven by the veri cation tool, then label i subsumes label j . Indeed, their locations are co-reached, and the proven assertion shows that every input satisfying φ i will also satisfy φ j . As a consequence, every input that covers i also covers j .

The graph of subsumption relations detected in a group of coreached labels is then searched for cycles. All labels in a cycle are actually duplicates and can be marked as mergeable into a single label. Among the labels that survive such a merging phase, those that are pointed to by at least one subsumption relation are marked as subsumed labels. For the example of Figure 1, LClean will identify, for instance, l 1 ⇒ l 5 , l 6 ⇒ l 2 , l 3 ⇔ l 7 and l 13 ⇔ l 14 .

Discussion of LClean Design

Once the third and nal step nished, LClean returns a list of polluting labels composed of the infeasible ones returned by Step 1 and of the duplicate and subsumed ones returned by Steps 2 and 3. It should be noted that the approach is incremental and that each of the three main steps can even be run independently of the others. However, removing infeasible objectives before Steps 2 and 3 is important, as it reduces the risk of returning degenerate subsumption relations. Similarly, Step 2 detects duplicate labels that would be identi ed by Step 3 anyway, but Step 2 nds them at much lower cost. Indeed, the number of proofs required by Step 2 is linear in the number of labels as it does not have to consider pairs of labels. The incremental nature of the approach, coupled with the fact that assertion proving has become reasonably fast (c.f. Section 6) and that it can be parallelised, as well as performed independently over stand-alone code units (e.g. C functions), makes a continuous computation of polluting objectives conceivable during software development. This could be used for continuous integration to enforce test suites of speci c coverage levels.

The LClean approach might be extended to detect duplicate or subsumed labels that are not in the same basic block, by generating more complex assertions that would be ow-sensitive. However, limiting the analysis to block-duplicate and block-subsumed labels turns out to be a sweet spot between detection power and computation time. Indeed, Figure 4 details the total number of pairs of labels for four common criteria in the 14 C programs used in the evaluation in Section 6 (cf. Figure 6). Figure 4 also presents the total number of pairs of labels taken inside the same block, inside the same function or over the whole program. We can see that focusing the analysis on block pairs enables reducing the number of necessary proofs by one to four orders of magnitude. At the same time, it seems reasonable to think that a signi cant part of the duplicate or subsumed labels reside within the same basic block, as those labels are always executed together and typically describe test objectives related to closely interconnected syntactic elements of the program.

IMPLEMENTATION

The three steps of the LClean approach are implemented in three independent open-source Frama-C plug-ins2 (≈5,000 locs in OCaml). These plug-ins share a common architecture depicted in Figure 5. It relies on the Frama-C kernel (in black) and features four modules (in color) performing the di erent substeps of an LClean step. It receives as input an annotated program P, L , in which labels have already been generated with plug-in LAnnotate [START_REF] Bardin | An All-in-One Toolkit for Automated White-Box Testing[END_REF] in order to simulate the coverage criterion of interest. As a starting point, the program is parsed by the Frama-C kernel, which makes its abstract syntax tree (AST) available for all the components of the architecture. We now present the four modules performing the analysis. Assertion Generator. The Assertion Generator replaces the labels in the code by assertions according to the corresponding step (cf. Section 4). Frama-C primitives are used to explore the AST, locate the nodes corresponding to labels and replace them by the required assertions, written in ACSL. Robust Multicore Assertion Prover. The Assertion Prover deals with proving the assertions introduced in the AST by the Assertion Generator and relies on the WP plug-in. It is not a simple wrapper for WP: the Assertion Prover introduces crucial optimizations ensuring its scalability and robustness:

• First, it embeds a version of WP that we carefully optimized for our speci c needs, making it capable to prove several di erent assertions independently in a single run of the tool. This version factors out a common part of the analysis (related to the program semantics) that would have to be repeated uselessly if WP was called once per assertion. • Second, its multi-core implementation ensures a signi cant speedup. The assertions to be proved are shared among several parallel WP instances running on di erent cores. • Third, the Assertion Prover also guarantees robustness and adaptability of the process. Indeed, the WP tool can consume a high amount of memory and computation time when analyzing a large and complex C function. The Assertion Prover can smoothly interrupt a WP session when a threshold w.r.t. the used memory or elapsed time has been reached.

All these improvements to Frama-C/WP have been proven crucial for large-scale experiments (cf. Section 6). A technical description of how they were actually implemented, comparing the optimised and non-optimised source code of the tool, can be found on the companion website 2 of this paper.

Label Status Manager. The Label Status Manager maintains and gives access to a set of les storing a status for each label. Each label is identi ed by a unique integer ID used both in the AST and in the status les. The status of a label can be a) infeasible, b) duplicate to another ID (or a pair of IDs), c) subsumed by other IDs, or d) unknown. The status les are updated by the plug-ins when they detect that some labels can be marked as polluting. The plug-ins for Steps 2 and 3 also check the les in order to drop out the labels marked as polluting during the previous steps.

Block Detector. The detector of blocks of co-reached labels is only used before Steps 2 and 3. It relies on the Frama-C primitives to explore the AST and perform the analyses detailed in Section 4.2. For each block found, it returns the label IDs of co-reached labels belonging to the block.

EXPERIMENTAL EVALUATION

To evaluate experimentally LClean, we consider the following three research questions:

Research Question 1 (RQ1): Is the approach e ective and useful? Especially, (a) Does it identify a signi cant number of objectives from common criteria, all being real polluting objectives? b) Can it scale to real-world applications, involving many lines of code and complex language constructs?

Research Question 2 (RQ2): Do the optimizations (Section 5) improve the time performance in a signi cant way, impacting LClean acceptability in practice?

Research Question 3 (RQ3): How does our approach compare with the closest approaches like LUncov, mutant classi cation and TCE, especially in terms of pruning power and time performance?

The experimental artefacts used to answer these questions and the fully detailed results that we obtained are available on the companion website 2 of the paper. The tool and artefacts have also been installed in a Linux virtual machine provided on the website and enabling an easy reproduction of the experiments described in the next subsections. All these experiments were performed on a Debian Linux 8 workstation equipped with two Intel Xeon E5-2660v3 processors, for a total of 20 cores running at 2.6Ghz and taking advantage of 25MB cache per processor and 264GB RAM.

RQ1: E ectiveness and Scalability

We consider fourteen C programs of various types and sizes (min: 153 locs, mean: 16,166 locs, max: 196,888 locs) extracted from ve projects: the seven Siemens programs from [START_REF] Hutchins | Experiments of the E ectiveness of Data ow-and Control ow-based Test Adequacy Criteria[END_REF], four libraries taken from the cryptographic OpenSSL toolkit [49], the full GNU Zip compression program [27], the complete Sjeng chess playing IA application [59] and the entire SQLite relational database management system [60]. Every program is annotated successively with the labels encoding the test objectives of four common coverage criteria: Condition Coverage (CC), Multiple-Condition Coverage (MCC), General Active Clause Coverage (GACC) and Weak Mutations (WM, with su cient mutation operators [START_REF] Je Erson O Utt | An Experimental Determination of Su cient Mutant Operators[END_REF]). The LClean tool is then run to detect polluting objectives for each (program,criterion) pair.

For each step of the LClean process, the number of marked objectives and the computation time are reported in Figure 6. 11% of the 222,365 labels were marked as polluting in total (min: 4% for CC/MCC with SQLite, max: 27% for WM in Siemens/printokens.c). The global ratio of marked polluting objectives is 5% for CC, 5% for MCC, 6% for GACC and 15% for WM. In total, 13% of the detected polluting objectives were infeasible, 46% were duplicate (about one half were marked during Step 2 and the other during Step 3) and 41% were subsumed. The computation time ranges from 10s for MCC in Siemens/schedule.c (410 locs and 58 objectives) to ∼69h for WM in SQLite (197K locs and 90K objectives). Globally, computation time is split into 10% for Step 1, 8% for Step 2 and 82% for Step 3. While the computation time is acceptable for a very large majority of the experiments, Step 3 becomes particularly costly when applied on the largest programs with the most meticulous criteria. This is of course due to the fact that this step is quadratic in the number of labels. While we limit our analysis to block pairs, the number of resulting proof attempts still gets large for bigger applications, reaching 1.8M proofs for SQLite and WM (which remains tractable). Yet, limiting LClean to Steps 1 & 2 still marked many labels and is much more tractable: on SQLite, it detects 4566 polluting objectives in only 9h (13692 objectives in 69h for full LClean). Moreover, this should be compared to the fact that running the SQLite TH3 test suite 3 and computing the mutation score takes many days and that identifying polluting objectives is a time-consuming manual task (authors of [START_REF] Schuler | Covering and Uncovering Equivalent Mutants[END_REF] report 15 minutes per instance). As the SQLlite developers report 3 that they work hard to obtain test suites with a 100% coverage score for di erent criteria, they should immediately bene t from our tool.

Conclusion: These results indicate that LClean is a useful approach able to detect that a signi cant proportion of the test objectives from various common criteria are polluting ones, even for large and complex real-word applications. In practice, for very large programs and demanding criteria, LClean can be limited to Steps 1 & 2, keeping a signi cant detection power at a much lower expense.

3 https://www.sqlite.org/testing.html

RQ2: Impact of Optimizations

We repeat the experiments performed in RQ1 for the WM criterion over the seven Siemens programs, but we deactivate the optimizations that we implemented in the Assertion Prover of our tool, namely tailored WP tool and multi-core implementation (Section 5). Figure 7 details the obtained computation times (in logarithmic scale) for the three steps of the LClean process, considering three levels of optimizations. At level 0 (oblique-lined blue), the Assertion Prover uses a single instance of the classical Frama-C/WP running on a single core. At level 1 (horizontal-lined red), the Assertion Prover uses 20 instances of the classical version WP running on 20 cores. Level 2 (plain beige) corresponds to the actual version of the tool used in RQ1, when all the optimizations are activated: the Assertion Prover uses 20 instances of our tailored version WP running on 20 cores.

We observe that the total computation time is reduced by a factor of 2.4 when switching from level 1 to level 2, and that it is reduced by a factor of 45 when switching from level 0 to level 2. These factors are very similar for all the steps of the LClean process. The analysis results remained unchanged across the optimization levels.

Conclusion: These results show that our optimizations have a very signi cant impact over the time performance of our tool, making the experiments on large programs intractable without them. The measured speedup of 45x has a sensible in uence over the perceived speed of the tool, improving its acceptability in practice.

6.3 RQ3: LClean vs. Closest Related Works 6.3.1 LUncov. We apply both LUncov [START_REF] Bardin | Sound and Quasi-Complete Detection of Infeasible Test Requirements[END_REF] and LClean on the same benchmarks [START_REF] Bardin | Sound and Quasi-Complete Detection of Infeasible Test Requirements[END_REF]. The measured computation time and detection power for LUncov and LClean are compared in Figure 8. As LUncov is limited to infeasibility, we also provide results for Step 1 of LClean. It appears that LClean detects 4.2× more polluting labels than LUncov in 1.8× less time. When LClean is limited to Step 1, it detects 1.6× less polluting labels than LUncov, but in 10× less time.

Conclusion: LClean provides a more extensive detection of polluting objectives than LUncov (especially as it goes beyond infeasibility) at cheaper cost, thanks to modularity and optimized implementation.

6.3.2 Mutant Classification. The core principle of mutant classication [START_REF] Schuler | E cient mutation testing by checking invariant violations[END_REF][START_REF] Schuler | Covering and Uncovering Equivalent Mutants[END_REF] is to rely on dynamic coverage data to identify (in an approximated way) polluting mutants. As a comparison between LClean and such a dynamic pruning principle, Figure 9 reveals that the time necessary to run a high-coverage test suite (Siemens test suite), save coverage data and nd likely-polluting objectives can be one order of magnitude higher than running LClean over the same test objectives. In the same time, it appeared that many of the objectives detected in this way were false positives, leading to a 89% rate of labels to be considered as likely polluting (mainly because of duplication and subsumption). Actually, while the Siemens test suite achieves high coverage of standard metrics, it is not built to reveal di erent coverage behaviours between feasible test objectives. Crafting new test cases to do so would reduce the number of false positives but even more penalize the computation time.

Conclusion: By relying on lightweight static analyses, LClean provides a sound and quick detection of a signi cant number of both infeasible and redundant test objectives, while dynamic detection is expensive and unsound, yielding many false positives even based on high-quality test suites. Figure 8: LUncov [START_REF] Bardin | Sound and Quasi-Complete Detection of Infeasible Test Requirements[END_REF] vs LClean (benchmarks from [START_REF] Bardin | Sound and Quasi-Complete Detection of Infeasible Test Requirements[END_REF]) [START_REF] Papadakis | Trivial Compiler Equivalence: A Large Scale Empirical Study of a Simple, Fast and E ective Equivalent Mutant Detection Technique[END_REF] is not possible, as TCE aims at identifying strong mutant equivalences, which are fundamentally di erent from the structural ones we handle. Killing strong mutants requires indeed the propagation of the mutated program states to the program outputs, which is more complex to formalize [START_REF] Demillo | Constraint-Based Automatic Test Data Generation[END_REF]. Thus, the only way to compare the two approaches is to assume that weakly polluting mutants are also strongly polluting ones. This assumption is true for the case of equivalent mutants, but not entirely true for the case of the duplicated mutants. Weakly duplicates mutants might not be strongly duplicates due to failed mutated state propagation. However, this is usually quite rare, as most weakly killed mutants propagate to the program outputs [START_REF] Lee | An Empirical Evaluation of Weak Mutation[END_REF]. Nevertheless, we report these results for demonstrating the capabilities of the approaches and not for suggesting a way to detect redundant strong mutants.

Trivial Compiler Equivalence (TCE). A direct comparison with TCE

To perform the comparison, we generated some strong mutants as well as our corresponding weak ones for the replace program. We selected only the replace program as our purpose here is to demonstrate the relative di erences of the approaches: replace is one of the largest program from the Siemens suite, for which TCE performs best with respect to equivalent mutant detection [START_REF] Kintis | Detecting Trivial Mutant Equivalences via Compiler Optimisations[END_REF]. Our results show that among the 1,579 mutants involved, our approach detected 103 (7%) as infeasible, while TCE detected 96 (6%). Among these, 91 are shared, which means that 12 of the infeasible mutants were only found by our approach and 5 only by TCE. Regarding duplicated mutants, our approach detected 555 (35%) duplicates, and TCE detected 352 (22%). 214 were shared, which means that both techniques together identify 693 (44%) duplicated mutants.

Conclusion: Overall, the results show that our approach outperforms TCE in terms of detection power and form a relatively good complement of it. Moreover, LClean is able to detect subsumption. Yet, TCE is much more e cient, relying on compiler optimizations.

DISCUSSION

Threats to Validity

Common to all studies relying on empirical data, this one may be of limited generalizability. To diminish this threat we used, in addition to the Siemens benchmark programs, four large real-world applications composed of more than 200 kloc (in total), like SQLite, and showed that our approach is capable of dealing with many types of polluting objectives, which no other approach can handle.

Our results might also have been a ected by the choice of the chosen test criteria and in particular the speci c mutation operators we employ. To reduce this threat, we used popular test criteria (CC, MCC, GACC and WM) included in software testing standards [START_REF]RTCA DO178-B Software Considerations in Airborne Systems and Equipment Certi cation[END_REF][START_REF] Stuart | The Software Testing Standard -How you can use it[END_REF], and employed commonly used mutation operators included in recent work [START_REF] Paul Ammann | Establishing Theoretical Minimal Sets of Mutants[END_REF][START_REF] Thierry Titcheu Chekam | An empirical study on mutation, statement and branch coverage fault revelation that avoids the unreliable clean program assumption[END_REF]. The validity of our experimental results have been crosschecked in several ways. First, we compared our results on the Siemens benchmark with those of other tools, namely LUncov and TCE. We knew by design that infeasible objectives detected by LClean should be detected by LUncov as well, and we checked manually the status of each duplicate objective reported by LClean and not by TCE. No issue was reported. Second, we used the existing tests suites for the Siemens programs as a redundant sanity check, by verifying that every objective reported as infeasible (resp. duplicated, subsumed) by LClean was indeed seen as infeasible (resp. duplicated, subsumed) when running the test suite. These test suites are extremely thorough [START_REF] Hutchins | Experiments of the E ectiveness of Data ow-and Control ow-Based Test Adequacy Criteria[END_REF][START_REF] Papadakis | Mitigating the e ects of equivalent mutants with mutant classi cation strategies[END_REF] and are thus likely to detect errors in LClean. Third, for larger programs, we picked a random selection of a hundred test objectives reported as infeasible, duplicated or subsumed by LClean and manually checked them -this was often straightforward due to the local reasoning of LClean. All these sanity checks succeeded.

Another class of threats may arise because of the tools that we used, as it is likely that Frama-C or our implementation are defective. However, Frama-C is a mature tool with industrial applications in highly demanding elds (e.g., aeronautics) and thus, it is unlikely to cause important problems. Moreover, our sanity checks would have likely spotted such issues.

Finally, other threats may be due to the polluting nature of the objectives that we target. However, infeasible objectives are a wellknown issue, usually acknowledged in the literature as one of the most time consuming tasks of the software testing process [START_REF] Ammann | Introduction to Software Testing[END_REF][START_REF] Kurtz | Are We There Yet? How Redundant and Equivalent Mutants A ect Determination of Test Completeness[END_REF][START_REF] Papadakis | Trivial Compiler Equivalence: A Large Scale Empirical Study of a Simple, Fast and E ective Equivalent Mutant Detection Technique[END_REF][START_REF] Schuler | Covering and Uncovering Equivalent Mutants[END_REF], and redundant objectives have been stated as a major problem in both past and recent literature [START_REF] Kurtz | Analyzing the validity of selective mutation with dominator mutants[END_REF][START_REF] Kurtz | Are We There Yet? How Redundant and Equivalent Mutants A ect Determination of Test Completeness[END_REF][START_REF] Papadakis | Threats to the Validity of Mutation-based Test Assessment[END_REF].

Limitations

Labels cannot address all white-box criteria. For example, data ow criteria or full MCDC require additional expressive power [START_REF] Marcozzi | Generic and E ective Speci cation of Structural Test Objectives[END_REF]. Currently, parts of the infeasibility results from LClean could be lifted to these classes of objectives. On the other hand, it is unclear how it could be done for redundancy. Extending the present work to these criteria is an interesting future work direction.

From a more technical point of view, the detection of subsumption is limited more or less to basic blocks. While it already enables catching many cases, it might be possible to slightly extend the search while retaining scalability. In the same vein, the proofs are performed in LClean on a per function basis. This is a problem as it is often the case that a given function is always called within the same context, reducing its possible behaviors. Allowing a limited degree of contextual analysis (e.g., inlining function callers and/or callees) should allow to detect more polluting objectives while retaining scalability.

Finally, as we are facing an undecidable problem, our approach is sound, but not complete: SMT solvers might answer unknown. In that case, we may miss polluting objectives.

RELATED WORK 8.1 Infeasible Structural Objectives

Early research studies set the basis for identifying infeasible test objectives using constraint-based techniques [START_REF] Goldberg | Applications of Feasible Path Analysis to Program Testing[END_REF][START_REF] Je Erson O Utt | Automatically Detecting Equivalent Mutants and Infeasible Paths[END_REF]. O utt and Pan [START_REF] Je Erson O Utt | Automatically Detecting Equivalent Mutants and Infeasible Paths[END_REF] suggested transforming the programs under test as a set of constraints that encode the test objectives. Then, by solving these constraints, it is possible to identify infeasible objectives (constraints with no solution) and test inputs. Other attempts use model checking [START_REF] Beyer | Generating Tests from Counterexamples[END_REF][START_REF] Beyer | The software model checker Blast[END_REF] to prove that speci c structural test objectives (given as properties) are infeasible. Unfortunately, constraint-based techniques, as they require a complete program analysis, have the usual problems of the large (possibly in nite) numbers of involved paths, imprecise handling of program aliases [START_REF] Kosmatov | All-Paths Test Generation for Programs with Internal Aliases[END_REF] and the handling of non-linear constraints [START_REF] Anand | An orchestrated survey of methodologies for automated software test case generation[END_REF]. Model-checking faces precision problems because of the system modelling and scalability issues due to the large state space involved. On the other hand, we rely on a modular, hence not too expensive, form of weakest precondition calculus to ensure scalability.

Perhaps the closest works to ours are the ones by Beckman et al. [START_REF] Beckman | Proofs from Tests[END_REF], Baluda et al. [START_REF] Baluda | Structural coverage of feasible code[END_REF][START_REF] Baluda | Enhancing structural software coverage by incrementally computing branch executability[END_REF][START_REF] Baluda | Bidirectional Symbolic Analysis for E ective Branch Testing[END_REF] with these works, our main objective here is to identify all types of polluting test objectives (not only infeasible ones) for real-world programs in a generic way, i.e. for most of the test criteria, including advanced ones such as multiple condition coverage and weak mutation. Another concern regards the scalability of the previous methods, which remains unknown under the combinatorial explosion of test objectives that mutation criteria introduce.

Other techniques attempt to combine infeasible test objectives detection techniques as a means to speed-up test generation and re ne the coverage metric. Su et al. [START_REF] Su | Combining Symbolic Execution and Model Checking for Data Flow Testing[END_REF] combines symbolic execution with model checking to generate data ow test inputs. Baluda et al. [START_REF] Baluda | Bidirectional Symbolic Analysis for E ective Branch Testing[END_REF] combines backward (using weakest precondition) and forward symbolic analysis to support branch testing and Bardin et al. [START_REF] Bardin | Sound and Quasi-Complete Detection of Infeasible Test Requirements[END_REF][START_REF] Bardin | E cient Leveraging of Symbolic Execution to Advanced Coverage Criteria[END_REF] combines weakest precondition with dynamic symbolic execution to support the coverage of structural test objectives. Although integrating such approaches with ours may result in additional bene ts, our main objective here is to demonstrate that lightweight symbolic analysis techniques, such as weakest precondition, can be used to e ectively tackle the general problem of polluting objectives for almost all structural test criteria in real-world settings.

Another line of research attempts diminishing the undesirable e ects of infeasible paths in order to speed-up test generation.

Woodward et al. [START_REF] Woodward | Experience with Path Analysis and Testing of Programs[END_REF] suggested using some static rules called allegations to identify infeasible paths. Papadakis and Malevris [START_REF] Papadakis | Mutation based test case generation via a path selection strategy[END_REF] and Lapierre et al. [START_REF] Lapierre | Automatic Unit Test Data Generation Using Mixed-Integer Linear Programming and Execution Trees[END_REF] used a heuristic based on the k-shortest paths in order to select likely feasible paths. Ngo and Tan [START_REF] Ngo | Heuristics-based infeasible path detection for dynamic test data generation[END_REF] proposed some execution trace patterns that witness likely infeasible paths. Delahaye et al. [START_REF] Delahaye | Infeasible path generalization in dynamic symbolic execution[END_REF] showed that infeasibility is caused by the same reason for many paths and thus, devised a technique that given an infeasible path can identify other, potentially unexplored paths. All these methods indirectly support test generation and contrary to ours do not detect polluting test objectives.

Equivalent Mutants

Automatically determining mutant equivalence is an instance of the infeasibility problem and is undecidable [START_REF] Je Erson O Utt | Automatically Detecting Equivalent Mutants and Infeasible Paths[END_REF]. There are numerous propositions on how to handle this problem, however most of them have only been evaluated on example programs and thus, their applicability and e ectiveness remains unexplored [START_REF] Kintis | Detecting Trivial Mutant Equivalences via Compiler Optimisations[END_REF]. Due to space constraints we discuss the most recent and relevant approaches. Details regarding the older studies can be found in the recent paper by Kintis et al. [START_REF] Kintis | Detecting Trivial Mutant Equivalences via Compiler Optimisations[END_REF], which extensively covers the topic.

One of the most recent methods is the Trivial Compiler Optimization (TCE) [START_REF] Kintis | Detecting Trivial Mutant Equivalences via Compiler Optimisations[END_REF][START_REF] Papadakis | Trivial Compiler Equivalence: A Large Scale Empirical Study of a Simple, Fast and E ective Equivalent Mutant Detection Technique[END_REF]. The method assumes that equivalent mutant instances can be identi ed by comparing the object code of the mutants. The approach works well (it can identify 30% of the equivalent mutants) as the compiler optimisations turn mutant equivalencies into the same object code. In contrast our approach uses state-of-the-art veri cation technologies (instead of compilers) and targets all types of polluting objectives.

Alternative to static heuristics are the dynamic ones. Grun et al. [START_REF] Bernhard | The Impact of Equivalent Mutants[END_REF] and Schuler et al. [START_REF] Schuler | E cient mutation testing by checking invariant violations[END_REF] suggested measuring the impact of mutants on the program execution and program invariants in order to identify likely killable mutants. Schuler and Zeller [START_REF] Schuler | Covering and Uncovering Equivalent Mutants[END_REF] investigate a large number of candidate impact measures and found that coverage was the most appropriate. Along the same lines Kintis et al. [START_REF] Kintis | Employing secondorder mutation for isolating rst-order equivalent mutants[END_REF] found that higher order mutants provide more accurate predictions than coverage. Overall, these approaches are unsound (they provide many false positives) and they depend on the underlying test suites. In contrast our approach is sound and static.

Duplicate and Subsumed Test Objectives

The problems caused by subsumed objectives have been identi ed a long time ago. Chusho introduced essential branches [START_REF] Chusho | Test Data Selection and Quality Estimation Based on the Concept of Esssential Branches for Path Testing[END_REF], or non-dominated branches [START_REF] Bertolino | Automatic Generation of Path Covers Based on the Control Flow Analysis of Computer Programs[END_REF], as a way to prevent the in ation of the branch coverage score caused by redundant branches. He also introduced a technique devising graph dominator analysis in order to identify the essential branches. Bertolino and Marré [START_REF] Bertolino | Automatic Generation of Path Covers Based on the Control Flow Analysis of Computer Programs[END_REF] also used graph dominator analysis to reduce the number of test cases needed to cover test objectives and to help estimate the remaining testing cost. Although these approaches identify the harmful e ects of redundant objectives, they rely on graph analysis, which results in a large number of false positives. Additionally, they cannot deal with infeasible objectives.

In the context of mutation testing, Kintis et al. [START_REF] Kintis | Evaluating Mutation Testing Alternatives: A Collateral Experiment[END_REF] identi ed the problem and showed that mutant cost reduction techniques perform well when using all mutants but not when using nonredundant ones. Amman et al. [START_REF] Paul Ammann | Establishing Theoretical Minimal Sets of Mutants[END_REF] introduced minimal mutants and dynamic mutant subsumption and showed that mutation testing tools generate a large number of subsumed mutants.

Although mutant redundancies were known from the early days of mutation testing [START_REF] Kurtz | Analyzing the validity of selective mutation with dominator mutants[END_REF], their harmful e ects were only recently realised. Papadakis et al. [START_REF] Papadakis | Threats to the Validity of Mutation-based Test Assessment[END_REF] performed a large-scale study and demonstrated that subsumed mutants in ate the mutation score measurement. Overall, Papadakis et al. [START_REF] Papadakis | Threats to the Validity of Mutation-based Test Assessment[END_REF] showed that arbitrary experiments can result in di erent conclusions when they account for the cofounding e ects of subsumed mutants. Similarly, Kurtz et al. [START_REF] Kurtz | Analyzing the validity of selective mutation with dominator mutants[END_REF][START_REF] Kurtz | Are We There Yet? How Redundant and Equivalent Mutants A ect Determination of Test Completeness[END_REF] compared selective mutation testing strategies and found that they perform poorly when the mutation score is free of redundant mutants.

Overall, most of the studies identify the problem but fail to deal with it. One attempt to reduce mutant redundancies uses TCE [START_REF] Kintis | Detecting Trivial Mutant Equivalences via Compiler Optimisations[END_REF][START_REF] Papadakis | Trivial Compiler Equivalence: A Large Scale Empirical Study of a Simple, Fast and E ective Equivalent Mutant Detection Technique[END_REF] to remove duplicate mutants. Other attempts are due to Kurtz et al. [START_REF] Kurtz | Static analysis of mutant subsumption[END_REF] who devised di erential symbolic execution to identify subsumed mutants. Gong et al. [START_REF] Gong | Mutant reduction based on dominance relation for weak mutation testing[END_REF] used dominator analysis (in the context of weak mutation) in order to reduce the number of mutants. Unfortunately, both studies have limited scope as they have been evaluated only on example programs and their applicability and scalability remain unknown. Conversely, TCE is applicable and scalable, but it only targets speci c kinds of subsumed mutants (duplicated ones) and cannot be applied on structural test objectives.

CONCLUSION

Software testing is the primary method for detecting software defects. In that context, polluting test objectives are well-known to be harmful to the testing process, potentially wasting the tester's e orts and misleading them on the quality of their test suites. We have presented LClean, the only approach to date that handles in a uni ed way the detection of (the three kinds of) polluting objectives for a large set of common criteria, together with a dedicated (opensource) tool able to prune out such polluting objectives. LClean reduces the problem of detecting polluting objectives to the problem of proving assertions in the tested code. The tool relies on weakestprecondition calculus and SMT solving to prove these assertions. It is built on top of the industry-proof Frama-C veri cation platform, speci cally tuned to our scalability needs. Experiments show that LClean provides a useful, sound, scalable and adaptable means for helping testers to target high levels of coverage (where most faults are detected) and to evaluate more accurately the strength of their test suites (as well as of the tools possibly used to generate them). It could immediately bene t to all application developers that aim at speci c test suite coverage levels in their current testing process, like for example in the well-known SQLite database management system. A promising direction for future work is the extension of LClean to the few remaining unsupported classes of test objectives, like data-ow criteria.

/Figure 1 :

 1 Figure 1: Example of a small C program with test objectives their test suites and also result in sounder comparisons of test generation techniques [52].

 Figure 3: Coreached locations

Figure 4 :

 4 Figure 4: Number of pairs of labels in 14 C programs

Figure 5 :

 5 Figure 5: Frama-C plug-in implementing one LClean step

Figure 9 :

 9 Figure 9: Dynamic detection of (likely) polluting objectives vs. LClean (Siemens)

Table 1 :

 1 Comparison with closest research techniques

		Analyses	Scope	Acuteness
	TCE [53]	built-in compiler optimizations	interprocedural	+
	LUncov [8]	value analysis and weakest-precondition	interprocedural	++
	LClean (this work) weakest-precondition	local function	+

Table 2 :

 2 Static analyses available in closest techniques

 and Bardin et al. [8] that rely on weakest precondition. Beckman et al. proves infeasible program statements, Baluda et al. infeasible program branches and Bardin et al. infeasible structural test objectives. Apart from the side di erences (Beckman et al. targets formal veri cation, Baluda et al. applies model re nement in combination to weakest precondition and Bardin et al. combines weakest precondition with abstract interpretation)

The term equivalent label is not used here to avoid any confusion with the notion of equivalent mutant, which in mutation testing means infeasible objective.

Available from http://icse18.marcozzi.net.

ACKNOWLEDGMENTS

We thank the anonymous reviewers of ICSE'2018 for their valuable comments and remarks.

* A major part of this work has been performed as a CEA† This work has been partially funded by the French ANR (grant ANR-12-INSE-0002). ‡ This work has been partially funded by the EU H2020 programme (grant 731453).