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Abstract. In recent years Deep Learning based methods gained a growing recog-
nition in many applications and became the state-of-the-art approach in various
fields of Machine Learning, such as Object Recognition, Scene Understanding,
Natural Language processing and others. Nevertheless, most of the applications
of Deep Learning use static datasets which do not change over time. This scenario
does not respond well to a big number of recent applications (such as tendency
analysis on social networks, video surveillance, sensor monitoring, etc.), espe-
cially when working with data streams which require real-time adaptation to the
content of the data. In this paper, we propose a model that is able to perform
online data classification and can adapt to data classes, never seen by the model
before, while preserving previously learned information. Our approach does not
need to store and reuse previous observations, which is a big advantage for data-
streams applications, since the dataset one wants to work with can potentially be
of very large size. To make up for the absence of previous data, the proposed
model uses a recently developed Generative Adversarial Network to drive a Deep
Convolutional Network for the main classification task. More specifically, we
propagate generative models instead of the data itself, to be able to regenerate the
historical training data that we didn’t keep. We test our proposition on the well
known MNIST benchmark database, where our method achieves results close to
the state of the art convolutional networks trained by using the full dataset. We
also study the impact of dataset re-generation with GANs on the learning process.
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1 Introduction

Most of the recent research in Deep Learning community has been focused on the case
of static datasets, where the training data is first acquired and then used to train a model
[6]. However, nowadays there is a growing demand for real-time processing and anal-
ysis of continuously arriving huge amounts of data. One of the main challenges when
dealing with data streams is that the dataset one wants to process is potentially of a very
large size, which raises the issue of storage and memory management during training.
Another difficulty is that data should be processed in real time while new samples are



still continuously arriving. The problem here is that most of machine learning algo-
rithms converge to solution quite slowly and sometimes need several epochs of training
over the whole dataset, which is impossible in the online learning setup. An even big-
ger problem comes from changes in data distribution in time [10], which may force the
algorithm to over-fit on new data and discard useful information, learned from previous
observations.

In this paper we mostly consider the problem of storing previous observations and
adapting to changes in data content (e.g. new classes become available). To address the
storage problem we make use of Generative Adversarial Networks (GANs) [3] which,
in the past few years, acquired increased attention in the Machine Learning community
due to their ability to learn data representations and generate synthetic samples that are
almost indistinguishable from the original data.

Despite their popularity, GANs until now were almost not studied from the point
of view of their ability to generalize outside the training set. In this paper we introduce
the notions of generalizability and representativity of generative models and propose
quantitative metrics to evaluate them. Here by generalizability of generative model we
mean its capacity to focus not only on memorizing data samples it encounters during
training, but on learning concepts and patterns and become a representation of the data
distribution itself. The term representativity in its turn is used here to describe the ability
of generative models to represent the initial dataset it was trained on with all its internal
variability. We also investigate the ability of designed online classification system to
adapt to concept drifts by incrementally adding new classes of data during learning.

We validate our method on the MNIST database, often used for benchmarking. This
choice was mainly guided by the need to have a well-known benchmark for comparison
with both offline and online methods using deep neural networks. Our experiments
show that recent generative approaches using GANs have excellent ability to generalize
and discard the necessity of storing and reusing historical data to perform online training
of deep classification models.

To summarize, the contribution of this work is twofold. First, we propose and eval-
uate a new network architecture that uses GANs to allow to train online classifiers
without storing the incoming data while being able to adapt to new classes in the in-
coming data stream. Second, we study the impact of dataset regeneration with GANs
on the learning process.

The rest of the paper is organized as follows: In Sec. 2 we motivate our study and
present related work, in Sec. 3 we describe our model and in Sec. 4 we present the
validation results. We conclude the paper in Sec. 5 by an analysis of our main results
and perspectives for further work.

2 Related work

Until now, there are very few studies that investigate the possibility to train Deep Neural
Networks for classification in the online training scenario.

In [1] the authors address the problem of exploding storage demand in the online
learning setup by using the generative capacities of Deep Belief Networks (DBNs).
They train DBNs to generate samples from the training data distribution, and use those
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at a later stage for retraining and classification. The drawback of proposed method is
the poor generative performance of DBNs on image datasets. It causes a big decrease in
classification accuracy, compared to the offline setting with a static training dataset, and
results in the performance being far beyond the current state-of-the-art on the MNIST
dataset which they used to benchmark their method.

In a more recent work [8] the authors propose a method, Progressive Networks,
designed for effective knowledge transfer across multiple sequentially arriving tasks.
The evaluation of presented method is showed for the reinforcement learning problems,
but the authors state its possible application to a wide range of Machine Learning chal-
lenges. In proposed approach, a single deep neural network is initialized and trained for
the first given task. Each time new task is added, new neural network with the same
architecture as previous ones is initialized. At the same time, directed connections from
all previous models to the current models are initialized and serve as knowledge trans-
fer functions. During the back-propagation, those connections are updated together with
the weights of the current model to adjust the influence of previous models on the cur-
rent one. The pool of historical models stay unchanged and is only used for the forward
pass. The big limitation of this method is that the size of parameter space increases
rapidly when new tasks are added.

Another approach to deal with changing environment is proposed in [2]. Introduced
model, Pathnet, is represented by a huge Neural Network with embedded agents, that
are evolving to find the best matching paths through the network for a current task. After
the task is learned and the new one is introduced, parameters of the sub-network con-
taining the optimal pathway are "freezed" not to be modified by back-propagation when
training for new tasks. PathNet can be seen as an evolutionary version of Progressive
Networks, where the model learns its own architecture during training.

Both PathNet and Progress Networks approaches showed good results for learning
on sequences of tasks and can be considered as a good alternative to fine-tuning to
accelerate learning. However, they don’t provide a way to solve the problem of data
storage for streams since every task for these algorithms should be fully described by
its complete environment, which is not the case for data streams with only a part of all
data classes available at each time point.

Unlike previously described methods, our model is able to learn incrementally on
massive multi-class streaming data, is adaptable to changes in data distribution and has
no need in excessive historical data storage.

3 Proposed approach

In our experiments we use image datasets that are classically considered for static off-
line approaches. On fig. 1 we present our framework for online learning. Let S =
{Si|i = 1, .., N} be the distribution of real data, where each Si represents a separate
data class. In our learning framework we take the first coming class S1 from S and train
a generator G1, able to represent this data. We save G1 and discard S1. Then we start
training G2 on the data from S2, and in parallel train a classifier C12, feeding it with
samples from S∗

1 – synthetic data, generated by G1, and newly arriving real data from
S2. After that, data from S2 are discarded. We continue this procedure with all available
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Fig. 1: Schematic representation of our online learning approach. Data from the original
distribution is presented to the model class by class. Each time new class is presented
we simultaneously train a generator, modeling its distribution, and a classifier for all the
previously learned classes. See text for details.

classes from S, one by one, each time generating equal batches of data from all the
previously learned generators. Each time a new class is added we also add a node to
the output layer of the classifier and re-initialize its connections with the previous layer.
The rest of the network weights are copied from the previous state. See algorithm 1 for
pseudo-code.

To train generators, we use the DCGAN architecture [7], which follows the same
training logic as GANs. The main difference of DCGANs is that both generator and
discriminator networks are built from convolutional layers and have a set of topological
constrains to ensure better convergence. Compared to the original GANs, DCGANs
show higher stability during training and tend to produce more visually meaningful
samples when trained on image datasets.

To choose an architecture for the classification model we followed two criteria: (1)
the performance of the model should be comparable to the state-of-art and (2) it should
be shallow enough to be trained in real-time. The model we retained consists of 1 con-
volutional layer followed by two fully-connected linear layers. Each layer except the
last one is followed by a Rectified Linear Unit activation function and batch normaliza-
tion is used [4]. Dropout [9] is applied during training on all layers except the last one.
Adam [5] is used to perform model parameters optimization.
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Require: S =
∞⋃
i=1

Si : data stream, with i - class number

Require: n : number of already learned classes
Require: Gi : generative model for class i

Require: C1..n : classification model for data from
n⋃

i=1

Si

G1 ⇐ initialize model
n← 1
while S do

d⇐ get batch from Sj , j - current class
if j = n+ 1 then

n← n+ 1
Gn, C1..n ⇐ initialize models
if n > 2 then

C1..n ⇐ copy parameters from C1..n−1

end if
end if

d∗ ←
i6=j⋃

i=1..n

d∗i generate synthetic data from {Gi}

C1..n ⇐ feed with d
⋃

d∗

Gj ⇐ feed with d
end while

Algorithm 1: Online learning model, proposed in this paper. See Sec. 3 for details

4 Experiments

To test proposed method we used the well-known MNIST3 dataset of hand-written dig-
its under the form of gray-level images of 32x32 pixels. There are 60000 images in the
train set and 10000 images in the test set. The dataset includes 10 classes corresponding
to digits from 0 to 9. This database is widely used as a baseline in NN benchmarking and
there already exist a lot of pre-trained convolutional models that provide state-of-the-art
results for it.

Before using generated data from DCGANs to train networks in online scenario we
had to make sure that trained generators are able to represents well the initial training
data and generalize on the data distribution.

4.1 Generalizability of GANs

The ability to generalize on the whole data distribution having only a small part of it
available for training is one of the main characteristics that any learning system is ex-
pected to have. In the case of classification algorithms measuring the generalization
capacities of a given model is very straightforward and can be evaluated by the differ-
ence of the classification accuracy on training versus validation sets.

Creating a generative model that would be focused on learning concepts rather than
memorizing single data samples is a problem of a very high importance, since it can be

3 http://yann.lecun.com/exdb/mnist/
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(a) (b)

Fig. 2: Results of the generalizability test on MNIST (see sec. 4.1). (a) Learning curves
for different GANs support sizes, averaged over 10 runs; (b) Mean/std of the classifica-
tion accuracies for different GANs support sizes over 10 runs after 50 training epochs
for the generalizability tests with ε = 5%

considered as the machine’s creativity and imagination, which is a essential part of hu-
man intelligence. In other words, we are more interested in creating a model that would
be able to "imagine" objects, that are similar to those from data distribution, rather than
just reproducing the data samples it has seen during training, especially in the online
learning context where data distributions tend to change in time. This brings us to the
question of defining and measuring the generalizability of generative model. Unfortu-
nately the measure of the model’s capacity to generalize cannot be directly transfered
to generative models case from the classification task, as well as the notion of general-
izability itself has to be adapted.

We will say that a generative modelG trained on some support subsetDsupp of data
distribution D generalizes well on D over some measure M, evaluating the semantical
resemblance of samples from two datasets, if

|M(D\Dval, Dval)−M(DGen, Dval)| < ε,

where DGen is data, sampled from G, Dval is the validation subset of D, such that
Dval ∩Dsupp = ∅ and ε is the parameter, that determines the generalization quality.

Choosing the metric to measure the semantical likelihood between two datasets is
not straightforward. In our study we decided to use a neural network based classification
model for this purpose. Since neural networks are known and much appreciated for
their ability to learn the abstractions and internal data representations, the classification
accuracy (mean of the diagonal values of the confusion matrix) of this model when
trained on one dataset and tested on another one represents well desired properties.

One of the main assumptions on the generalization capacities of any machine learn-
ing algorithm is that to improve it one often would want to get a bigger training set with
more representative data samples. In our experimentations we adopt this idea and adapt
it to generative models case. Since the further experiments in the online scenario are
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performed with the use of DCGAN architecture to train generative models, from here
on we will consider only this example of generative model in our discussion. However,
it is important to mention that all the experiments and theoretical parts of our study can
be generalized to any type of generative models.

In following experiment D is the MNIST dataset and G is the set of generative
models G1, · · · , G10 - one for each data class. To evaluate the ability of G to generalize
on unseen content we designed a test that consists in varying the amount of original
data Dsupp used to train generative models on D from 60 (1% of the original data) to
6000 (100%) samples per class and comparing the accuracy of the classifier, trained
on the data generated by Gi, to the one trained and tested on the original data. The
classification model we use for this and all following experiments is the shallow neural
network described in sec. 3.

Fig. 2a represents averaged learning curves over 10 runs of classifier training on
generated data, with G trained on the datasets of different sizes. We can see from the
figure the confirmation of our hypothesis. The classification results on validation set
significantly improve when increasing the support set for training generative models.
Fig. 2b shows the curve of these improvements through all the tested support size values
and makes a link with the generalizability definition proposed earlier, with ε = 5%
and M(D\Dval, Dval) = 99.6%. We can see from the figure that using only 40%
(2400 samples per class) of the initial dataset allows us to obtain a highly generalizing
generative model with the generalization error below 5%. We can also observe that the
curve keeps going up and having more data for training the generative models would
ideally improve the final classification accuracy.

Fig. 3 shows random examples of synthetic samples, generated by DCGAN when
trained on different amount of MNIST dataset original images.

Fig. 3: Samples, produced by DCGAN-based generator, when using 1 to 100% of the
original MNIST dataset to train it
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4.2 Representativity of Generative Models

Another important question we needed to answer before passing to online scenario is
how much data do we need to sample from pretrained generators in order to represent
the full richness of the information, learned by generative models from the original
dataset. This problem is essential since the amount of data we need to generate while
training online classifiers influences directly the learning reactivity and it would be
reasonable to sample the smallest amount of data, that at the same time wouldn’t affect
too much the final accuracy.

Similar to the experiment, described in sec. 4.1 we trained one generative model
for each class in MNIST dataset and used the generated data to train a classifier with
the difference that this time we used the full dataset as a support for generative models
training.

Fig. 4: Results of the representativity test on MNIST (see sec. 4.2). Mean/std of the clas-
sification accuracies for different DCGANs support sizes over 10 runs after 50 training
epochs

To verify the representative capacities of DCGAN, we studied the influence of the
amount of generated data on the final training accuracy by varying its size from 1 to
100 % of the original dataset. Fig. 4 represents mean and standard deviation of the
classification accuracy over 10 runs for each chosen size of generated dataset. We can
clearly see that for MNIST dataset, generating samples in the amount of only 30% of
the original dataset is enough to reach almost the same training accuracy and stability,
as for the full-sized regeneration.

Comparing to the training on original data, where with the shallow network that we
use for classification we obtain the accuracy of F orig = 99.6%, training on generated
data reduces the maximum accuracy down to F gen = 97.2%. We can consider this
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decrease as the price we pay for not storing the data. Based on these two values we can
introduce the metric to evaluate representativity of generative model:

RM (D) =
F gen
M (Dval)

F orig
M (Dval)

= 0.976,

where M is the model we evaluate and Dval is the validation set - the subset of initial
data that was not used to train the generative model. In these notations, the value of
RM (D) close to 1 represents the case of D being well represented by G, we would talk
about bad representativity when RM (D) << 1 and RM (D) > 1 corresponds to the
case where generative models not only work as the memory to store data representa-
tions, but also act as a filtering mechanism that extracts useful information from data
samples.

4.3 Online classification using data regeneration

One of the possible limitations of our online classification method, described in Sec. 3,
is that to avoid forgetting we need to continuously generate data from all the previously
learned classes when receiving samples from new classes. Having the dependency be-
tween the amount of generated data and total number of classes in the dataset can be-
come a big problem for the classification tasks with hundreds and thousands of classes.
From the other hand, synthetic data in our model is used to ensure generalization and
stability for learning process and should not be considered as the main source of in-
formation for the parameters update. Generating too much of synthetic data can thus
reduce the importance that the model gives to original data we receive in streaming
mode.

Similar to the tests on representativity of generated models, described in sec. 4.2,
we evaluate the performance of our algorithm depending on the amount of data we
generate. The only difference is that in case of data streams we cannot know in advance
the size of the dataset, neither the total number of classes.

Fig. 5: Schematic representation of the way batches for online training are organized.
N is the size of real data batch, coming from stream, n is the number of already learned
classes.
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Fig. 6: Accuracy of our online-learning algorithm, described in sec. 4.3 for different
values of scaling parameter k for data regeneration

To deal with the outlined remarks, we design our experiments in a following way.
Each time we receive a batch of stream data of size N, we generate min(n,k)∗N

n data
samples for each previously learned class, where k is a parameter, fixed in the beginning
of each experiment, and n is the current number of learned classes, so that total volume
of generated data is equal to min(k, n) ∗ N (fig. 5). The size of generated data batch
depends on number of classes we have already learned only while n ≤ k. In each
experiment, fixed value of parameter k in the range between 1 and 9 is taken. Value
of 1 here corresponds to the case where the total amount of generated data is equal to
the size of received batch, while the value of 9 in the 10 classes classification problem
represents the case where for each already learned data class we generate the amount of
data, equal to the size of received data.

It is important to mention that in our experiments classification network was pre-
trained for several epochs on first two data classes before passing to online mode. Run-
ning test directly in streaming mode with just random initialization resulted in a very
poor performance for the whole duration of introduced streams.

Fig. 6 represents the results of online classification. The graph shows the perfor-
mance of proposed learning algorithm on the evolving dataset with incrementally added
classes of data. Each line is an average over 50 independent runs and corresponds to one
of 5 different values of k. Our method achieves the above 90% accuracy in a completely
online adaptive scenario already with k = 3 and keep growing. However, test on the
dataset with more data classes are needed to confirm these results.

5 Conclusion and perspectives

In this work we developed a Deep Neural Network based method for online data clas-
sification, making use of generative models to avoid storage of the historical data, and
proposed a quantitative way to evaluate the performance of latter. Despite the ability
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of designed method to efficiently adapt to new data classes and deal with the problem
of excessive storage for massive data streams, our model suffers from several limita-
tions. First of all, the algorithm needs an important amount of data to be generated on
each training step, which can become computationally expensive on datasets with a
very big number of classes. From the other hand, training both generative networks and
multi-class classifiers requires having a sufficiently big amount of original data from
each presented class, which is not the case for most of the real-life applications with
dynamic datasets.

To solve these problems, our future work will include the research on more efficient
training methods with less generated data to increase learning reactivity. Finding pos-
sible solutions to control the way information is propagated through the model in order
to give more importance to the new coming data and at the same time avoid forgetting
is also among our main priorities.
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