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Abstract
Current and future embedded manycore systems bring complex and heterogeneous architectures
with a large number of processing cores, making both parallel programming at this scale and
understanding the architecture itself a daunting task. Process Networks and other dataflow
based Models of Computation (MoC) are a good base to present a universal model of the
underlying manycore architectures to the programmer. If a language exposes a simple to grasp
MoC in a consistent way across architectures, the programmer can concentrate the efforts on
optimizing the expression of parallelism in the application instead of porting code to a given
system. In this paper, we present a process network extension to C called τC and its mapping
to both a POSIX target and the P2012/STHORM platform, and show how the language offers
an architecture independent solution of this problem.

Keywords: manycore, programming model, process networks, compiler toolchain

1 Introduction

Embedded manycores, i.e. systems-on-chip with over a hundred general purpose cores, are more
and more related to full scale computing farms. They typically employ a mix of shared and
local memory, often distributed, with also a network on chip (NoC) to enable communication
between cores or clusters of cores. Compared to their bigger brethren, they provide very limited
memory and are subject to strict dependability and performance constraints (e.g. guaranteed
performance) most of the time without memory coherence, because of tight power envelops.

As a consequence, developing for those targets suppose handling the following difficulties:
meeting performance and dependability requirements within limited resources; running cor-
rectly large parallel programs; and exploiting efficiently the underlying parallel architecture,
which sports both the lack of hardware abstraction layers (i.e. especially operating systems)
and hardware support for advanced system support (threading, memory management, etc.).

To target with reasonable efficiency such systems, a possible path is to provide a safe, high
level parallel Model of Computation (MoC) thanks to a programming language and a compiler
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able to target (several) manycore systems. We have chosen process networks as a suitable MoC
for the following reasons: its amenability to strict timing and safety requirements when suitably
restricted, its simplicity, its ability to provide a high-level abstraction on the hardware, and the
feasibility of an efficient compilation process for it.

We show in this paper how such a model is added to C with sound software engineering prin-
ciples, maintaining compatibility with existing code, and how its compiler and abstraction layer
are implemented to target different platforms (homogeneous/heterogeneous) such as a POSIX
Threads machine on one hand and the MCAPI communication API for the P2012/STHORM
manycore, on the other hand. In this paper, after a short section of related works, we will de-
scribe the τC model and syntax, before detailing its compiler implementation for both targets.

2 Related Works

The underlying MoC of τC can be put in perspective with the revival of dataflow models
and process network models [15]. It belongs to the class of Process Networks (PN), or Kahn
process networks [12]. As a language, τC is an extension to C; alike Cilk [6], OpenCL [13] and
XC [19], it adds a parallel programming model to the C language. It does so by adding new
constructs to C (similarly to XC [19], and Brook [7]), avoids pragmas (as done the OpenStream
effort [3]) and does not defines a new programming language (as done by StreamIt [2]). τC
was first described in a technical report for the Ther@ops project [10]. Core components of
the τC programming model are similar but a bit less flexible than the core parallel patterns of
FastFlow [1]; FastFlow SPSC are certainly faster than the τC POSIX Threads target, however
τC is targeting embedded manycores.

ΣC [11] is another dataflow language for manycores developed in collaboration between
CEA-LIST and Kalray. Our implementation of τC was done with very little support by a
reduced team and thus can hardly be compared to the full fledged implementation of ΣC [4].
Nonetheless, there is no forecast issues in doing the same level of optimizations with τC as was
done with ΣC (automatic partitioning, etc.). On language design, the expressiveness of τC is
more extensive (generic process networks) than ΣC whose MoC is limited to a deterministic
superset of CSDF.

3 τC : process network extensions to C

The programming language τC can be seen as an experiment in programming language design:
how to add to C the right extensions to be able to build process networks, and with the right
abstractions for sound software engineering. The main hypothesis for that approach is that a
programming language is a user interface between a machine and a programmer. The ability
of the programmer to build complex and efficient parallel programs on an embedded manycore
system is dependent on his capacity to construct a mental model of its program out of the
source code and the compiler feedback.

This hypothesis may be reflected in a language design, a choice of programming model or
an API design. In this paper, we focus on the programming model and the language design.

By construction, a process network model reduces parallelism, synchronization and commu-
nication to two concepts: single threaded processes and point to point communications with
blocking read/non blocking write. This is a parallel programming model which is surprisingly
simple to learn and understand. Additionally, a property of process networks is that, if all pro-
cesses are deterministic, then the whole process network is also deterministic. A consequence
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of that is that any error or incorrect behavior of such a deterministic process network is repro-
ducible given the same input, making understanding faults in this class of parallel programs a
lot easier on the programmer. This is therefore a programmer-oriented feature of this class of
programming models.

The language aims at two objectives: being familiar and efficient for embedded development,
and materialize the MoC concepts correctly. Our choice here is to extend C, hence giving us
a familiar and fairly simple syntax and very efficient compilers for all embedded manycores,
whatever the degree of complexity of their architecture.

To materialize MoC concepts in the language, our decision was to minimize the changes in
the C grammar, while introducing the needed components. The result is a hierarchical com-
ponent model whose base element is the task (a process), an additional derived type called an
interface, and statements to be able to express behavior sequences inside tasks. The hierarchical
construct is also an important point to lay the base for good design and engineering practices
when programmers implement applications on manycores. We will describe the model before
describing the language extensions in the following subsections.

3.1 Parallel programming model

The basic unit of the programming model is called a task. It is an independent process, with
one thread of execution and its own address space. It communicates through point to point,
unidirectional, typed links. Communication through links is done in blocking read, non-blocking
write fashion, and the link buffers are considered large enough to ensure execution.

An application is a graph of interconnected tasks. The graph is static and is typically
embedded in the executable. The model is hierarchical at the language level, with composition
handled by modules, a module being composed of tasks. A top-level task or module called main
defines the application.

Inside tasks, we make explicit the fact the execution paradigm is an automaton, by intro-
ducing state functions and a statement to control which state function is active.

Data distribution and control is typically handled by specific tasks, namely Split, Join, Sink,
to ease their implementation using dedicated hardware if appropriate.

Input / Ouput is handled by using the underlying system libraries; making API calls as
provided. τC does not require specific agents types for handling I/O and system interaction,
unless the target requires, one way or another, those nodes to run on specific parts of the
architecture (for example, io-dedicated processors).

An important feature of the τC language, not used yet, is the ability to extract by source
code analysis the state machine of a task. Pragmatically, it is feasible to consider a compiler
targeting a certain level of safety in design by rejecting code where building this state machine
can’t be done. Once a state machine for each task in the program is known, it is then possible
to compute the class of restricted process network we are dealing with (e.g. SDF [14], CSDF)
and apply the relevant analysis (static scheduling for SDF, etc...). Literature shows that a class
such as CSDF has both tractable analysis and strong expressive power [8] which makes it a
convenient target.

3.2 C-language extensions in τC

The extensions are limited to a type, two function definition variants and a statement; this
represents about 20 production rules when added to a standard LALR C grammar. Listing 1
illustrates the language elements of τC presented below. It is taken from the real application
presented in section 6.
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Interfaces and ports The first extension is a type, called interface. It describes the ports
of a component, and is written as a sequence of type : port where ports may be arrays (with
or without size), and types may be any type except a pointer1. The following example defines
an interface named ISplit with one input port of type char named input, and an array of
output ports of type char named output. The colon is here to make the difference between a
port of type array of char and an array of port of type char. The chosen syntax is simple and
quite common for example in actor languages or stream-oriented languages (StreamIt [2]).

typedef ISplit : (char : input) -> (char : output[]);

A feature of this syntax is that the size of a ports array may be undefined; the effective
number of ports in the array should be defined at the point where the task is instantiated in
the source code. This provides for parametric task definitions.

Task functions Tasks and modules are defined by task functions, that is C functions with
type interface returning respectively task or module. The following example defines a prototype
of a task (factory method pattern) with a compatible interface to the ISplit defined above. n
is a parameter to the task function that specifies the array size of the output interface.

task Split(int n, int k) : (char : input) -> (char : output[n]);

State functions A task contains the behavior of the process. To be able to analyze it and to
make explicit the fact that processes tend to be state machines, the behavior of a task is written
as a set of state functions, that is, functions returning void and having a specific interface type
mapping ports to variables with amounts.

The syntax then becomes the following: i <- input means that i will be defined in the
state function, and that it will contain a single element of the type defined for input. For such
a variable to read or write multiple elements, then it has to be written i[n] <- input, where
n can be a parameter of the state function.

The default state function is main(); it is called by the task at startup.
A default exit state function is also provided. Once called it performs a clean shutdown of

the task and propagates application termination over the network of processes.

next statement A single statement, next function name(), allows for exiting the state
function and selecting a different state function of the automaton.

Modules Modules have the same syntax as tasks, except that they do not contain state
functions; instead, they contain topology building code with the following API: creating a
task instance by calling the task function, and connecting two ports by an affectation between
members of the two tasks (as per their interface). For example, a very simple module would
then be:

module main() : () -> () {

Reader()->input = Sender()->output;

}

This module creates a Reader instance, a Sender instance and connects them, by saying the
Reader instance input port is connected to the Sender instance output port. It is also possible
to explicitly allocate variables to hold the tasks. In this case, we would have the following code:

1Because we cannot make hypothesis of a uniform memory mapping viewable from any core of the chip in
a general embedded manycore
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typedef iReadFrames : () -> (Pixel : frame, Pixel : prev);

task ReadFrames(char * file, int n, int start, int width, int height) : iReadFrames {

int i = start;

void process() : (pFrame[width*height] <- frame, pPrevious[width*height] <- prev) {

loadBMPData(pFrame, file, i);

memcpy(pPrevious, pFrame, width*height*sizeof(Pixel));

++i;

next (i < n ? process() : exit());

}

void main() : (pFrame[width*height] <- prev) {

loadBMPData(pFrame, file, i);

++i;

next process();

}

}

Listing 1: τC example of a task implementation; from the target tracking sample application
presented in section 6.

module main() : () -> () {

task s : () -> (float : output) = Sender();

task r : (float : input) -> () = Reader();

r->input = s->output;

}

Modules contain instantiation code and tasks contain execution code. This allows for decou-
pling the instantiation code and the execution code and enables pruning optimizations for the
final executable (removal of all symbols and code used only during instantiation, as in ΣC [11]
and Virgil [18]). Input/Output code and system interaction may be used in tasks and modules
alike.

Application entry point An application requires a main module as a top-level element.
Tasks can only be created by code inside modules, and communications may only happen by
activating state functions in tasks. State functions can only execute if the data they require is
present on the ports buffers, as expected from the blocking read property of the model.

Summary The extensions are simple. There is no send / receive primitives, no specific API
for topology building, correct encapsulation by interfaces, no restriction over the topology of
process networks thus harnessing their full expressive power (with the ability to build non-
deterministic process networks), and no non-obvious non-determinism in task behavior (in τC,
the programmer decides which behavior is activated next; to compare with the CAL [9] language
where it is the reverse, unless the programmer add guards to emulate the state machine).

3.3 A path from legacy C code

One of the design goals of τC is to make it possible to easily port and tune legacy C code,
especially functional prototypes for algorithms that will run on manycores. According to the
definition of the language, it can be done by applying the following rules: variables containing
data exchanged between tasks are normal C types (arrays) and may be used as parameters
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Figure 1: the code generation flow

to C functions. C algorithms run without changes in tasks. As tasks aren’t limited in code
size, there is no need to build the best parallelization of the application in a first approach: It
is possible and desirable to get the low hanging fruits for parallel expression by concentrating
porting efforts to the most relevant parts at first.

Tasks and modules are interchangeable: any entity with the same interface can be instan-
tiated in lieu of another. Hence a pipeline of tasks may see one of its stage replaced by an
optimized, parallelized combination of tasks in a module. Therefore, the porting efforts can be
made in an incremental manner. Moreover, static typing with interfaces in the instantiation
code in modules ensures easy verification of the validity of connections.

4 A sketch of the τC Compilation Process

A τC application is composed of three types of items: tasks, modules, and application mapping
(figure 1). τC tasks and modules are language elements that are processed in a different manner
in the code generation flow.

• τC tasks define the implementation of application processes. Each task implementation
is translated to plain C by the τC compiler frontend.

• τC modules define how tasks are connected together in an application. The language
elements that are specific to τC must also be translated in plain C, but the main part of
the work for modules consists in expressing the instantiated (unfolded) application graph
from the module descriptions.

The application mapping is not explicitly present in the implementation of an application.
It is built during the code generation process from (1) the instantiated graph of the application,
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obtained from the implementation of the modules and (2) a configuration file (provided by the
user) that describes the placement of tasks on the target platform. This is not the scope of
this work, but thanks to the properties of the τC language allowing for automatic analysis, it
is possible to have the configuration file generated from automatic tools.

The τC compiler chain, which is still under development, is built around four passes and
uses C as its back-end language. The first pass, the τC front-end, runs on a single compilation
unit (one file plus associated headers). Its main purpose is to perform a lexical, syntactic and
semantic analysis of the τC code, to perform one level of specification consistency verification
as well as to generate preliminary C code for either off-line execution or further refinement.

The second pass, which is part of the τC middle-end, deals with task instantiation and
connection, by putting together (possibly in an iterative fashion) the codes generated to that
end by the front-end. Once the application graph is complete, a number of parallelism reduc-
tion heuristics are applied so as to tailor the application to an abstract specification of the
platform resource capacities. The second pass subsequently computes a minimal deadlock-free
dimensioning of the buffer and generates additional code related to task and link instances.

The third pass (which also belongs to the middle-end) raison d’être is to perform resource
allocation at the system level. In particular, this encompasses real-time constraint-driven buffer
dimensioning as well as allocation of tasks to computing resources (cores, clusters, etc. depend-
ing on the architecture) and NoC configuration (if appropriate). This pass can be performed
in a feedback-directed fashion so as to achieve an appropriate level of performance.

The last pass, the τC back-end, is in charge of generating the final C code as well as the
runtime tables which make the link with the target execution support. Using the C back-end
tools, the τC back-end is also in charge of link edition as well as loadbuild, a process which
usually involves many subtleties on multi and manycore platforms.

5 Runtime support

5.1 Target platforms

We implemented a partial version of the full scale compilation support whose architecture was
discussed in section 4. It is above all a working prototype, in which the frontend compiler (pass
1), a fair chunk of the middle end (pass 2), and the runtime generator (pass 4) are implemented.

Our main target was the P2012/STHORM platform [5], and we also targeted standard
development stations supporting POSIX Pthreads for easier prototyping and debugging pur-
poses. STHORM is a large scale, scalable multi-core fabric, developped by STMicroelectronics
and CEA. It is composed of 4 clusters communicating via an asynchronous Network-on-Chip,
allowing each cluster to have its own voltage-frequency domain. Each cluster is featuring 16
processing elements (PEs) and one processor for task control. The platform also contains a fifth
cluster only composed of one processor dedicated to task control at the platform level. Clus-
ters each have 256 KB of onchip shared memory. The program memory is located onchip in a
shared memory outside of the clusters area. An external memory is also available, offchip, with
larger communication delays. This memory is accessible from the platform processors and from
the host. All the memories are visible via a global memory map, which eases the possibility
of inter-cluster communications. Each cluster also comes with DMA channels for inter-cluster
communication and communication with the host.

The work of design and implementation of the code generation toolchain was not dependent
of a particular platform architecture. In order to decouple the problems of code generation and
the adherence with a particular runtime API, we implemented a simple runtime library designed

τC: C with Process Network Extensions for Embedded Manycores Goubier, Couroussé and Azaiez
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Figure 2: UML overview of the runtime elements

as a wrapper between the generic C code generated by the τC toolchain and the target platform.
This runtime library provides a unified interface able to target POSIX Pthreads systems on one
hand and MCAPI systems [17] on the other hand. We used the implementation done by CEA for
the STHORM platform [16]. In this implementation, MCAPI domains correspond to STHORM
clusters; we associate τC tasks to MCAPI nodes.

5.2 General runtime interface

5.2.1 Tasks and ports

The applications produced by our toolchain must be able to run on parallel architectures that
do not present a central resource for task management and resource allocation (like STHORM).
As a consequence, a primary concern for the code produced by our toolchain was to produce
autonomous software entities, that do not require the need to access to a centralized service.
In other words, a τC application is only the aggregation of task objects, each of them only
requiring access to its attributes, and all the application lifecycle, including initialization and
termination, is done in a full parallel fashion.

Figure 2 presents a UML overview of the types of objects that are executed at runtime.
A τC application is the composition of task objects. Each task object instantiated by the
toolchain inherits from the generic task type. A task is composed of port objects, and ports
are instantiated by the toolchain from the generic port type. Task attributes are statically
initialized during code generation.

Task and port inheritance also allows us to introduce platform-dependent attributes. For
example, MCAPI domains where associated to STHORM clusters. Each task must be associated
to a particular MCAPI domain so that it can be correctly instantiated. On POSIX Pthreads
platforms, we do no need such information.

5.2.2 Communication channels

Communication channels are built from two instantiated ports that belong to two different tasks
(although there are no restrictions in the language for communication channels build from two
ports belonging to the same task). Each task is responsible for creating and initializing its
own ports. The communication channel is effectively active once the two ports have been
associated. In order to self-contain the phase of application startup in tasks, it was necessary
to add information about remote ports in tasks. Figure 2 depicts this relation: in addition
to the ports associated to a task, a task also has knowledge about the remote ports the task
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task Sender() : () -> (float : output)

{

int count = 0;

void main() : (out <- output) {

out = (float) count++;

if(count > 10) next exit();

}

}

(a) τC source code

void*__tc_task_Sender(void*arg)

{

int count=0;

__tc_func_main: {

float*out;

chan_write_lock(&t->output, &out);

(*out)= (float) count++;

if (count>10)

goto __tc_state_exit(0);

chan_write_release(&t->output);

}

}

(b) The corresponding generated code (simplified)

Listing 2: Exemple of simple Sender task: τC source code and generated code

will communicate to. Our internal API for communication channels would typically provide
functions similar to:

• void * chan_read(chan_t * chan, size_t size); for buffer reading, and

• size_t chan_write(chan_t * chan, void * buf); for buffer writing.

Such channel functions lead to memory copy of the buffer contents into or from another
memory buffer allocated by the callee. An advantage however of such solution is that the
management of shared accesses to the memory buffers is done inside the channel functions
rather than in the calling code.

We designed a special API to implement zero-copy accesses to the communication buffers.
The main drawback of this API is that if care is not taken to release the read or write lock
on the channel, the application could end into a deadlock. In our case, such situation cannot
occur because the channel API is only be targeted by the code generation toolchain, and not
directly used by the programmer. To illustrate this point, listing 2 exemples the τC code of a
Sender task (2a) and the corresponding generated code by our toolchain, in a simplified form
(2b). The write access to port output, aliased out, of task Sender in listing 2a is split in three
steps: (1) requesting a write lock to the port output; a copy of the buffer address is copied into
out, (2) reproducing the pointer operations as found in the original τC source code (3) closing
the write access to port output.

5.2.3 Application startup

As the compilation steps of the reference compiler (as described in section 4) were not completely
implemented, the instantiation of processes is done online with data statically generated during
pass 2 of the compiler. Application startup is complete once each task has: (1) created and
initialized its ports, (2) established connections with remote ports, (3) opened accesses to its
ports to enable communications

Tasks starts their processing job as soon as their initialization process is done, even if some
other tasks still have initialization operations pending.
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6 Using τC

As an illustration, we used one of our own application, a target tracking video processing
algorithm. We used a reference implementation in ΣC and translated it very easily in τC. It
exposes a common way of working with τC: all the processing code is held in a C library, and
the main application loop is transcribed from C to τC. The process is to take the C code chunks
in the top level loop (listing 3), rewrite that function in a task (listing 4) and add the creation
of the task in the main graph (listing 5).

The end result is, in the current state of the prototype, compilable to our two targets
(MCAPI on STHORM and POSIX Threads), including the offline instanciation phase, resulting
in the production of the process graph in figure 3. Note that in that particular case, the width
of the graph (the number of parallel processing threads over the video) is a command line
parameter of the top-level process in the τC code (and is written as you would read a command
line parameter in a C program).

We also use a simulator of the τC toolchain as a framework for students of Master2 educa-
tion about working and programming with process networks (lecture and courses parts of the
curiculum of University of Bretagne Occidentale –UBO). We have done so for two years (about
40 students), so far, and the feedback of student is excellent both on the illustrative power
of using the language as course support, but also as a simple means to start process network
programming.

7 Conclusion

We have presented the τC programming language and model, and its implementation on two
targets: POSIX Threads and MCAPI on P2012/STHORM embedded manycore.

The language is a limited and simple set of extensions over C, with a parsing and generation
of intermediate code in C, helped by an abstraction layer to isolate from the differences between
the two targets platform. The parallel programming model is simple, has interesting properties
both from the software engineering side and from the possibility of analysis offered by subsets
of this model. Finally, this is well suited to platforms such as the P2012/STHORM embedded
manycore, where the language and its compiler enables a high degree of isolation from the
specifics of the architecture while maintaining a high degree of parallelism and efficiency.

Future directions for the language are to explore some extensions to the model, integrate
a level of control flow graph analysis on the network, and improve the code generation and
mapping to take in account more information on the target architecture.
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void *minVariance(int width,int height,Pixel *pDiff,

Deviation *pDeviation,int *pMean) {

computeDeviationMacroBlock(width,height,pDiff,8,pDeviation);

computeMeanPicture(width,height,pDiff,pMean);

}

Listing 3: target tracing sample application: C source code extract for some motion prepro-
cessing code.

typedef iMinVarianceStrip : (Pixel : diffStrip)

-> (Deviation : deviation, int : mean);

task MinVarianceStrip(int width, int height) : iMinVarianceStrip {

void main() : ( pDiffStrip[width * height] <- diffStrip,

pDeviation <- deviation, pMean <- mean) {

computeDeviationMacroBlock(width, height, pDiffStrip, 8, &pDeviation);

computeMeanPicture(width, height, pDiffStrip, &pMean);

}

}

Listing 4: target tracing sample application: τC MinVarianceStrip task as ported from listing
3.

...

for(i = 0; i < nb_strips; i++) {

...

task aMinVarianceProcess : iMinVarianceStrip =

MinVarianceStrip(width, height / nb_strips);

aGMean->means[i] = aMinVarianceProcess->deviation;

...

}

Listing 5: target tracing sample application: instanciation of an instance of the MinVarianceS-
trip task (listing 4) in the main module.
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Figure 3: target tracing sample application: the process graph generated for the application
with runtime parameter 4 for the number of parallel strips over the video sequence. Note that
in this graph, the MinVarianceTask (listing 4) has been merged in a MotionPreprocess task.
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