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Abstract
Real-time and time-constrained applications programmed on many-core systems can suffer from
unmet timing constraints even with correct-by-construction schedules. Such unexpected results
are usually caused by unaccounted for delays due to resource sharing (e.g. the communication
medium). In this paper we address the three main sources of unpredictable behaviors: First, we
propose to use a deterministic Model of Computation (MoC), more specifically, the well-formed
CSDF subset of process networks; Second, we propose a run-time management strategy of
shared resources to avoid unpredictable timings; Third, we promote the use of a new scheduling
policy, the so-said Self-Timed Periodic (STP) scheduling, to improve performance and decrease
synchronization costs by taking into account resource sharing or resource constraints. This
is a quantitative improvement above state-of-the-art scheduling policies which assumed fixed
delays of inter-processor communication and did not take correctly into account subtle effects
of synchronization.

Keywords: Many-core systems, Real-Time, Data-Flow, Scheduling, Latency, Guarantees

1 Introduction

Real-time embedded systems require both functionally correct and temporally predictable ex-
ecutions. Given the scale of new massively parallel systems, such as the SThorm chip from
STMicroelectronics (64 cores) or the MPPA chip from Kalray (256 cores) [5], the scheduler
design of tasks and communications becomes more complicated and its impact upon the entire
system performance becomes more significant. Consequently, multiprocessor scheduling has
been an active area and therefore many scheduling and resource management solutions was
suggested. The Self-Timed Scheduling (STS) strategy (also known as as-soon-as-possible), is
considered as the most appropriate policy for streaming applications [14, 15, 17]. In Dataflow
models, each actor (i.e. process) firing starts as soon as their firing rules are satisfied.
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Such models of computation (MoC) offer a good visibility of datapath, actual parallelism
in a given application and synchronization points, which make such paradigm especially well
fitted. Programming languages like StreamIt [18], or ΣC [8] offer even more: An underlying
MoC which is deterministic, and purely data-driven. For both, the MoC is a subset of Khan
Process Network (KPN [9]), which can provably run in bounded memory. This is well-formed
Static DataFlow (SDF [12]) for StreamIt and a superset of well-formed Cyclostatic DataFlow
(CSDF [3]) for ΣC. The basic principle of KPN is simple: Processes are linked with FIFO
channels for communication. All FIFO channels are read-blocking and write are non-blocking.
In the case of SDF, for each firing of a process, a fixed amount of data tokens are expected on
each input channel, and a fixed amount of data token are produced on each output channel. If
any input channel has an insufficient amount of data tokens, the associated process cannot be
fired. For CSDF, the principle is the same, but the number of tokens produced or consumed on
each channel can vary in a cyclic way from one firing of the process to the next (see Figure 1).

For timing concerns, compared to using worst-case execution times, self-timed scheduling
will always do at least as well. Nonetheless, this result can only be true if synchronization
times are negligible. Synchronization is a special form of communication, in which the data
is an information for the control of the application. It has a dual role: (1) Enforcing the
correct sequencing of actors firing, and (2) Ensuring the mutually exclusive access to certain
shared data. To cope with such a requirement, STS introduces explicit synchronization checks
whenever two processors communicate. In this case, each synchronization can cost up to four
accesses to shared memory [16]. As a consequence, due to the complex and irregular dynamics
of self-timed operations, in addition to the high synchronization overhead, many different as-
sumptions were imposed, like uniform task execution times or contention-free communication.
However, neglecting subtle effects of synchronization or considering uniform costs for commu-
nication operations like in [2, 15] is dangerous and not realistic with regards to actual systems
and applications. Unless a special hardware for ordered communication transactions [17, 10]
or contention free communications [14] (e.g., Time Division Multiple Access (TDMA), Round-
Robin (RR)) that maintains a predefined schedule of accesses to the shared memoryis employed,
analysis and optimization of self-timed systems under real-time constraints remains challeng-
ing. Nowadays, periodic scheduling is receiving much more attention for streaming applications
[2, 6, 15]. These algorithms provide many nice properties such as timing guarantees for appli-
cations, temporal isolation [4] and low complexity of the schedulability tests. It was shown that
interprocessor communication overhead can be defined as a monotonically increasing function
of the number of conflicting memory accesses in a given period of the schedule [6]. Nonetheless,
periodic scheduling achieves optimal performance solely for matched I/O graphs i.e a graph
where the product of actor’s worst-case execution time and repetition is the same for all actors.
As in the real world, execution time of processes can vary largely, it is difficult to prove that a
graph is a matched I/O (or to build one).

In this paper, we show that it is possible to guarantee the matched I/O property for any
Cyclo-Static DataFlow (CSDF) graph by using a new scheduling policy noted Self-Timed Pe-
riodic (STP) Schedule. STP is a hybrid execution model based on mixing Self-Timed schedule
and periodic schedule while considering variable IPC times. To illustrate the impact of the STP
model on performance, we present the following motivational example.

1.1 Motivational Example

For any consistent CSDF graph, we can show a periodical firing of actors which will return to a
steady state (usually the initial state). This periodical firing is characterized by firing vectors,
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Figure 1: (a) CSDF graph (b) Throughput and latency metrics for the mismatched I/O CSDFG

and can be calculated from the topology of the graph and the amount of tokens consumed and
produced by each firing of actors.

For example, in Figure 1(a), we show a CSDF graph of 4 actors and 4 communication

channels. The CSDF graph is characterized by two repetition vectors
→
q and

→
r .

→
r is the

minimal set of actor firings returning the dataflow graph to its initial state. For the example
depicted in Figure 1(a),

→
r = [1, 2, 2, 4] and

→
q = [3, 2, 4, 8].

→
q is the minimal set of sub-tasks

firings returning the dataflow graph to its initial state. In fact, each actor in the graph is
executed through a periodically repeated sequence of subtasks. For example, if r1 = 1 then
q1 = 3 because actor a3 contains 3 subtasks (i.e. to get qi, we multiply ri by the length of the
consumption and production rates of ai). The worst-case computation and communication time
of each actor is shown next to its name between round brackets (e.g. 6 for a1). This graph is an
example of a mismatched I/O graph since the product of actor execution times and repetition
is not the same for all actors (e.g. 1×6 �= 2×8). Let Υ and L denote the throughput (i.e. rate)
and latency of graphs G, respectively, derived in Figure 1(b) for the example of Figure 1(a). It
has been shown that optimal throughput and latency of a matched I/O dataflow graph can be
achieved under Implicit-Deadline Periodic (IDP) schedule [2]. However, for mismatched I/O
graph, it pays a high price in terms of increased latency and decreased throughput. Instead, if
the actors are to be scheduled as Self-timed Periodic (STP) tasks, then it is possible to have
25% to 40% improvement compared to the IDP schedule. In our contribution, we propose two
granularities of scheduling. This depends on whether we use qi or ri as the basic repetition
vector of CSDF. For the proposed example, including the subtasks of actors results in better
performance for latency. However, for throughput STPqi gives better results1.

1.2 Paper Contributions

We propose two classes of STP schedules based on two different granularities. The first schedule
is based on the repetition vector qi without including the subtasks of actors. The second schedule
has a finer granularity and includes the subtasks of actors. It is based on the repetition vector
ri. For mismatched I/O graphs, we show that it is possible to significantly decrease the latency
and increase the throughput under the STP model for both granularities. We will show that our
approach guarantees the property of matched I/O rates for any CSDF graph and consequently
guarantees optimal performance.

The remainder of this paper is organized as follows. In Section 2, we represent a state of
the art methods relative to the scheduling policies of Multi-Rate DataFlow (MRDF) graphs on

1Let’s assume that an execution under STS has an additional cost of synchronization equal to 25% the
computation time of actors, the latency will be equal to L = 47 units of time. Thus, for a mismatched graph
example, the STP model is equally good to STS in terms of throughput and latency.
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multiprocessor systems. The considered model is described in Section 3. Our main contribution
is presented in Section 4. We finish with sections 5 and 6 where we present the case studies
and we state the conclusions.

2 Related Work

The most prominent performance metrics of concurrent real-time applications are throughput
and latency. Optimizing or analyzing latency of a stream program, in general, requires to find
a good tasks scheduling among the computing units. A schedule is more efficient if it hides
communication latencies whenever possible. In [10], Khandalia et al. explored the problem
of efficiently ordering interprocessor communication operations in statically scheduled multi-
processors. Their method is based on finding a linear ordering of communication actors at
compile-time which would minimize synchronization and arbitration costs, but at the expense
of run-time flexibility. In [17], the author proposes to schedule all communications as well as
all computations to eliminate shared resource contention. Their approach is based on using
a hardware central transaction controller that maintains a predefined schedule of accesses to
the shared memory. Another approach in [7] is based on Scenario-Aware Data-Flow (SADF).
In such model, an application is modeled as a collection of SDF graphs, each representing in-
dividual scenarios of behavior, and a Finite State Machine (FSM) that specifies the possible
orders of scenario occurrences. The paper provides techniques to analyze worst-case perfor-
mance analysis (i.e. highest throughput and minimal latency) of such applications. SADF was
primarily designed as a way of modeling behavior and not as a programming model. For this
reason, the execution model is not explicit about scenario transition decisions and data-flow
relation (i.e. there is no way of knowing where the decision to go from one scenario to another
was taken). In [2], Bamakhrama and Stefanov present a complete framework for computing
the periodic task parameters using an estimation of worst-case execution time. They assume
that each write or read has constant execution time but this is often not true. Our approach
is somewhat similar to [2] in using the periodic task model which allows applying a variety
of proven hard-real-time scheduling algorithms for multiprocessors. However, it is different in
the way of using the periodic behavior because actors will no longer be strictly periodic but
self-timed assigned to periodic levels. In addition, we treat the case variable execution time of
actors due to synchronization and contention in shared resources.

3 Model of Computation and Terminology

3.1 Timed Graph

The timed graph is a more accurate representation of the CSDF graph, that associates
to each subtask or instance of an actor a computation time and a communication over-
head. We consider the Timed graph G = (A,E, ω, fϕ). The set of actors is denoted by

A = {a11, a21, ..., aJ1
1 , ..., a1n, a

2
n, ..., a

Jn
n }, where n is the total number of actors in the CSDF graph.

The set of edges is denoted by E = {E1, E2, ..., Ev}. Each parallel actor ai is represented by
a Directed Acyclic Graph (DAG) and consists in a set of nodes and directed relations. The
nodes represent the instances of an actor, while the directed relations show the FIFO buffers.
Each instance aji is viewed as executing through a periodically-repeating sequence of sub-tasks
of length τi ∈ N

�. The production and consumption behavior of an actor is constant for a given
sub-task but may vary across the different sub-tasks.
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Figure 2: (a) Acyclic Timed dataflow graph of a pipeline example with timing parameters (b)
Decomposition approach example

A real-time DAG of ai is characterized by (τi, Ji, ωi, fϕ(i), Di), where Ji is the unfolding
factor of ai, ωi is the worst-case computation time, fϕ(i) is its communication time according
to schedule ϕ and Di is the relative deadline.

For many non-terminating dataflow graphs, the execution can be divided into finite itera-
tions. An iteration is a minimal set of actor firings returning the dataflow graph to its initial
state. qi > 0 [3] represents the number of invocations of an actor ai in one iteration of G and−→q = [q1, q2, ..., qn]

T , is the basic repetition vector of G.
In order to exploit inter-iteration parallelism more effectively, J iterations can be scheduled

together, where J represents the unfolding factor of G. If the graph is unfolded J times, each
actor ai is executed Ji = J × qi times. According to the DAG model, the execution flow of
subtasks is constrained by their directed relations between instances and sub-tasks which is
particular to CSDF model.

So, scheduling depends on actors and sub-tasks of actors. Each sub-task in aji =

{aji (1), ..., aji (τi)}, ∀ j ∈ [1, ..., Ji], can be treated as a single unit denoted by its total computa-
tion time and its total communication time. However, ignoring this finer granularity offered by
CSDF model can result in a pessimistic analysis, as with the example presented in section 1.1.

In this work, we consider only acyclic CSDF graphs. An acyclic graph G has a number of
levels, denoted by L. Assigning actors to levels is based on passing through the directed-acyclic
graph (DAG) of the MRDF application at compile-time. Different graph traversals types exist
like topological, breadth-first, etc. Actors will be assigned to a set of levels L = {L1,L2, ...,Lα}.
Authors in [2], proposed a method based on assigning the actors in the graph according to
precedence constraints. In order to guarantee bounded resource execution, additional prece-
dence edges can be added to the timed graph. As depicted in Figure 2, the DAG is decomposed
into a set of levels executed sequentially.

Definition 1. Consistency [11]: A CSDF graph is called consistent if and only if it has a non-
trivial repetition vector. For a consistent graph, there is a unique smallest non-trivial repetition
vector which is designated as the repetition vector of the CSDF graph. A repetition vector is
called non-trivial if and only if qi > 0 for all ai ∈ A.

Theorem 1. In a CSDF graph, a repetition vector −→q = [q1, q2, ..., qn]
T is given by [3]:

−→q = P · −→r , with P = Pjk =

{
τj , if j = k

0 , otherwise
(1)
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And, −→r = [r1, r2, ..., rn]
T , where ri ∈ N

�, is a solution of the balance equation:

Γ · −→r = 0, (2)

The topology matrix Γ specifies the connections between edges in directed multigraph. As
an example of this edge-vector topology matrix, a matrix entry Γui would be 0 if edge eu does
not connect to actor ai, pi if actor ai is the source actor of edge eu, and −ci if actor ai is the
sink actor of eu.

3.2 System Model and Schedulability

The system consists of a set Π = {Π1,Π2, ...,Πm} ofm homogeneous processors. The processors
execute a levels set L = {L1,L2, ...,Lα} of α periodic levels. A periodic level Li ∈ L is defined
as Li = (Si, ωli , fϕ(li), φi, Di), where Si is the start time of Li, ωi ∈ N

∗ is the worst-case
computation time, fSTP (i) ∈ N is the worst-case communication time of Li under STP schedule,
φi ≥ ωi+fSTP (i) is the level period and Di is the relative deadline of Li where Di = max

k=1→βj

Dk.

βj ∈ N
∗ represents the number of actors in each level.

A periodic level Li is invoked at time instant t = S1 + (i− 1)φ and has to finish execution
before time t = S1 + (i− 1)φ+ωi + fϕ(i). If Di = φ , then Li is said to have implicit-deadline.
If Di < φ , then Li is said to have constrained-deadline. Actors (i.e. tasks) in G are scheduled
as implicit-deadline periodic tasks and assigned to levels. At run-time , they are executed in a
self-timed manner. This is possible because actors of level k+1 consume the data produced in
level k.

The utilization of a task is Ui = ωi

φi
. For each level Li, the total utilization of is ULi

=∑βi

j=1
ωj

φj
. A scheduling algorithm is said to be optimal iff it can schedule any feasible task

set A on Π such that Ui ≤ m. Several global and hybrid algorithms were proven optimal for
scheduling asynchronous sets of implicit-deadline periodic tasks [4]. We restrict our attention
to consistent and live CSDF graphs. In fact, any acyclic graph is live [11].

A static schedule [17] of a consistent and live CSDF graph is valid if satisfies the precedence
constraints specified by the edges. Authors in [14], introduced a theorem that states the suf-
ficient and necessary conditions for a valid schedule. However, this result was established for
Synchronous Dataflow graphs where actors have constant execution times. The test in Equa-
tion 3 is a novel contribution of this paper. This allows the timing of firing respects the firing
rules of actors.

Theorem 2. Valid Schedule of CSDFG: A schedule S is valid if and only if for any edge e i � j ,
for any instance k ∈ N and for any sub-task τ ∈ [1, ..., τj ]:

s(j, k, τ) ≥ s(i, k + kε, τε) + ωi +max[fϕ(ai, ζi)] (3)

The schedule function s(i, k, τ) ∈ Z
+ represents the time at which the τ th sub-task of the

kth instance of actor ai starts execution. kε is defined as:

kε =

{∑τ
x=1 c

x
j div (pi + di,j) , if

∑τ
x=1 c

x
j mod (pi + di,j) �= 0∑τ

x=1 c
x
j div (pi + di,j)− 1 , else

(4)

di,j are the tokens already present on buffer(i, j). Similarly, τε is the smallest integer that can
verify the following equation:
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∑τε
x=1 p

x
i + di,j −

∑τ−1
x=1 c

x
j

cτj − kεpi
≥ 1 (5)

Proof 1. The firing rule of each actor allows precedence constraints not to be violated, it
follows that:

s(j, k, τ) = t ⇔ buff(i, j) ≥ cτj (6)

The number of tokens stored on buffer buff(i, j) of edge e i � j should be greater than or at
least equal to the number of consumed tokens for actor aj . Since CSDF is monotonic:

buff(i, j) 	 buff′(i, j) =⇒ s(j, k, τ) 	 s(j, k′, τ ′), ∀ k′ ≥ k (7)

FIFO property of communication buffers suggests that two consecutive executions of an
actor will always produce output tokens in the order of their firing. FIFO ordering of tokens
can be maintained, if each actor has a constant execution time, or has a self cycle with one
token:

s(j, k, τ) ≥ end(i, k′, τ ′) (8)

Then, If actor ai have a variable execution time Ti

s(j, k, τ) ≥ s(i, k′, τ ′) + Ti, ∀ Ti ∈ R
∗ (9)

Lemma 1 (FIFO property for DAG). : Any Directed Acyclic Graph (DAG) with actors that
have variable execution times can conserve FIFO property

Let Ti = ωi + max[fϕ(ai, ζi)], k
′ = k + kε and τ ′ = τepsilon, kε and τepsilon are obtained

according to formula 6.

4 Self-Timed Periodic Model

4.1 Assumptions and Definitions

A graph G refers to an acyclic consistent CSDF graph. A consistent graph can be executed with
bounded memory buffers and no deadlock. We base our analysis on the following assumptions:

A1. External sources in dataflow: The model is accomplished with interfaces to the outside
world in order to explicitly model inputs and outputs (I/Os). A source and a sink nodes can
be integrated as closures since they define limits for a portion of an application. A graph G
has a set of input streams I = {I1, I2, ..., IΔ} connected to the input actors of G, and a set of
output streams O = {O1, O2, ..., OΛ} processed from the output actors of G. An actor ai ∈ A
is defined, inter alia, with Eai = (Ein

ai
and Eout

ai
) the sets of its input and output edges. These

special nodes are defined as follows:

• 1. Nodes uniqueness: src ∈ A, Ein
src = ∅ and Eout

src = {I1, I2, ..., IΔ}, snk ∈ A, Ein
snk =

{O1, O2, ..., OΛ} and Eout
snk = ∅.

• 2. Samples arrival: the first samples of source actor arrive prior or at the same time when
the actors of G start execution. They are characterized by a minimum inter-arrival time
assumed to be controlled by the designer to match the periods of the intervals.
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Definition 2. For a graph G under periodic schedule, the worst-case communication overhead

f
Lj

STP of any level Lj ∈ L depends on the maximum number of accesses to memorymβj
processed

in the time interval [(j − 1)× φ, j × φ[:

f
Lj

STP =↑ f(mβj
), ∀Lj ∈ L (10)

In [6], we proved that f is a monotonic increasing function of the number of conflicting memory
accesses.

A2. For periodic schedules, synchronization cost is constant, because periodic behavior
guarantees that an actor ai ∈ Lj , ∀i ∈ [1, ..., βj ], will consume tokens produced at level (j −
1) [6]. The latter implies that actors of the same level can start firing immediately in the
beginning of a given period because all the necessary tokens have already been produced.

Definition 3. Matched Input/Output rates property:
According to [2], a graph G is a matched input/output (I/O) rates graph if and only if:

ηmodQ = 0, where η = max
ai∈A

(ωiqi) (11)

Q = lcm(q1, q2, ..., qn) (lcm denotes the least-common-multiple operator). If formula 11 does
not hold, then G is a mis-matched I/O rates graph. If ηmodQ = 0, then there exists at least
a single actor in the graph fully utilizing the processor (i.e. which represents the minimal level
period) on which it runs which allows the graph to achieve a maximum throughput.

4.2 Latency Analysis under STP Schedule

A self-timed schedule does not impose any extra latency on the actors. This leads us to the
following result:

Definition 4. (STPqi) For a graph G, a period φ, where φ ∈ Z
+, represents the period,

measured in time-units, of the levels in G. If we consider
→
q as the basic repetition vector of G,

then φ is given by the solution to:⎧⎪⎨
⎪⎩
φ ≥ max

j=1→α
max

k=1→βj

νj,pk∑
i=1

(qiωi + fφ(i)), iff νj,pi
> 1

φ ≥ max
j=1→α

max
k=1→βj

(qkωk + fφ(k)), iff νj,pi = 1
(12)

∀i ∈ [1, βj ] and ∀j ∈ [1, α].
The levels period φ is defined as the maximum execution time of all levels.
Definition 4 implies an equal period for all the levels. Similarly, we define the schedule

function for the finer granularity of CSDF characterized by the repetition vector
→
r as follows:

Definition 5. (STPri) If we consider
→
r as the basic repetition vector of G, then φ is given by

the solution to: ⎧⎪⎪⎨
⎪⎪⎩
φ ≥ max

j=1→α′
max

k=1→β′
j

νj,pk∑
i=1

(riωi + f ′
φ(i)), iff νj,pi

> 1

φ ≥ max
j=1→α′

max
k=1→β′

j

(rkωk + f ′
φ(k)), iff νj,pi

= 1
(13)
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∀i ∈ [1, βj ] and ∀j ∈ [1, α].

The earliest start time of actors under the STP model is given by the following lemma.

Lemma 2. For a graph G, the earliest start time of an actor ai ∈ Lj , denoted by si,j , under
a strictly periodic schedule is given by:

s(i, j) =

{
0 , if j = 1

(j − 1)φ , if j > 1
(14)

Latency is defined as the maximum time elapsed between the first firing of src actor and the
last firing of snk actor. Using Equations 14, 13 and 12, it is possible to compute the latency
under the STP model for any acyclic CSDF graph:

LSTPqi/ri
= α× φ (15)

Self-Timed Periodic (STP) Schedule is the main piece of our method. It’s a new hybrid
schedule based on the well-known periodic and self-timed schedules for streaming applications.
The first step in STP is based on passing through the directed-acyclic graph (DAG) of the
MRDF application at compile-time. Different graph traversals types exist like topological,
breadth-first, etc. Actors will be assigned to a set of levels L = {L1,L2, ...,Lα}. The best-case
level structure is composed of m tasks which can be executed in parallel by fully utilizing the m
processors provided by the platform, with a cumulative utilization of the task set that does not
exceed m. The level structure does not only depend on precedence constraints between tasks
defined by formula 3, but also on the degree of parallelism and of the architecture.

The second step consists in assigning priorities to actors of the same level using the self-
timed (i.e. As-Soon As-Possible (ASAP) start-time) strategy. At run-time, actors are scheduled
according to the assigned priorities. The final step assigns to each level a global period φ
according to following formulas:

5 Evaluation

5.1 ΣC: a new programming language for embedded manycores

We use the ΣC [8, 1], a language designed in order to ensure programmability and efficiency on
many cores. Close and familiar with C, it minimizes the specific syntaxes, while making explicit
the construction of parallelism. As a programming language, ΣC relates to StreamIt [18], an-
other programming language developed by Massachusetts Institute of Technology and specially
engineered for modern streaming systems. Whereas the way to build Networks of Processes
in StreamIt is by using the semantic of the code, which limits the topology of the associated
Network (StreamIt topology is hierarchical, and is mostly limited to series-parallel graphs with
nonetheless the important addition of feed-back loops; special features like teleport-messaging
are required to overcome this limitation, see [18]), the way it is done in ΣC, is through a two-
step compilation: The first step, is an off-line compilation to build the network of so-called
agents (individual tasks in the stream model) and a communication interconnect called sub-
graph. This two-step compilation process has the advantage to permit any kind of topology,
because it proceeds to an off-line execution of the first-stage compilation to build the process
network.
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5.2 MPPA Platform

We consider the MPPA − 256 [5] clustered architecure, from Kalray, comprising 256 user
cores (i.e. cores with fully processing power provided to the programmer for computing tasks)
organized as 16 (4× 4) clusters tied by a Network-on-Chip (NoC) with a torus topology. Each
cluster has 16 user processors connected to a shared memory. There are also 2 DMA engines
(one in Rx, one out Tx) for communication with the NoC, and one special processor called
Ressource manager which makes the role of orchestra conductor and provides OS-like services.
Each processing core PEi and the RM are fitted with two-way associative instruction and data
caches (i.e., each location in main memory can be cached in either of two locations in the
cache). In addition to the 16 clusters, there are 4 I/O clusters that provide access to external
DRAM memory or interfaces, etc. The shared memory of a given compute cluster is a modular
memory system. The memory system consists of M memory modules numbered 1, 2, 3, ... M-1,
M, among which the addresses are distributed cyclically, that is, if i is the address of a memory
location, then j ≡ i(modM) is the address of the module containing the location. For the
MPPA case, the memory system contains 16 memory modules of 128KB, so 2MB per cluster.
Each module has a memory controller connected to each pair of user processors (i.e. via a bus).
The memory is implemented as a multi-bus approach [5]: it provides the same functionality as
a full crossbar with lower impact on surface occupation and power consumption [13].

5.3 Evaluation Results

We evaluate our proposed framework in section 4 by performing an experiment on a set of
5 real-life streaming applications. The objective of the experiment is to compare the wors-
case end-to-end latency of streaming applications when scheduled using our self-timed periodic
scheduling to their worst-case achievable latency obtained via strictly periodic scheduling. Af-
ter that, we discuss the implication of our theoretical results from section 4 and the latency
comparison experiment. The streaming applications used in the experiment are real-life appli-
cations coming from different domains (e.g. signal processing, audio processing, etc.). Some of
these programs have been developed at CEA LaSTRE and some of them are StreamIt bench-
marks. We use the ΣC language to implement the streaming applications on MPPA platform.
Each application is executed with a set of input data to generate an execution trace. From
these results, we derive the number of shared memory requests as well as the execution time
of computation operations for each actor. The generated number of memory accesses is then
used in the analytical memory access model presented in [6] in order to have an upper bound
of communication and synchronization overhead. In fact, we can use the same model presented
in [6] because STP schedule conserves the periodic behavior. Since we have a computation time
and a communication overhead of actors, we apply the STP scheduling strategy in order to
delimit the different levels of execution and calculate levels period.

5.4 Discussion

In this experiment, we compare worst-case end-to-end latency resulting from our STP approach
to the IDP model. For latency, we report the graph maximum latency according to Formula 15.
For IDP schedule, we used the minimum period vector given in [2]. For STP schedule, we used
the minimum period vector given by Definition 12. ΣC tool-set defines the repetition vector
qi. Consequently, we derive only experimental results for one granularity. We will extend these
results in the future for the finer granularity STP model based on the repetition vector ri. Now,
Figure 3 shows the results of comparing the latency of one iteration in the graph under both
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Table 1: Presentation of each application
Application Description Source

Moving Average Calculate the average CEA LaSTRE and MIT
DCT Functions that implement Discrete Cosine

Transforms and Inverse DCT
CEA LaSTRE and MIT

BeamFormer Template application to perform beam-
forming on a set of inputs

CEA LaSTRE and MIT

AudioBeam Appication to do real-time beamforming on a
microphone input array

CEA LaSTRE and MIT

Laplacian Laplace operator CEA LaSTRE and MIT

Figure 3: Results of the latency comparison

IDP and STPqi . We clearly see that our STP model delivers an improvement of 25% to 35%
compared to IDP model. For all the applications, the latency was improved without verifying
if the graph is matched I/O or not.

6 Conclusion and Perspectives

We prove that the actors of a streaming application modeled as CSDF graph, can be scheduled
as self-timed periodic tasks. As a result, we conserve the properties of a periodic scheduling and
in the same time improve its performance. We also show how the different granularities offered
by CSDF model can be explored to decrease latency. We present an analytical framework for
computing the periodic task parameters while taking into account inter-processor communi-
cation and synchronization overhead. As a future work, we will compare self-timed periodic
schedule and self-timed schedule in the presence of non negligeable IPC overhead. We also want
to improve our scheduling test for STP model with a finer granularity.
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