
HAL Id: cea-01831557
https://cea.hal.science/cea-01831557v1

Submitted on 6 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

A first step to performance prediction for heterogeneous
processing on manycores

N. Benoit, S. Louise

To cite this version:
N. Benoit, S. Louise. A first step to performance prediction for heterogeneous processing on manycores.
Procedia Computer Science, 2015, 51, pp.2952-2956. �10.1016/j.procs.2015.05.493�. �cea-01831557�

https://cea.hal.science/cea-01831557v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

doi: 10.1016/j.procs.2015.05.493

A First Step to Performance Prediction for Heterogeneous

Processing on Manycores

Nicolas Benoit1 and Stephane Louise3

1 Bull-Serviware, Croissy Beaubourg, France
2 CEA, LIST, PC172, 91191 Gif-sur-Yvette, France

stephane.louise@cea.fr

Abstract
The current trends in processor industry opens the way to next generations of microprocessors
may count hundreds of independent cores that may differ in their functions and features. As an
extensive knowledge of their internals cannot be a prerequisite to their programming and for
the sake of portability, these forthcoming computers necessitate the compilation flow to evolve
and cope with heterogeneity issues.

In this paper, we lay a first step toward a possible solution to this challenge by exploring
the results of SPMD type of parallelism (as a first step) with heterogeneous compute kernels
and predicting performance of the compilation results. We show some first experimental results
with very good accuracy of the predicted performance with regard to real world measurements.

Keywords: Heterogeneous systems, Performance prediction, Compilation for parallel systems

1 Introduction

During the last decades, the performance growth of microprocessors has been continuously
driven by the growth of silicium surface densities and of clock frequencies. Adding multiple
independent execution cores is one of the proposed solutions [2]. It is simple and promising but
requires a paradigm shift in the field of programming. Instead of writing a single monolithic
task, programmers are now required to distribute collaborating tasks to multiple cores.

Current computing trends also suggest that heterogeneous multiprocessors are on their way
to conquer a large share of the architectural landscape [2]. In order to take advantage of
such designs, a compilation flow must be able to detect the affinity of code portions with the
capabilities of the available Processing Elements (PEs, or cores). To this end, the process
scheduling part of the compiler must be able to predict the performance resulting from their
collaboration.

Therefore, when targeting heterogeneous systems, program characteristics must be checked
for matching the target and additional specific information must be gathered. In this paper,

Procedia Computer Science

Volume 51, 2015, Pages 2952–2956

ICCS 2015 International Conference On Computational Science

2952 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2015
c© The Authors. Published by Elsevier B.V.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.493&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.493&domain=pdf

we consider SPMD-threaded programs and their execution on architectures coupling multiple
general-purpose cores to specialized cores. We also show that the proposed process works well
to distribute heterogeneous compute kernels on homogeneous targets, as a side effect.

In this paper, we will present a proposition of execution model for performance prediction
and how to conduct the evaluation in section 2, then experimental results on benchmark pro-
grams and on a simple architecture as first evaluation are presented in section 3, then we present
a quick overview of related works in section 4.

2 Program mapping and Execution Model

2.1 Detection of Candidates to Specialization

In previous works we presented a generic characterization of the input program [5] that allows
our tools to find program constructs that could be mapped to specialized PEs (SPs). Execution
and communication costs are confronted to detailed information about the target architecture
in order to build a summary for each class of PEs.

In addition, the selection process can rely on several criteria such as: An execution cost
threshold above which the offloading cost of a part of the execution may be amortized, a com-
putational intensity threshold above which extra communication costs due to the offloading may
be considered negligible, or the availability on a distinct set of PEs of a category of computation
(e.g. instructions such as Multiply-Accumulate, vector operations . . .) or functionality (e.g.
OS system calls).

2.2 Execution Model

In this paper we focus on data-parallel parts of applications, as pipelined parts could be handled
in a simpler way e.g. with Stream Graph Modulo Scheduling technique [8]. Being data-parallel,
the application can be split into N independent jobs, each operating on independent sets of
data in a SPMD fashion. A section of the application requires to be offloaded to Specialized
Processors (SPs).

With these hypotheses, the proposed execution model relies on two work queues QG and QS .
The work queue QG, shared by all the available General-Purpose Processors (GPs), manages
the general-purpose jobs. It is a priority queue where idling jobs are ordered according to
their completion status. The work queue QS , shared by all the available Specialized Processors
(SPs), manages the requests of specialized sections execution issued during the processing of
general-purpose jobs. It is a FIFO queue.

In the synchronous case, a GP is blocked until the specialized job request issued for its
current job is done. In the asynchronous case, a GP puts back its current job in QG and picks
another one. The previous job will be made available to GPs as soon as its specialized job is
finished. Jobs of the application are split into 5 sections:

• GP prologue is the first section to be executed after a job has been picked by a GP. It
contains all the code that must precede the specialized section.

• GP issue contains the code necessary for the GP to issue a request to the SPs.
• SP work is the specialized section, the code to be executed by a SP.
• GP work contains some work that is independent from the specialized section that the

GP can perform.
• GP epilogue section wraps the work that is dependent from the specialized section.

Toward Performance prediction for Heterogeneous workloads on Manycores N. Benoit and S. Louise

2953

The execution course and global state of the machine can be described by a Petri net, as
shown in Figure 1. On this figure, the Petri net is initialized with one pending job, one idling

Figure 1: Petri net tracking the machine state in the asynchronous case.

GP and one idling SP.
Each GP picks a job from QG. During the processing, each GP issues a query to offload the

specialized section, adding a job request to the queue of specialized works QS . SPs pick job
requests from QS in a FIFO order.

As the SPs are shared between the GPs, the number of each must be adjusted to avoid
contention. Then, four parameters can be devised to adapt the flow of the pipelining scheme
set-up within this model: The number of GPs used, the number of SPs used, the number of
partitions of the input dataset, the number of sub-partitions applied to the specialized section
of each job. These four parameters constitute a configuration of execution.

2.3 Performance Prediction

To simulate the execution of the application and achieve performance prediction, each task is
tagged with two values : a cost and a parallelism ratio. The cost corresponds to an estimation
of the execution time of a phase when executed without any partitioning of the application’s
workset. It can be obtained by profiling or instrumentation, but requires the execution time to
be stable and independent of the input dataset. This constraint is often met in data-parallel
algorithms, so this is an important first step.

The parallelism ratio (referred to as P ratio in the remainder) of a task is meant in Amdahl’s
sense [1]. It establishes in which proportion the execution time is reduced when increasing the
number of workset partitions with an infinite number of processors.

The issue task is distinguished from the prologue because its parallelism ratio may be
different. Its purpose is to enable the capture of the communication costs between the GPs and
the SPs. According to the nature of the coupling between the GPs and SPs, these costs can
also be captured by the SP work task characteristics. In order to explore the behavior of the
execution model proposed and predict performance trends, an event-driven simulator has been
developed based on a Petri net model as seen in Figure 1 for the asynchronous case.

3 Experiments

Gomet [4, 5], our extension of GCC, supports code generation in the programming framework
described above. Data-parallel loops detected in the input source code are rewritten to use the
constructs of our programming framework and become kernels.

Toward Performance prediction for Heterogeneous workloads on Manycores N. Benoit and S. Louise

2954

Currently, data-parallel loops that are transformed to kernels are only checked for exposing a
computational cost superior to a constant threshold. In Section 2.2, we introduced an execution
model for SPMD-threaded programs which relies on the drawing of two sets of processing
elements: General-Purpose Processors (GPs) and Specialized Processors (SPs). This section is
a first evaluation of the accuracy of the performance predictor developed to support this model.

The computer used for this evaluation is a quad-processor AMD Opteron 6172 with a total of
48 cores. It is clocked at 2.1 GHz with 64 GB of RAM. The compiler used is GCC 4.6.1 and the
system runs a Linux 2.6.32 kernel on a SuSE Linux Enterprise Server 11. The Filterbank and
FFT are configured to process a collection of signal slices independently. Table 1 summarizes
the costs of the tasks as returned by the runtime characterization phase when processing 2048
signal slices.

name purpose cost (ms) P ratio
prologue initialization 1596 0.97
issue specialized job request 23 0.73

GP work FFT 83702 1.0
SP work Filterbank 439767 1.0
epilogue empty 3 0.76

Table 1: Filterbank and FFT characterization on a 48-core homogeneous architecture

Setting the number of GPs to twelve and the number of SPs to twenty-four, Figure 2 shows
the evolution of the speed-up against a sequential execution as measured and as predicted by
the simulator.

 1

 3

 5

 7

 9

 11

 13

 15

 17

 19

 21

 23

 1 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240 252

S
pe

ed
-u

p

Number of jobs

measured predicted

Figure 2: Measured and predicted speed-up on a homogeneous architecture with a varying
number of jobs relative to an execution with one GP and one SP.

The simulator correctly captures the effect of using a larger number of work partitions: the
performance grows as the balancing between GPs and SPs improves. Also, the prediction mean
absolute error is kept very low at 1.59 %.

4 Related Works

There are already various proposals of execution models and programming frameworks for het-
erogeneous architectures [6, 7, 3]. Regarding strictly the execution model, the main studied
issues are often the evaluation of the profitability of offloading computation to a specialized
resource, and the relevant code transformations. To the contrary, given a heterogeneous con-

Toward Performance prediction for Heterogeneous workloads on Manycores N. Benoit and S. Louise

2955

text, our model focuses on the configuration of the execution so that the sharing of multiple
specialized resources is not a performance bottleneck.

On the topic of shared resource contention, the work in [9] aims at categorizing the behav-
ior and cohabitation of applications when they compete for the same resources (cache memory,
hardware prefetcher, etc.). Our work addresses the same issue, but at a coarser level of special-
ization. In addition, focusing on SPMD-threaded programs allows us to provide a finer analysis
of the execution and enables performance prediction.

5 Conclusion and Outlooks

In this paper, we presented a first step to solve some important problems regarding compilation
of applications on manycores, with heterogeneous processings. Our contribution is an automatic
tool to map the parallelism onto parallel system with heterogeneous PE, and predict with a
very good accuracy their real life performance (less than a few percents). With such results, a
parallelizing compiler can map automatically the application on a target without the help of a
programmer while reaching close to the best performance for the application on the system.

Future work will extend our results to other systems and apply our technique to parallelize
applications.

References

[1] G.M. Amdahl. Validity of the single processor approach to achieving large scale computing capa-
bilities. AFIPS Conference Proceedings, 30(8):483–485, 1967.

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson,
W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick. The Landscape of Parallel Computing
Research: A View from Berkeley. Technical Report UCB/EECS-2006-183, EECS Department,
University of California, Berkeley, Dec 2006.

[3] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: A Unified Platform for Task
Scheduling on Heterogeneous Multicore Architectures. Concurrency and Computation: Practice
and Experience, Special Issue: Euro-Par 2009, 23:187–198, February 2011.

[4] N. Benoit and S. Louise. Extending GCC with a multi-grain parallelism adaptation framework for
MPSoCs. In Proceedings of the 2nd International Workshop on GCC Research Opportunities, pages
20–33.

[5] N. Benoit and S. Louise. Kimble: a hierarchical intermediate representation for multi-grain paral-
lelism. In Florent Bouchez, Sebastian Hack, and Eelco Visser, editors, Proceedings of the Workshop
on Intermediate Representations, pages 21–28, 2011.

[6] G. F. Diamos and S. Yalamanchili. Harmony: an execution model and runtime for heterogeneous
many core systems. In HPDC ’08: Proceedings of the 17th international symposium on High per-
formance distributed computing, pages 197–200, New York, NY, USA, 2008. ACM.

[7] J. Enmyren and C. W. Kessler. SkePU: a multi-backend skeleton programming library for multi-
GPU systems. In Proceedings of the fourth international workshop on High-level parallel program-
ming and applications, HLPP ’10, pages 5–14. ACM, 2010.

[8] M. Kudlur and S. Mahlke. Orchestrating the execution of stream programs on multicore platforms.
In PLDI ’08: Proceedings of the 2008 ACM SIGPLAN conference on Programming Language Design
and Implementation, pages 114–124. ACM, 2008.

[9] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared resource contention in multicore
processors via scheduling. In Proceedings of the fifteenth ASPLOS on Architectural support for
programming languages and operating systems, pages 129–142, New York, NY, USA, 2010. ACM.

Toward Performance prediction for Heterogeneous workloads on Manycores N. Benoit and S. Louise

2956

