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This paper addresses the problem of automatic feature extraction for signal classification. In order to handle non-stationarity, features are designed in the time-frequency domain using a Filter Bank as the mapping function, which enables an easy interpretation for practitioners. The strategy adopted is to jointly learn a Filter Bank with a Support Vector Machine by casting the optimization program as a Multiple Kernel Learning problem. This solves the program for a finite set of filters. Thus, in order to handle an infinite number of filters, a novel active constraint algorithm is proposed based on the latest breakthroughs. Our method has been tested on a toy dataset and compared to classical methods with competitive results.

INTRODUCTION

In recent years, Signal Processing has broadened its focus towards Machine Learning methods. In this scope, features are needed to characterize similarities within a class and disparities between classes to be distinguished. This property, called discrimination, obviously affects the classifier accuracy and thus features should be more elaborated than a simple time representation. There is a lot of possible features for signal classification rocking from physical perceptions (loudness), statistical moments (covariance matrix), spectral characterization (Fourier transform) and time-frequency representations (spectrograms, wavelet decompositions). However, the features extractor of this preprocessing step is usually arbitrarily chosen and abusively considered independently from the choice of the pattern recognition algorithm, so that there is no guarantee of any classification efficiency.

This problem of finding discriminative features with respect to the chosen classifier became a field of interest in the 1990's. It appeared in different areas for different categories of features (e.g. [START_REF] Saito | Local discriminant bases and their applications[END_REF][START_REF] Mairal | Supervised dictionary learning[END_REF][START_REF] Winn | Object categorization by learned universal visual dictionary[END_REF][START_REF] Blei | Supervised topic models[END_REF][START_REF] Holub | A discriminative framework for modelling object classes[END_REF][START_REF] Lasserre | Principled hybrids of generative and discriminative models[END_REF][START_REF] Raina | Classification with hybrid generative/discriminative models[END_REF][START_REF] Salakhutdinov | Learning a nonlinear embedding by preserving class neighbourhood structure[END_REF][START_REF] Larochelle | Classification using discriminative restricted boltzmann machines[END_REF]). Particularly in signal classification, discriminative features learning was especially developed for time-frequency representations (TFR), which may contain more information than physical and statistical descriptors and present a real advantage for non-stationary signals. The bulk of the scientific contributions deals with wavelets learning combined with a Support Vector Machine (SVM) [START_REF] Jones | Genetic algorithm wavelet design for signal classification[END_REF][START_REF] Strauss | Hybrid wavelet-support vector classification of waveforms[END_REF][START_REF] Strauss | Feature extraction by shape-adapted local discriminant bases[END_REF][START_REF] Farina | Optimization of wavelets for classification of movementrelated cortical potentials generated by variation of forcerelated parameters[END_REF][START_REF] Vautrin | A novel criterion of wavelet packet best basis selection for signal classification with application to brain-computer interfaces[END_REF]. Moreover, optimization methods usually boil down to an exhaustive search or an evolutionary algorithm. More recently, Yger et al. have proposed an efficient method to learn a mixture of wavelet transforms based on the Kernel Learning theory [START_REF] Yger | Wavelet kernel learning[END_REF]. Besides, let us mention that dictionaries [START_REF] Mairal | Supervised dictionary learning[END_REF][START_REF] Huang | Sparse representation for signal classification[END_REF][START_REF] Rodriguez | Sparse representation for image classification: Learning discriminative and reconstructive nonparametric dictionaries[END_REF]] and Cohen's class TFRs [START_REF] Davy | Optimized support vector machines for nonstationary signal classification[END_REF] have also been studied in the discriminative approach.

In [START_REF] Vignolo | Evolutionary cepstral coefficients[END_REF][START_REF] Vignolo | Evolutionary splines for cepstral filterbank optimization in phoneme classification[END_REF], the authors chose the Filter Bank (FB) model [START_REF] Vaidyanathan | Multirate systems and filter banks[END_REF] to extract features from signals and tried to learn it in unison with a Thanks to the Direction Générale de l'Armement for funding.

Hidden Markov Chain based classifier through an evolutionary algorithm. In the past couple of decades, FBs have been well studied in the reconstructive approach for denoising and compression [START_REF] Vaidyanathan | Multirate systems and filter banks[END_REF][START_REF] Kha | Symmetric orthogonal complex-valued filter bank design by semidefinite programming[END_REF][START_REF] Kha | Efficient design of cosine-modulated filter banks via convex optimization[END_REF][START_REF] Akkarakaran | Filterbank optimization with convex objectives and the optimality of principal component forms[END_REF][START_REF] Gauthier | Optimization of synthesis oversampled complex filter banks[END_REF] and appeared with these studies to be adequate for discriminative feature extraction.

In order to fill the gap between the choice of the features extractor among the various Signal Processing tools and the classifier learning, we investigate, in this work, the way to jointly learn a FB with a SVM. FBs have been chosen for their ability to model a wide class of atomic decompositions (cosine transform, short-time Fourier transform, wavelet transform, etc.). Moreover the very definition of the FB [START_REF] Vaidyanathan | Multirate systems and filter banks[END_REF] ensures a direct time-frequency interpretation. However, while most of the aforementioned approaches achieve a posterior optimization (the cost function is a misclassification rate), we prefer the more theoretical way of the prior optimization using the SVM objective as the cost function. For this purpose, we follow the same technique as [START_REF] Yger | Wavelet kernel learning[END_REF], casting the problem as a Multiple Kernel Learning problem [START_REF] Rakotomamonjy | Simplemkl[END_REF] in which each kernel is associated to a parametrized filter.

To explain our approach, we first remind of the kernelized framework for classification, especially the SVM and the Multiple Kernel Learning (MKL). Then we expose basics on FBs and introduce the Filter-MKL algorithm, which enables to jointly learn a FB with a SVM. In order to tackle the infinite amount of filters, we propose an active constraint algorithm based on the Karush-Kuhn-Tucker (KKT) conditions. This one extends the work by Varma and Babu [START_REF] Varma | More generality in efficient multiple kernel learning[END_REF] to an endless number of kernels. Finally, our method is evaluated on a toy dataset and compared to classical Signal Processing transforms combined with a SVM.

KERNELIZED FRAMEWORK FOR CLASSIFICATION

Support Vector Machine

Let X be an arbitrary compact input space, S + X the set of symmetric positive definite kernels on X and O∞ the set of all training datasets:

O∞ = +∞ N =1 (X N × Y N ) (where Y denotes the set of labels; here, Y = {-1, 1}).
SVM is a well known algorithm that, given a training set ((xi, yi)) 1≤i≤N from O∞ (here, xi are signals), a kernel k from S + X and a trade-off parameter C ( 1 N ≤ C [START_REF] Shawe-Taylor | Kernel methods for pattern analysis[END_REF]), returns the optimal linear classifier f * in the feature space H k defined by k [START_REF] Vapnik | Statistical learning theory[END_REF]. SVM tackles the problem of minimizing the structural risk R ((xi) 1≤i≤N , k, f ) with respect to f , where, if w f denotes the unique normal vector of

H k that defines f , R ((xi) 1≤i≤N , k, f ) = 1 2 w f 2 + C N i=1 max(0, 1 -yif (xi)).
Let Y = diag(y) and K be the positive definite kernel matrix de-fined by K = (k(xi, xj)) 1≤i,j≤N . In practice SVM solves a dual form (1) of the previous problem (in the forthcoming sections, we note J ((xi) 1≤i≤N , k) the optimal value of (1)), where 1 stands for the indicator vector and for a pointwise inequality.

maximize α∈R N 1 T α -1 2 α T Y KY α subject to 0 α C1, y T α = 0 (1)
Then the KKT conditions give a parametrization (including the bias b from R) of the optimal linear functional f * :

∀x ∈ X , f * (x) = N i=1 αiyik(xi, x) + b.

Multiple Kernel Learning

Multiple Kernel Learning is an algorithm that jointly learns a sparse convex combination of kernels with the associated optimal SVM classifier. Thus, let (si) 1≤i≤d be a set of kernels from S + X , called spanning kernels. In practice, MKL solves the convex problem (2) [START_REF] Rakotomamonjy | Simplemkl[END_REF], which boils down to minimize the SVM risk R ((xi) 1≤i≤N , k, f ) with respect to f and k, lying in the set of the convex combinations of the spanning kernels (si) 1≤i≤d with a normalized weights sum.

minimize µ∈R d J (xi) 1≤i≤N , d i=1 µisi subject to 1 T µ = 1, µ 0 (2) 
In 2009, Varma and Babu proposed a more general framework considering non-convex combinations of kernels [START_REF] Varma | More generality in efficient multiple kernel learning[END_REF]. In this paper, we will be interested in the Hadamard product of kernels. Then the Generalized MKL (GMKL) algorithm solves the non-convex problem (3) by finding a local minimum (with σ the coefficient of the sparsity penalty). Even though the solution is not global, this may be more efficient than MKL in some cases.

minimize µ∈R d J (xi) 1≤i≤N , d i=1 s µ i i + σ1 T µ subject to µ 0 (3) 
3. AUTOMATED TFR DESIGN

Filter Bank Kernel Learning

Let F be the set of FBs and

: F × +∞ N =1 X N → +∞ N =1
X N the filtering operator. In practice, a FB is a set of linear filters followed by downsampling operators (called decimation) [START_REF] Strang | Wavelets and filter banks[END_REF]. Note that for the purpose of classification, outputs of the filters are concatenated in a single vector.

The problem studied in this article is to design an algorithm

B : O∞ → F × L k ,
where L k is the set of linear functionals of H k , such that

B ((xi, yi) 1≤i≤N ) = argmin H∈F , f ∈L k R ((H xi) 1≤i≤N , k, f ) . (4) 
In other words, the algorithm B jointly learns the optimal TFR (among FBs) and the optimal SVM classifier in the time-frequency domain mapped by the resulting TFR.

The idea of the proposed method (given in algorithm 1) is to take advantage of the Multiple Kernel Learning framework by associating one normalized filter and its decimation factor to each kernel. Let k be either the linear or a Gaussian kernel. The set (si) 1≤i≤d of MKL spanning kernels is made as follow:

∀i ∈ 1, d , si = k( i •, i •), (5) 
where i (i ∈ 1, d ) is a FB composed by a single filter and its associated decimation factor.

Data: training dataset (xi, yi) 1≤i≤N Result: FB F and linear functional f * k ( i)1≤i≤d ← candidate filters and their decimation factors;

1 (si) 1≤i≤d ← kernels from ( i)1≤i≤d {formula (5)}; 2 (µ, f * q ) ← Solve (G)MKL with kernels (si) 1≤i≤d ; 3 F ← FB based on { √ µi i, i ∈ 1, d ∧ µi = 0}; 4 f * k ← f * q ; 5 Algorithm 1: Restricted Filter-MKL algorithm.
Consider the notations of the algorithm 1 and let us prove that the algorithm 1 solves the problem (4) if F is restricted to the set F of FBs based on a given set of spanning filters ( i)1≤i≤d and weighted such that the weights 2 -norm equals 1. Suppose that k is the linear kernel: k = •|• X . Then the resulting kernel from MKL is q = d i=1 µisi and

∀(x1, x2) ∈ X 2 , k(F x1, F x2) =k       ( √ µ1 1) x1 . . . ( √ µ d d ) x1    ,    ( √ µ1 1) x2 . . . ( √ µ d d ) x2       = d i=1 k ( √ µi i) x1, ( √ µi i) x2 = d i=1 µi k( i x1, i x2) =q(x1, x2). (6) 
The equality [START_REF] Lasserre | Principled hybrids of generative and discriminative models[END_REF] proves that f * k is well defined (since f * q is a linear functional of the feature space induced by the kernel k) and that the couple

(F, f * k ) minimizes R ((• xi) 1≤i≤N , k, •) on F ×L k . Indeed, for all (H, g k ) in F ×L k , with H = ( √ λi i)1≤i≤d, let q = d i=1 λik( i •, i •),
then, as λ is admissible for the MKL problem (1 T λ = 1 and λ 0),

R ((H xi) 1≤i≤N , k, g k ) = R (xi) 1≤i≤N , q , g k ≥ R (xi) 1≤i≤N , q, f * q = R ((F xi) 1≤i≤N , k, f * k ) .
Suppose now that k is a Gaussian kernel. Then the proof is rigorously identical to the previous one, substituting the MKL solver by the GMKL one in the algorithm 1 (line 3) and kernels sums by kernels Hadamard products in the equality [START_REF] Lasserre | Principled hybrids of generative and discriminative models[END_REF]. Obviously, as GMKL, only achieves a local minimum, our algorithm also finds a suboptimal solution.

Solving the main problem with infinitely many filters

In the previous section, the algorithm 1 solves the problem (4) for a finite number of spanning filters. In this section, we explain how to solve the problem (4) with an endless number of spanning filters, which leads us to a variant of the known IKL algorithm [START_REF] Gehler | Infinite kernel learning[END_REF] (for a linear kernel) and to the proposed Generalized IKL (GIKL) algorithm (for a Gaussian kernel). The general algorithm to jointly learn a FB with a SVM, which leans on both IKL and GIKL, is the algorithm 2.

Our approach restricts F to the set F of FBs based on filters that are spectrally shifted and scaled version of the low-pass filter whose finite impulse response (FIR) is 1. Thus every filter is parametrized by its spectral mode fm, its spectral width fw (fm, fw ∈ [0, 1 2 ]) and its magnitude. The FIR h of a filter of length f is [START_REF] Parks | Digital filter design[END_REF] 

∀k ∈ 1, f , h k = sin(πkfw) sin(2π(k -1)fm) kQ ,
where Q is a normalization factor giving the desired magnitude. The previous formula is obtained through the window method [START_REF] Parks | Digital filter design[END_REF] with a rectangular window but other types of windows (like Hann or Blackman) can be used. The proposed method (described in the algorithm 2 and explained thereafter) applies the principle of active set [START_REF] Nocedal | Numerical optimization[END_REF]. The idea of active set lies upon the notion of active kernels (which results from the sparsity of the MKL solution): the kernels for which the weights are positive. The other kernels have no effect on the solution for their weights are null. They can be neglected beforehand without changing the solution of the problem. Let the algorithm start from a guess on the active set and solve the MKL problem. As the solution is sparse, some kernels have positive weights (the active kernels) while others got null weights. Then if a kernel (out of the active set) violates the optimality conditions (embodied by T(G)MKL(θ) > 0 in the algorithm 2), it means that the guess on the active set was wrong and that this kernel was missing (otherwise, it would not violate the optimality conditions). So, let us add it to the set of spanning kernels (keeping only active kernels at the current iteration) and iterate alternatively the MKL step and the update of the spanning kernels set until optimality. In this context, the Filter-MKL algorithm solves the MKL problem for a given set of filters, then removes non-active filters and adds the filter that most violates the optimality conditions.

Checking the optimality

As explained earlier, the main point of the method is to check the optimality of a solution (algorithm 2, line 7), which should be an easy step in order to get a workable algorithm. In the case of a linear kernel (MKL), the work by Gehler et al. [START_REF] Gehler | Infinite kernel learning[END_REF] that investigates a way to learn a convex combination of an endless number of kernels (Infinite Kernel Learning algorithm) gives the the optimality condition.

To extend MKL to IKL, let us replace the finite set of kernels (si) 1≤i≤d by an infinite parametrized set (s θ ) θ∈P , where P is the set of kernel parameters. Here, parameters are fm and fw thus P = [0, 1 2 ] 2 . Let JMKL be the objective value of the problem (2) for an infinite set of kernels, i.e. JMKL : µ ∈ R P + → J (xi) 1≤i≤N , θ∈P µ θ s θ with µ sparse and 1 T µ = 1. In this framework the KKT optimality conditions give (see theorem 4.1 from [START_REF] Bonnans | Optimization problems with perturbations, a guided tour[END_REF] for the differentiation): TMKL ≤ 0 with

∀θ ∈ P, TMKL(θ) = - ∂JMKL ∂µ θ (µ) -λ = 1 2 α * T Y K θ Y α * -λ,
where Y = diag(y), K θ is the positive definite kernel matrix defined by K θ = (s θ (xi, xj)) 1≤i,j≤N , α * is the optimal dual variable of the SVM subproblem (1) and λ is the Lagrange multiplier associated to the sparsity constraint of the MKL problem (2).

In the case of a Gaussian kernel (GMKL), let us derive TGMKL.

Let JGMKL : µ ∈ R P + → J (xi) 1≤i≤N , θ∈P s µ θ θ
+ σ1 T µ, with µ sparse. If a point µ is suboptimal (i.e. JGMKL achieved a local minimum), then the KKT conditions are satisfied (they are necessary conditions for the suboptimality):

∃λ ∈ R d + ,    ∇JGMKL(µ) + σ1 -λ = 0 µ 0 ∀i ∈ 1, d , λiµi = 0.
Then, in any case,

∇JGMKL(µ) + σ1 0.
Considering that the SVM kernel matrix can be formulated as Q = exp(-γ θ∈P µ θ D θ ), where γ is a positive number defining the Gaussian kernel and (D θ ) θ∈P are the distance matrices in the time-frequency domain, then the suboptimality condition can be expressed with the optimal dual variable α * of the SVM problem (1): TGMKL ≤ 0 with ∀θ ∈ P,

TGMKL(θ) = - ∂JGMKL ∂µ θ (µ) -σ = - γ 2 α * T Y (D θ • Q)Y α * -σ,
where • is the Hadamard product. Then, the scheme to derive this Generalized Infinite Kernel Learning algorithm, which is the extension of GMKL to an infinite number of kernels, is the same as the one exposed by Gehler et al. [START_REF] Gehler | Infinite kernel learning[END_REF]. A major point is thus to solve the non-convex subproblem [START_REF] Raina | Classification with hybrid generative/discriminative models[END_REF], as written in the algorithm 2 (line 6).

maximize θ∈P TGMKL(θ). (7) 
Two approaches are implemented in the proposed Filter-MKL (algorithm 2) in order to maximize T(G)MKL: in the first one, a grid search is performed, then a possible gradient ascent can be applied in order to refine the solution. In the second approach, a random search supplants the grid search.

For an insight of the convergence property, consider that, at each iteration, non-active kernels are removed and a new one is added with a null weight. These new weights form a feasible point of the new MKL problem with an objective equals to the optimal objective of the previous MKL problem. Moreover, as the added kernel violates the KKT conditions, then the current point is not optimal. Thus the objective value is compelled to improve.

EXPERIMENTAL RESULTS

In this section, we present some results on a toy problem. Without any prior knowledge, we have chosen quite a basic set of parameters. The decimation factor is considered constant for every filter and equal to 8, while filters can have three different lengths: 32, 64 and 128. Besides, several methods are confronted: i) DFT: magnitude of the Discrete Fourier Transform and Gaussian SVM, ii) Wavelet: 4-Daubechies wavelet decomposition and Gaussian SVM, iii) WKL: full stochastic Wavelet Kernel Learning with a RBF kernel [START_REF] Yger | Wavelet kernel learning[END_REF], iv) IKL: Filter-MKL with a linear kernel, v) GIKL: Filter-MKL with a Gaussian kernel. Methods iv and v are those proposed in this paper.

The toy dataset is a binary problem based on two signals from the Wavelab toolbox: Blocks and HeaviSine. A non-stationary Gaussian colored noise (of standard deviation σnoise) is added to each signal in order to form both classes. The figures 1 and 2 present the classification accuracies of the several methods. The accuracy is measured with the kappa statistic, which is as close to 1 as the classification is accurate [START_REF] Congalton | A review of assessing the accuracy of classifications of remotely sensed data[END_REF]. These results have been averaged out over 10 runs. The methods have been trained with Ntrain signals and assessed with 1000 signals from the toy dataset. At each run, methods parameters have been chosen through a 5-fold cross-validation. algorithm) is non-convex, it achieves better accuracies than the convex and linear version of Filter-MKL for small training sets and very noisy data. However the latter seems preferable for large training sets since it achieves the same accuracy and is faster than the Gaussian version. Besides, our methods are quite competitive with WKL from [START_REF] Yger | Wavelet kernel learning[END_REF]. The Wilcoxon signed rand tests performed to assess the difference between accuracy results, demonstrate that in most cases, at least a method of ours is significantly better than WKL (with a significance level at 5%). At last, the example of resulting FB (figure 3) underlines that the normalized frequencies 0.025 (filter 1) and 0.134 (filter 2) are of particular interest for this classification task. Note that the filter 1 is bimodal because of the chosen window.

The Matlab code used to produce these results is provided on the authors' website for the sake of reproducibility.

DISCUSSION ON THE CONTRIBUTION

In this paper, we proposed a novel approach to learn a discriminative FB, that unlike [START_REF] Vignolo | Evolutionary cepstral coefficients[END_REF][START_REF] Vignolo | Evolutionary splines for cepstral filterbank optimization in phoneme classification[END_REF] minimizes a structural risk of classification. First results on a toy dataset are promising even though for now, the proposed method is quite time-consuming because of the crossvalidation step. The choice of the parameters will be optimized on short terms. Besides in the forthcoming work, other classes of filters will be included in order to widen the subset F of FBs. Last but not least, we plan to investigate the way to make our method robust to signal translations to handle real signals, which are usually randomly time shifted.

An implicit viewpoint developed all along this paper is to consider that the problem (4) boils down to learn the SVM kernel (parametrized by a FB). The result is that this study lies in the Kernel Learning field and has the flavor of the work by Gehler et al. [START_REF] Gehler | Infinite kernel learning[END_REF] that extends the MKL to the Infinite Kernel Learning. The implementation of the IKL algorithm in [START_REF] Gehler | Infinite kernel learning[END_REF] already uses the concept of active kernels and of violation of the optimality conditions. Thus, using the same principle, we proposed a novel Kernel Learning algorithm, called GIKL, that extends the Generalized MKL by Varma and Babu [START_REF] Varma | More generality in efficient multiple kernel learning[END_REF] to an infinite number of kernels. Moreover, our method stands out from [START_REF] Gehler | Infinite kernel learning[END_REF] in the way to solve the subproblem (algorithm 2, line 6) as we apply a random search, which presents the advantage to be quick compared to the kernel gradient computation.

Besides, the work presented here is close to the study by Yger et al. [START_REF] Yger | Wavelet kernel learning[END_REF], for it takes advantage of the same IKL framework. The distinction lies in the fact that we proposed the GIKL algorithm and in the goal: we chose to supply practitioners with interpretable tools, using Machine Learning to tune a well known TFR along with a SVM using a classical kernel. On the contrary, WKL learns a kernel parametrized by parts of wavelet transforms.

1 ( 2 while not suboptimal do 3 µ 4 A 7 A10

 12347 Data: training dataset (xi, yi) 1≤i≤N Result: FB and linear functional A ← grid of filter spectral positions and widths; st)t∈A ← kernels from filters based on A {formula (5)}; ← Solve (G)MKL with kernels (st)t∈A; ← A\{t, (t ∈ A) ∧ (µt = 0)}; 5 θ ← argmax t∈P T(G)MKL(t) {definitions in section 3.3)}; 6 if T(G)MKL(θ) > 0 then {optimality condition violated} ← A ∪ {θ}; Deduce from A the suboptimal FB and from the MKL output 11 the suboptimal linear functional; Algorithm 2: Filter-MKL algorithm.
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 1 Fig. 1. Classification accuracy on the test dataset (Ntrain = 30).
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 23 Fig. 2. Learning curve on the test dataset (σnoise = 20).

Note that, as Daubechies wavelet transform is isometric, classifying in the wavelet domain boils down to classify in the Shannon (temporal) domain.