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Abstract— In this paper, we focus on navigation in indoor
environments using Visual SLAM (VSLAM). We propose an
approach to suppress the known drifting issue of VSLAM and
express its localization in building coordinate frame. It relies
on a database built offline through a coarse to fine strategy
that registers and refines a VSLAM reconstruction by taking
advantage of the building 3D model. The database can then be
extended online when the user goes out and comes back in the
known environment. We present experimental results on synthetic
and real data.

I. INTRODUCTION

Guiding a user inside a building requires an accurate lo-
calization. To provide this localization, existing methods often
rely on WIFI/Bluetooth/RFID beacons [2], [3]. However the
precision of methods based on beacons depends especially on
their number and their disposition on the site. Furthermore
these methods need to equip their environment beforehand and
are thus invasive.

An alternative is to use vision based solutions such as
Visual Simultaneous Localization And Mapping (VSLAM).
They provide real-time localization with no prior knowledge
about the environment nor additional equipment. However the
resulting localization is expressed in an arbitrary coordinate
frame and suffers from drift due to error accumulation. Recent
methods try to overcome the drift issue of VSLAM by
adding an IMU sensor. Visual-Inertial SLAM (VISLAM) [5]
provides a more accurate localization but not drift free for long
trajectories. Furthermore, the resulting localization is still not
expressed in the building coordinate frame. VISLAM methods
are thus not well suited for the intended application.

To tackle VSLAM limitations for user guidance application,
we propose an approach which uses a previously built database
of the environment (expressed in the building coordinate
frame) in order to constrain the VSLAM reconstruction. The
resulting localization is thus expressed in the building coor-
dinate frame and do not drift as long as the user operates in
the known part of the environment, i.e. where the database is
available. To build that database, we use the 3D textureless
model of the building, which can easily be obtained from
blueprints or with 3D scanning, to register and refine a SLAM
reconstruction in the model coordinate system with a coarse
to fine approach. Whenever the user operates in an unknown
environment, our approach behaves as a VSLAM and its
localization accumulates error over time. However when the
user comes back in a known environment the SLAM drift can

be estimated and corrected through a pose-graph optimization.
That corrected trajectory is then added to the database leading
to its enrichment.

Compare to existing visual solutions such as [1] that also
exploit a database for indoor localization, the contribution of
the proposed framework are: 1) the coarse to fine approach for
building accurately the database and express it in the building
coordinate frame. 2) online localization through VSLAM
constrained to the database rather than relocalization on each
frame. It guarantees a continuity of service even when the
relocalization fails. 3) online database extension.

In this paper, we first present the VSLAM algorithm which
is at the core of both the database construction and the online
tracking. Secondly, we detail the database construction with
on going work to improve its accuracy. Then we present our
VSLAM algorithm constrained to the database as well as the
online database extension process. Finally, we show some
results of our framework on synthetic and real data.

II. VISUAL SLAM

The Visual Simultaneous Localization And Mapping pre-
sented is a key-frame based VSLAM [6]. It provides contin-
uous frame-to-frame pose estimation from 2D/3D matching.
When the camera displacement is large enough, a new key-
frame is labeled and new 3D points are triangulated. Be-
cause that reconstruction is often imprecise, it needs to be
refined. Consequently, a local Bundle Adjustment (BA) [6]
is performed to simultaneously optimize the camera poses
{Pj}Nc

j=0 of the last Nc key-frames and the Np 3D points
{Qi}

Np

i=0 they observe by minimizing the re-projection error
in the key-frames. The cost function of BA, minimized with
the Levenberg-Marquardt algorithm, is given by:

B
(
{Pj}Nc

j=0, {Qi}
Np
i=0

)
=

Np∑
i=0

∑
j∈Ai

ρ
(
qi,j − π(KPjQi)

)
(1)

where qi,j is the 2D observation of Qi in camera j, K is
the camera calibration matrix, π : R3 → R2 is the perspective
projection function, Ai denotes the set of key-frame indices
observing Qi and ρ is the Geman-McClure kernel to deal with
outliers. VSLAM tends to drift, however when a loop occurs
this drift can be observed and corrected. The loop closure
detection is performed in a re-localization thread that uses
of a Vocabulary Tree (VT) structure [8] to index each key-
frame by their 2D observations. Once a key-frame is created,
the re-localization thread queries the VT with the key-frame

c© IPIN2017



2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 18-21 September 2017, Sapporo, Japan

observations to find the most similar indexed key-frame that
does not share any 3D point. Once a loop closure is detected,
3D/3D correspondences between the 3D points observed by
the current key-frame e and those observed by the most similar
indexed key-frame b are established. From these correspon-
dences, a similarity ∆Serr encoding the drift error in 7 Degree
of Freedom (DoF), rotation, translation and scale, is estimated.
The drift correction is achieved with a pose-graph optimization
that minimizes the relative pose errors {ri,j}e−1,ei,j=b,b+1 between
successive cameras and the error re,b deducted from the
loop closure [10]. Each pose Pi and relative pose ∆Pi,j are
transformed to a similarity Si and ∆Si,j by adding a scale set
to 1. Only the loop constraint ∆Se,b has a scale serr 6= 1.
The pose-graph optimization problem is expressed as the
minimization of the following cost function:

χ2(Sb, ..., Se) =

e−1∑
i=b

∑
j=i+1

(
rTi,j ri,j

)
+ re,b (2)

where Sb is fixed and the relative position error ri,j is:

ri,j = logSim(3)(∆Si,j · Si · S−1
j ) (3)

where ∆Si,j = Ŝj · Ŝi
−1

is the initial relative pose between
camera i and j computed before optimization. For the loop
constraint ∆Se,b = ∆Serr.

III. PROPOSED METHOD

Our solution provides real-time indoor localization through
the use of a database to reduce VSLAM drift, even when no
loop occurs, and express the localization in the building coor-
dinate system. This section details in §III-A the construction of
the database, then explains in §III-B the process to constrain
the VSLAM in known environment with that database and
finally §III-C presents how the database is extended when
an unknown environment is explored. As this paper is a
work in progress, sections §III-A and §III-C are divided
into "achieved" and "ongoing" work subsections to ease the
discussion.

A. Database construction

1) Achieved work: The database construction is performed
off-line through a coarse to fine approach in 4 steps. The
resulting database contains a set of key-frame camera poses
and a 3D point cloud along with their 2D observations in the
key-frames.

First step: Create an initial reconstruction of the environ-
ment using the VSLAM described in §II. During the VSLAM
tracking, some key-frames are associated to an absolute pose
expressed in the building coordinate frame. The absolute poses
can be obtained for example with visual markers placed in the
environment and removed after the database construction or
by any other approach that can give an absolute pose in the
building model.

Second step: Express the VSLAM reconstruction in the
buildings coordinate frame. Therefore a similarity (7 DoF)
is estimated from the absolute poses and is applied on the
VSLAM reconstruction.

Third step: Perform a coarse non-rigid correction
through a pose-graph optimization. The purpose is to shift the
key-frames poses toward their absolute poses without breaking
the epipolar geometry between cameras. Therefore a pose-
graph optimization is performed to distribute high relative pose
errors around the shifted cameras along the entire trajectory.

Fig. 1. Illustration of the third step of the database construction. In
this example the 6th key-frame has an absolute pose associated and is
shifted towards it, resulting in large errors r5,6 and r6,7 (see equation
(3)) that are minimized through pose-graph optimization while fixing
the 6th camera pose.

This optimization requires to firstly compute the initial
relative position ∆Si,j of the graph constraints. Then the key-
frame poses are shifted towards their absolute poses. Finally,
the sum of relative pose errors along the graph ∑

i,j

(
rTi,j ri,j

)
is minimized while fixing the shifted camera poses (Figure 1).
As the pose-graph optimization only concerns camera poses,
the 3D points have to be re-triangulated.

Fourth step: The final step is a non linear refinement
of the reconstruction through a BA that is constrained to the
building model. The aim of this final step is to align at best
the subset Q of the 3D point cloud that corresponds to the
building, e.g. walls, with the building model. Currently, Q is
determined using a simple ray-tracing as in [4]. Once Q is
known, we use a simple proximity criterion to associate each
Qi ∈ Q to a plane Wi of the building mesh and project Qi
on the plane Wi. Then, for Qi ∈ Q, re-projection error of Qi
is replaced by ρ(qi,j −π(KPjMWiQ

W
i )) in equation (1) where

QWi is Qi expressed in Wi coordinate frame and limited to
two degree of freedom (zQW

i
= 0). MWi is the change of

basis matrix from the plan Wi coordinate frame to building
model coordinate frame.

2) Ongoing work: The ray-tracing method of [4] for de-
termining Q is not well adapted to cluttered environments
since occluding objects will mistakenly be associated to the
walls. This inevitably leads to an inaccurate refinement of
the reconstruction. In order to alleviate this problem, we
seek to use a neural network to segment each key-frame,
keeping only observations of the building structure that may
be associated with a plane in the model, (e.g. wall, door or
window frame. Therefore, Qi ∈ Q is determined through a
majority vote on the class labels of its observations as given
by the corresponding segmented key-frames. We use an Enet
[9] based architecture for binary pixel-wise labeling. We have
used the Nyu dataset [7], as well as interior scenes that we
gathered for training. However, the genericity of the obtained
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network is not yet satisfactory, and we plan as a future work
to train it on an augmented version of our dataset.

B. Constrain VSLAM to a database

The first stage is to initialize the VSLAM algorithm with the
database to fix the coordinate frame and the scale. Then, when
a new key-frame is detected, 3D/3D correspondences between
the online reconstructed 3D point by VSLAM algorithm and
3D point belonging to the database are established. These
correspondences are used to constrain the bundle adjustment
and thus reduce the VSLAM drift.

Initialization. First of all, every database key-frame is
indexed in the VT structure described in §II. VSLAM initial-
ization is achieved by querying VT with the current frame
observations to find the most similar database key-frame.
When a similar viewpoint is found, 3D points of database, ob-
served by this key-frame, are matched with the current frame
observations. These 2D/3D associations are used to compute
a pose to initialize the VSLAM algorithm. Furthermore, the
3D points that are inliers after the pose estimation form its
initial 3D point cloud.

Find 3D/3D correspondences. During VSLAM localiza-
tion, the re-localization thread tries to find, for each key-
frame, a corresponding one in the database. When it succeeds,
image matching determines 2D/2D associations between these
two images from which are deduced 3D/3D associations
between the 3D points they respectively observe. Key-frames
successfully matched with the database are referred as re-
localized. During online localization, only non re-localized
key-frames are indexed in the VT to avoid redundancy.

Constrained Bundle Adjustment. 3D points that have a
correspondent in the database are fixed in the bundle adjust-
ment (equation 1), their positions are previously updated with
the ones of the database points. These constraints reduce the
SLAM drift as demonstrated in section IV.

C. Database extension

At some point, the user may explore an unknown part of
the environment which is characterized by re-localization fail-
ure over several consecutive key-frames. As our constrained
VSLAM behaves as a VSLAM in unknown environment, its
localization inevitably drift over time. However, when the user
goes back in a known environment, re-localization resumes
and 3D/3D associations with the database are computed as
well as a similarity ∆Sext, encoding VSLAM drift error.

1) Achieved work: Correcting the VSLAM drift directly
through a constrained BA may fail due to high re-projection
errors, resulting in a bad convergence of the optimization. In
order to continuously provide a localization, ∆Sext is applied
to the last Nc cameras and 3D points they observe. At this
point, the constrained VSLAM localization could successfully
resume, however, the database can not be extended by this
additional trajectory since the epipolar geometry is now broken
between cameras l−Nc and l−Nc + 1, where l is the index
of the current re-localized key-frame. In order to reduce the
error, and thus maintain the epipolar constraint, a pose-graph

Fig. 2. Database creation on the synthetic sequence. Left: error
in position at different step of its construction, see §III-A. Right: one
image of the synthetic sequence.

Fig. 3. Online tracking on the synthetic sequence.
Left: errors in position of the VSLAM constrained to
the database on the whole trajectory and only at initial-
ization. Right: database used for the online tracking

optimization is performed. We note f the index of the second
to last re-localized key-frame. The sum of relative pose errors∑l−Nc

i=f

∑
j=i+1

(
rTi,j ri,j

)
is minimized while fixing cameras f

and l−Nc+1. For the relative pose error r(l−Nc), (l−Nc+1) (see
equation 3), ∆S(l−Nc),(l−Nc+1) is computed before applying
∆Sext to Sl−Nc+1. Finally, the key-frames from f+1 to l−1
and the 3D points they observe, after their re-triangulation,
are simply added to the database.

2) Ongoing work: Our current solution corrects VSLAM
drift ∆Sext. Yet, the result is a coarse correction of the trajec-
tory and may not be as accurate as the database built offline.
To improve the accuracy of online extensions, we aim to refine
them with the BA constrained to building model, described in
§III-A. As it is computationally expensive to perform such
a BA online, it will be achieved in a separate low-important
thread in order not to perturb VSLAM localization.

IV. EXPERIMENTS

We present results based on achieved works, i.e. §III-A1,
§III-B and §III-C1. The database construction and online
tracking are assessed on both synthetic and real data. The
constrained VSLAM performs a localization at 60Hz (640x480
resolution) on a Microsoft Surface Pro 4 tablet with an Intel
Core i7-6650U @2.2GHz.

Synthetic data. The sequence represents a 173x52 m park-
ing lot as illustrated in Figure 2. The VSLAM algorithm
described in §II is applied on this sequence. Several loops are
detected and corrected. The resulting reconstruction includes
272 key-frames and 23777 3D points. Then the second and
third steps of the database construction are performed by
using 8 well distributed absolute poses. They come from the
groundtruth and have been slightly degraded in order to be
closer to a real scenario. Figure 2 shows the error in position,
with respect to the groundtruth, after each optimization step
of the database construction. At the end of the second step,
the mean error is 0.5101 m, 0.226 m after the third step and
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Fig. 4. Database creation on the office building sequence. In gray
the building model, in green (resp. in red) the database obtained at
the end of the third (resp. the fourth) step described in §III-A. The
final 3D point cloud (after step four) is well aligned with the building
model.

Fig. 5. Online tracking and database extension on the office
building sequence. Left: top-down view of the trajectory with re-
localized key-frames represented in red and key-frames added to the
database in blue. Top Right: A closeup view of one database extension
that required a pose-graph optimization before being added in the
database. The cameras poses before this optimization are represented
in orange. Right: one image of this sequence.

the final error is 0.1321 m. For this sequence, both the third
and the fourth steps halve the error in position. The former is
performed in 0.597 s while the latter is more time consuming
and takes 19 s. The resulting database is illustrated in Figure 3.

Using the previously created database, online tracking is
performed on a second synthetic sequence where the trajectory
is confined to the known environment. Figure 3 shows the
error in position of two different VSLAM execution. The first
one uses the database at initialization and during the overall
trajectory as a constraint in the BA, whereas the second one
only uses it for its initialization. While the first execution has
a small error (mean error 0.1852 m), the second one has a
higher and steadily growing error (mean error 1.0338 m) with
a maximum of 2.2925 m. The second execution accumulates
error over time which demonstrates that constraining the
VSLAM to the database reduce drastically the drift.

Real data. The sequence represents a 76x34 m office build-
ing floor with long corridors in an environment where there is
no major occlusion of the walls. The online VSLAM algorithm
detailed in §II is applied on this sequence, where multiple

loops are detected and corrected. Four visual markers have
been placed in the outer corners of the floor to obtain the
required absolute poses for the second and third steps of the
database construction. The reconstruction for the office build-
ing includes 337 key-frames and 16937 3D points. Figure 4
shows the database construction on this sequence where the
fourth step drastically improves the accuracy, since it results in
a well alignment between the 3D point cloud and the model.

The online tracking is realized 6 months after the database
creation, and visual markers used for its construction have
been removed. The re-localization successfully finds 3D/3D
associations with the database. The constrained VSLAM lo-
calization does not drift as long as it remains in the known
environment. Unknown environments have also been explored,
resulting in two databases expansion as illustrated in Figure 5.
For the first one, the trajectory is short, thus no drift occurs.
However for the second exploration, the drift is important and
a graph optimization is performed to correct the trajectory
enabling thereafter the constrained BA to converge. The im-
provement of the estimated trajectory is illustrated in Figure 5.
The key-frames poses do not cross the wall anymore after
graph optimization.

V. CONCLUSION

In this paper, we present a VSLAM constrained to a pre-
build database. It is obtained through a coarse to fine approach
that exploit the building model to improve the accuracy.
We demonstrate that our localization solution suppress the
VSLAM drift and express its localization in the building
coordinate frame while extending the database online when
unknown environment is explored. This makes our approach
suitable for user guiding applications. To deal with more
challenging environment and increase the accuracy of the
online database extension, we will improve our framework as
mentioned in §III-A2 and §III-C2.
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