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A Nonlinear Semantic-Preserving Projection
Approach to Visualize Multivariate Periodical
Time Series

Pierre Blanchart and Marine Depecker

Abstract— A major drawback of nonlinear dimensionality
reduction (DR) techniques is their inability to preserve some
authentic information from the source domain, leading to projec-
tions that are often hard to interpret when it comes to observing
anything other than the topological structure of the data. In
this paper, we propose a nonlinear DR approach enforcing
projection constraints resulting from an a priori knowledge about
the structure of the data in multivariate periodical time series.
We then propose several ways of exploiting this constrained
projection to extract user-relevant information, such as the
nominal behavior of a periodical dynamical system or the
deviant behaviors which may occur at different time scales.
The techniques are demonstrated on both a synthetic dataset
composed of simulated multivariate data exhibiting a periodical
behavior, and a real dataset corresponding to six months of sensor
data acquisitions and recordings inside experimental buildings.1

Index Terms—Data mining, deviant behaviors identification,
high-dimensional, information visualization, monitoring, nonlin-
ear dimensionality reduction (DR), pseudoperiodical time series,
visual analytics.

I. INTRODUCTION

O our knowledge, there have been few works in the
literature combining data mining techniques with infor-
mation visualization tools for mining multidimensional time
series. Although both domains tend toward the same goal,
namely extracting meaningful information from the data, and
time series have been rarely envisaged from both points of
view simultaneously. We argue in this article that it would be
highly beneficial to use the power of data mining techniques to
achieve convenient representations of time series data, while
preserving interpretability and facilitating interactions with the
user. The latter are indeed two fundamental aspects to support
the exploitation of such representations based on information
visualization, in particular when the latter is integrated into a
more global processing loop, e.g., such as visual analytics.
Generally speaking, data mining is rather employed in a
modeling fashion, where an assumption is made about the
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data model/structure, the obtained model/structure being used
to extract information from the data. Information visualization
envisage the problem of mining data from a more representa-
tional point of view, the main goal being to find data represen-
tations making sense with respect to the information sought by
the user. The main disadvantage of data mining techniques is
that they generally do not offer the user the possibility to orient
the mining process toward the information he deems relevant,
providing instead arbitrary representations of the data, which
may or may not contain the looked for information. But,
contrary to information visualization methods, they can handle
a very large dimensionality and as such, may lead much faster
to the result when the dimensionality is high.

This paper is an attempt to combine approaches from
both data mining and information visualization communities,
which, so far, have remained quite clustered apart in the
literature when facing the problem of mining multidimensional
time series. The data we are dealing with are multidimensional
temporal series exhibiting a pseudoperiodic structure in the
signal form. These signals are usually termed as cyclostation-
ary signals or periodically correlated (PC) random processes
in the literature [1], [2]. They are encountered very frequently
when observing natural phenomena such as tide amplitude,
sea temperature, average solar radiation, which tend to vary
periodically with respect to time (though the pseudoperiod
may be very different depending on the observed phenom-
enon: for instance, sea temperatures are subject to seasonal
variations whereas solar radiations rather exhibit a periodicity
of one day). See for instance [3] or [4]. In this paper, we
considered multidimensional time series data gathered by a
set of sensors placed inside experimental buildings. These
data consist of physical measurements of quantities, such
as temperature, humidity, and so on, inside different rooms
of several buildings. Based on the available information, we
aim at developing a user-friendly data mining tool, so as to
seek relevant information regarding the insulating properties of
those experimental buildings, such as regular trends or deviant
behaviors through time. The option considered in this paper
aims at facilitating the information mining process by provid-
ing adapted information visualizations taking into account the
specificities of the data. Hence, we propose a system dedi-
cated to the observation of pseudoperiodic phenomena, with
the purpose of quickly identifying nominal/deviant behaviors
inside the data through the use of a simple and easy-to-use
interactive information visualization interface. To do so, we



introduce a constrained nonlinear multidimensional scaling
(CMDS) approach. This novel dimensionality reduction (DR)
method exploits the hypothesis of pseudoperiodicity of the
data and leads to a trajectory-based representation of the
measured information. Indeed in the projection space obtained,
the successive pseudoperiods of the signals are represented as
piecewise linear curves summarizing the daily behaviors of
the different buildings’ rooms, termed as (daily-)behaviors or
(daily-)profiles in the following part of this article. The experi-
mental data mining process is facilitated by adding simple user
controls to the representation, for example allowing the user
to easily and quickly make appear nominal/deviant trajectories
by restraining the interval of observation inside a pseudoperiod
or by choosing to represent only trajectories corresponding to
a restrained number of pseudoperiods.

The structure of this paper is as follows: we first pro-
pose an overview of existing works related to time series
mining from a classical data mining point of view, but also
from the perspective of information visualization and visual
analytics; then Section III-A introduces a general model of
pseudoperiodic time sequence and explains the inspiration
behind our CMDS approach starting from this general model.
In Section III-B, we derive a formalization of the generic
CMDS problem along with an optimization procedure relying
on an alternating optimization scheme. The energy man-
agement issue originally motivating this paper is presented
in Section IV. Based on both synthetic and experimental
data, we present a way to postprocess and exploit the 2-D
projection provided by the CMDS algorithm by describing
potential user—system interactions through the help of a simple
graphical interface. Section V provides an assessment of our
CMDS approach both from a data mining and an information
visualization point of view. Section VI eventually concludes
this paper with a discussion and some perspectives to this

paper.

II. BACKGROUND AND RELATED WORKS

In the following, we make a quick tour of the previous
work on pseudoperiodical time series and more especially of
the most common modelings of this kind of data. We then
detail the attempts which have been made from a data mining
point of view to extract information from times series, not
necessarily pseudoperiodical ones. We do the same from the
point of view of information visualization. Finally, we make a
quick tour of previous attempts in the visual analytics domain
to link DR techniques with information visualization tools.

The periodic autoregressive moving average (PARMA)
process models [5]-[9] are the most common modeling
approach of PC time series. They start from the definition of
PC random processes which are defined as random processes
exhibiting a second order periodical stationarity. The PARMA
models are mostly used for prediction purposes, like making
meteorological predictions, and, as such, are not well suited
for our purpose which is to perform monitoring of multidimen-
sional periodical time series. Moreover, PARMA modeling is
very heavy computationally speaking, and literally explodes
when the dimensionality is high. There are other approaches

which try to cope with this problem of PARMA processes
like dynamical principal component analysis [10] or dynamic
factor models [11]. These methods extend classical principal
component analysis (PCA) and factor analysis for dynamical
systems by taking into account the autoregressive nature of
the data. But these techniques are mainly oriented toward
performing dynamical multivariate statistical process control
(for instance disturbance detection), and, as such, do not lead
to any practical way of representing the data to perform visual
monitoring.

More recently, a lot of work has been done regarding DR,
possibly for visualization purposes. Some of these theoretical
results have been applied to multidimensional time series
by extending classical low-dimensional embedding methods
to spatiotemporal data. We can mention for instance the
work of Jenkins et al. [12] which proposes an extension
of ISOMAP [13] for data with both spatial and temporal
relationships. In [14], a spatiotemporal extension of Laplacian
eigenmaps [15] is proposed with the same purpose of pro-
ducing a low-dimensional description of data with temporal
coherence between data points. In [16], Bishop et al. introduce
an extension to the generative topographic model (GTM) [17]
for time series data. In the original GTM model, the authors
model the d-dimensional data distribution in terms of a few
number of latent variables and assume a nonlinear mapping
between the latent and data space. To keep the model tractable,
the prior distribution of latent variables is constrained to be
a discrete distribution defined on a grid, where the node
of the grids are termed latent points. DR is performed by
computing the parameters of this nonlinear mapping model
through the optimization of a likelihood function defined
using the underlying probabilistic latent model. The likelihood
function is defined by making the assumption that the data
are independent and identically distributed (i.i.d.), which is
clearly no longer the case when considering time series data.
To account for the existing correlations between nearby data
points in time, the authors propose to introduce a hidden
Markov model where the hidden states are the latent points
of the GTM model. Transition probabilities between hidden
states are introduced which are used in the global likelihood
function to make the inference of the model parameters.

The main issue of the above-mentioned techniques is that
they are rather oriented toward obtaining reduced representa-
tions of the data while keeping most of the initial informa-
tion. They have not been designed with the precise goal of
representing the data, and, as such, do not necessarily provide
the user with meaningful/useful representations for the task at
hand.

To cope with this, methods in the field of information
visualization have emerged with new ideas about how to
perform data mining starting from graphical representations.
This community has become quite large over the past few
years and numerous works have been issued concerning
visual mining and monitoring of time series. In [18], a tool
named Viztree is proposed to perform monitoring of streaming
telemetry data in the hours preceding the launch of a space
vehicle. The system works by encoding the time sequence
data into a suffix tree where the frequency of patterns and



other properties are mapped into colors and other visual items.
This system may have limited capacities though when using
high-dimensional data since it relies on an encoding of the
data with a number of symbols which is necessarily limited
by the display possibilities of the suffix tree. In addition, the
number of symbols in the alphabet is not known and can prove
to be a very sensitive parameter regarding the performance of
the system. This system moreover does not allow a multiscale
analysis since a discretization step is fixed in advance, which
will determine once for all the time scale at which the analysis
is performed.

In [19], the authors introduce a system named TimeSearcher
which is a time series exploration and visualization tool that
allows users to retrieve similar patterns inside a single time
sequence or across several ones by creating queries. The
latter are achieved by using rectangular query locators which
allow the user to specify the regions which are of interest
to him. TimeSearcher obeys a query-by-example paradigm
which implies some preliminary knowledge about what is
interesting in the dataset at hand and as such cannot be
used as monitoring system. Notwithstanding the fact that
multidimensional patterns are most of the time very difficult to
identify visually because of overplotting and also because of
the limited capacity of the human eye to perform such a task.

Other systems, such as [20] or [21], have been proposed
specifically to visualize time series data exhibiting periodical
patterns. In [20], data are chunked into time patterns which
are then reorganized into clusters. A calendar is then shown in
which each time pattern appears with the color of its associated
cluster. As previously, this system does not allow for multi-
scale analysis due to the fact that the size of the time pattern is
fixed in advance. High-dimensional data may also enforce the
number of clusters to be very high which may render difficult
the visual interpretation of the obtained calendar due to the
presence of too numerous colors on the representation. The
system proposed in [21] provides visualizations of periodical
time series data under the form of spiral graphs. In this kind
of graph, one cycle of the spiral corresponds to one period of
the signal and the thickness of the line used to draw the spiral
represents the value of the signal. Though very effective for
periodic time signals, this kind of representation is limited to
1-D time series.

More recently, Javed et al. [22] have compared different
existing line graphs techniques and quantified to which extent
these methods allow the user to perform basic visual analysis
tasks such as discrimination of patterns between multiple
time series. Though these techniques may prove interesting
to perform monitoring of multidimensional time series whose
dimensions have the same physical meaning (and which can
thus be studied from the point of view of multiple time series),
they are rather unadapted to our case where the studied time
series result from the concatenation of various types of sensor
acquisition data.

We conclude this review by mentioning previous work in
the field of visual analytics trying to combine data min-
ing and information visualization techniques for time series
and other data types. We can first mention the works of
Venna et al. [23] and Lespinats et al. [24]: although unrelated

with time series data, these two articles describe visualization-
oriented DR techniques, and, as such, are worth mentioning.
In [23], the user can control the mapping through the help
of a parameter fixing a tradeoff between precision and recall
(the method purpose being to perform information retrieval
from the visualization). In [24], the user can control the
mapping through the help of a parameter which determines
the compromise between local neighborhood preservation and
global mapping error, the final purpose being to obtain a
representation which makes sense visually.

There also have been recently innovative works which set
the accent on the use of DR techniques as a preprocessing
step to perform visualization and interactive search of time
series. Ward er al. [25] propose a high-level comprehensive
tool to identify characteristics in univariate time series such as
cyclic behavior, outliers, general trends, and so on. The pro-
posed method consists in extracting sub-sequences in the data
through the use of a sliding window of size N and then, map-
ping each subsequence to a 2-D representation using a classical
DR method performed in the N-dimensional subsequence
space. Each subsequence is then represented using a profile
or star glyph, suggesting limits on the length of subsequence
which can be used in addition to the obvious limit set by the
method being only able to handle univariate time series. The
authors suggest in the conclusion an extension able to operate
on multivariate time series, but it may not be thoroughly
adapted to our case of study where we are handling high-
dimensional time series exhibiting very long temporal patterns
which may not lend themselves to glyph-based representations.
In [26], the authors propose a system for the analysis of large
multivariate time series data. The data points are projected
onto a 2-D space using PCA and then linked together by
chronological order to form a path. The time series analysis
can then be performed by looking for similar sequences of
paths. The user can also rely on several interactive controls
such a time slider or a sketch tool to select arbitrary polygonal
shapes on the screen, helping him to obtain deeper insights into
the data. The system also provides a user-guided aggregation
functionality which allows to form data clusters, leaving to
the user the choice of the attribute(s) to cluster. The cluster
information is shown both on the 2-D data mapping and on
cluster glyphs showing the time distribution of the data inside
a cluster (to make appear periodical patterns for instance) and
the data distribution per dimension (still inside a cluster).

The purpose of this section not being to be exhaustive
about visualization techniques for time oriented data, a more
complete overview is given in [27]: this book provides a
summary of analytical/data mining, interaction, visualization,
and display methods, and shows how these aspects can be
combined efficiently to perform exploration and analysis of
time-oriented data. The authors stress the fact that the previous
aspects should not be envisaged separately but instead, should
be incorporated and combined into the workflow of real data
exploration systems, the purpose being to compensate the
weak spots of one method by the utilization of another and also
to combine their respective strengths. This is also the claim of
the method we develop in this paper, combining analytical/data
mining, interactive, and visual aspects.



While containing very interesting general ideas, there
remains still that none of the preceding works is particularly
dedicated to visual exploration of multivariate (pseudo) peri-
odical time series, even if they propose systems that may be in
some cases exploited to do so. Instead, they introduce methods
covering a broader range of time series data types and as such,
do not implement in the visualization and data mining process
the hypotheses relative to pseudoperiodical time series.

In this paper, we address within a single method all the
aspects envisaged so far separately in the literature to per-
form efficient monitoring of high-dimensional pseudoperi-
odical time series. We focus on classical monitoring tasks
such as the identification of nominal or deviant behaviors
at different time scales, diagnosis of sensor failure, and
classical visualization tasks of multidimensional data. We
introduce a generic visualization-oriented DR approach which
takes into account the pseudoperiodic structure of the data.
Pseudoperiodic time series are projected into a 2-D space
in a constrained manner: all the points corresponding to a
same recording time index inside a pseudoperiod—i.e., to what
we term a point collection in the following—are enforced
to be projected onto a line, the lines associated to different
point collections being parallel in the projection space. The
intuition behind this constraint comes from the pseudoperiodic
character of the data, allowing to make the assumption that
sensor data recorded at the same period index will lie on
a low-dimensional linear manifold. We provide a theoretical
justification of this intuition in Section III-A of this paper by
using a generic model of multidimensional pseudoperiodical
time series, and, we prove that a 1-D linear manifold (i.e., a
line) is a justified hypothesis regarding points inside a given
collection. Based on a real-life application related to energy
management for buildings, we then propose simple ways of
interacting with the resulting representation to obtain a system
allowing for multiscale monitoring of pseudoperiodical time
series. That is, the user can define a customized time interval
to monitor inside a pseudoperiod and watch the evolution of
the observed phenomenon inside this interval over the different
periods. To summarize, our contributions are the following.

1) We introduce a CMDS approach for high-dimensional
pseudoperiodical time series which preserves the inter-
pretability of the projection axis.

2) We propose a set of information visualization tools
which allow the user to interact with the representation
yielded by the CMDS approach and to perform multi-
scale monitoring.

III. DESCRIPTION OF THE CMDS METHOD

A. Topological Structure of Periodical Time Series Data

In what follows, we introduce a simple model of periodical
time series which allows to account for the specific organi-
zation of datapoints after projection. This model is inspired
from the structure of pseudoperiodical multidimensional time
series real data. Though the introduced model does not belong
to any class of known statistical models, the experiments we
make on real data in Section V-A4 confirm its appropriateness

0.9F

0.8

0.7r

0.6

0.5

04} 4 X; Xirr

1 A 1 L . . 1 I 1
0 20 0 6f 80 100 |120 140 16 180 | 200

G

G

Fig. 1. Illustration of the notion of point collection on a 1-D signal. The
green and red rakes show how point collections are built, by grouping together
points belonging to identical period locations over several signal periods.

for the problem at hand. We do not use it in a statistical mod-
eling fashion with the purpose of inferring model parameters
afterwards, but rather to highlight interesting properties of the
signal which will be exploited in the next section to derive
our constrained projection approach.

The following notations will be used: T is the pseudoperiod,
n is the number of observed pseudoperiods, and X; € M(1, d)
is the vector value of the time sequence X € M(N,d) at
time ¢, i.e., X; = [x,l,xtz,...,x,d] where d is the number
of dimensions. Throughout this paper, we will denote as
N =n x T the total sample size.

We model a periodical time sequence as an amplitude-
modulated periodic signal with additive Gaussian noise.
Denoting by S € M(N, 1) a 1-D modulating signal and by
A =lay,...,aq] € M(1,d) avector of amplitude coefficients
associated with each dimension, we can write

X=ExAoPRIL,)+e¢ (D

where © is the Hadamard product of matrices (element wise
product) and ® the Kronecker product of matrices. The
T x d matrix P contains the periodic pattern of each dimen-
sion. These patterns are replicated n times to form the unmod-
ulated periodic signal. The matrix 1, is a n x 1 matrix of 1.

Then, we study the properties of separate ensembles of
points, which are formed by grouping together the points
with identical (time) locations inside a period, i.e., the col-
lections C; = [XiT,XiT+T, . ..,XiT+(n_1)T]T € M(n,d), for
i =1,...,T. Fig. 1 gives an illustration on a 1-D signal of
how the points inside a collection are extracted.

Using our data model, the collections will be expressed in
matrix form as

Ci=SixA)OM, x P)+e

where P; is the ith line of P and S; = [S(i),SG +
T),...,8G + (n — 1)T)]". It is easy to see that the matrix
M; = (S; x A) © (1, x P;) is of rank one, since its generic
term is mfd = a; P;(1)S; (k). Thus, there exists a d x 1 vector
wi and a 1 x n vector y; such as C; = (u;yi)! + &.
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(a) 2-D pseudoperiodic signal with approximately similar periodic patterns. (b) Representation of the point collections extracted from the 2-D signal

of (a). (c) 2-D pseudoperiodic signal with different periodic patterns. (d) Projection of the point collections extracted from the 2-D signal of (c). The vector
values of the 2-D signal at each time instant [graphs (a) and (c)] are represented as 2-D points in the diagram of graphs (b) and (d), the value 1 (blue signal)
being represented on the x-axis and the value 2 (red signal) on the y-axis. In (b) and (d), one color corresponds to one point collection. The latter are situated
on 1-D linear manifolds which orientations are close to the orientation of the amplitude vector (dark arrow). The color map is chosen so that consecutive
point collections will have similar colors. We thus observe that consecutive collections lead to projections which have similar angular orientation and which

are close in the projection space.

Under this model, y; is then the principal direction of the
ensemble of d-dimensional points C;.

Thus, a natural idea would be to perform separate pro-
jections of the point collections C; and then to perform
alignment of these independent projections to obtain a global
representation. This is the idea adopted in the local tangent
space alignment (LTSA) model introduced in [28]. The main
problem of this method with respect to our goal of preserving
interpretability, is that it does not necessarily ends up with
a relative positioning of the point collections which makes
sense visually. It indeed embeds local projections into a global
coordinate system by minimizing a global quadratic constraint
on the projection error to retrieve the global coordinates from
the local ones. Although it preserves the local geometry inside
point collections, it leads to arbitrary rotations of the initial
groupings with no immediate visual meaning associated with
such transforms.

In our method, we propose to enforce a parallelism con-
straint on the projections of point collections when computing
the global coordinates, allowing that way direct intercollection
visual comparisons. This idea is again inspired by the structure
of periodical time series data. Indeed, under mild conditions of
similarity between different signal dimensions, we can show
that the projections of point collections have globally the
same direction which can be proved to be that of the vector
A =lay,...,a4]. An example is shown in Fig. 2(a) and (b),
where we project a 2-D pseudoperiodic signal with a different
color for each point collection. The vector A is plotted as a
green arrow and we can clearly see on the graph of Fig. 2(b)
that the point collections are globally oriented in the same
direction as this vector. This parallelism property is not verified
for multivariate signals composed of 1-D signals with very
dissimilar periodical patterns. An example is given in Fig. 2(d).
But in any case, we keep the very interesting property that
consecutive collections yield projections with close angular
orientations and also with close locations in the projection
space.

Considering these properties of pseudoperiodic multidimen-
sional time series, we propose a projection algorithm which
projects point collections onto parallel lines in a 2-D space.

06 -05 -04 03 02 -01 0 01 02 03 04
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Fig. 3. (b) Constrained projection of the points in (a). The projected points are
constrained to lie on parallel lines, each line being representative of one point
collection. Corresponding groupings of points appear with the same color in
the two diagrams (the colored arrows show some of the correspondences).
The points displayed in (a) are obtained from a 2-D synthetic signal such as
the one represented in Fig. 2(a).

The local geometry as well as the relative positioning of
point collections in the projection space are both preserved
using a constrained quadratic criterion, the constraints being
that points of a same collection should be lined up and the
corresponding lines should be parallel in the 2-D projection
space. Fig. 3 illustrates this idea: the left figure represents the
point collections obtained from a 2-D synthetic pseudoperiodic
signal and the right figure the corresponding constrained
projection.

In Section III-B, we successively introduce the functional
to optimize in order to obtain the constrained 2-D projection
described above and an adaptive step gradient descent opti-
mization algorithm.

B. CMDS: Formulation and Optimization

First, we briefly review the multidimensional scaling (MDS)
formulation which presents many similarities with the con-
strained projection approach we introduce later in this section.
The unconstrained version of our projection algorithm indeed
boils down exactly to the principle of multidimensional scal-
ing. It should be noted here that multidimensional scaling
refers to a very generic class of DR methods rather than to
a specific technique, due to the fact that it starts from the



definition of a Gram matrix containing the scalar products
between datapoints. For instance, MDS is strictly equivalent
to a linear PCA if the considered scalar product is the standard
Euclidean one. The use of kernel scalar products then leads
to the definition of a wide range of DR methods. To remove
ambiguities, we use the term of kernelized MDS to refer to
MDS with a Gram matrix defined from a kernel dot product.
The term MDS is indeed sometimes used in the literature
to refer to the dual formulation of linear PCA. (Kernelized)
MDS thus constitutes a very general framework to introduce
both linear and kernel-PCA, as well as all the DR techniques
which amount to performing kernel-PCA with a specific
Gram matrix such as ISOMAP [13], LLE [29], and Laplacian
eigenmaps [15]. The strict equivalence of these methods to a
kernelized MDS is explained for instance in [30]. The latter
will be exploited in this paper to derive several constrained
projection methods by reformulating the above-mentioned
classical DR techniques within our CMDS approach. In this
sense, the CMDS framework refers to a generic class a DR
methods rather than to a specific technique, in the same way
as MDS.

1) Multidimensional Scaling: The general idea behind
(kernelized) multidimensional scaling is to reproduce in a
r-dimensional space an initial configuration of points con-
tained in a d-dimensional space (with d > r), while pre-
serving the interpoint metric distances of the original d-
dimensional space. The embedding is performed by preserving
the pairwise scalar products rather than the pairwise distances,
which is strictly equivalent if we derive the relation between
the distance matrix D and the Gram matrix of scalar products
K. This relation can be shown to be the following:

1 1 r 1 T 1 T T
K:—E D—ND]lN]lN—N]lN]lND-FW]lN]lND]lN]lN
)
that is 1
K = —EHDH 3)

where H = Iy — Cy, Iy is the identity matrix of size N
and Cy is the symmetric centering matrix Cy = %]IN 1%.
This relation is generally known in the literature as double-
centering since it amounts to performing a centering on both
the lines and the columns of the matrix K. It also shows that
preserving the pairwise scalar products preserves the pairwise
distances and vice versa.

Kernelized MDS algorithms perform first a centering in the
feature space. Taking the matrix K as such indeed amounts
to considering that the mapped points ¢(X;) are centered,
which is usually not the case. Thus, we use instead the matrix
K, which contains the pairwise scalar products between the
centered ¢ (X;), i.e., the matrix

K=Y —uY—p)={Y) = (u,Y)— (Y, u)+ (u, p)
=K —(CnY,Y) —(Y,CNY) + (CNY,CnY) “4)
where the rows Y; of Y are the mapped X; (ie., Vi =

¢(X;)). The operator (., .) refers to the pairwise scalar product
operator. In the above expression, scalar products between

columns of Y are Euclidean ones, so we can rewrite this
expression in a matrix form as

K=K-—CnYYT —Y(ChV)T + (CnY) (CnY)T
=K —-CyK—-—KCy+CNyKCy.

The functional minimized by MDS is then
LT 12 N 2
s =32 |5y v = [ vorf) o
lL,]=

where U € M(N,d). We thus have UUT = K, where
K, is the low-rank approximation of order r of K. In the
following, we denote by x; € R and v; € M(N,1),
respectively, the ith largest eigenvalue of K and its associ-
ated normalized eigenvector. The elements of /u;v; are the
coordinates of the embedded points along the ith coordinate of
the projection space. Another interesting property is that K,
can be decomposed into the sum > ;_, ,u,-v,-viT. Thus, solv-
ing for ming, z, IK — (lelT + ZzZZT)IIi, where Z; and
Zy € M(N, 1), yields Zy = \/uivy and Z; = /120;.

2) Constrained Multidimensional Scaling: Constraining the
projections of the points belonging to the same collection
to lie on a line is equivalent to enforcing the projections of
these points to have the same value in Z;. By considering a
permutation of the time indexes in the time sequence X such as
the elements corresponding to the same collection are grouped
together, i.e., the permutation X <« MX specified by the
N x N matrix M where M(i, j) =1iff i = (j mod T — 1)
*n—+ [%] , and 0 otherwise, we can enforce the above constraint
by rewriting Z; as MZy = Z = 7z ® 1,. The T x 1 vector
z contains the first coordinates of the 2-D projections of the
point collections in the 2-D constrained projection space, i.e.,
z(i) is the first coordinate of the projections of the points
belonging to the collection C;.

Then, using the above notations, the constrained optimiza-
tion problem writes itself down as

i~ (oo sww)f

where z € M(T, 1) and W € M(N, 1). In the following, we
denote as F(z, W) the functional to optimize:

F(z,W) = HK - (ce1Ee 1) +Www) Hi
_ H]%— (ZZT+WWT)H1. )

Using a property of the Frobenius norm, we can rewrite the
(7) as

~ T ~
Tr ((K - (ZZT + WWT)) (K - (ZZT + WWT)))
which in turn yields
A, AT A T 7.,\?
F(z, W) =Tr (AWAW) —2Tr (szz ) i (z z)
where Ay = K — WWT,

The functional F is not convex with respect to z and W
taken separately, and, as such, is not convex with respect
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Fig. 4. Left: diagram of the raw representation obtained by projecting data with our constrained projection method. Right: Diagram of the equivalent unfolded
representation obtained by performing x-repositioning of projected point collections. As previously, the different colors indicate the various indexes of the
considered point collections. The color map is chosen so that consecutive point collections (time indexes) have similar colors.

to [z, W]. A sketch of proof is given in Appendix A by
considering the Hessian matrix.

To perform the optimization, we use an alternating opti-
mization scheme. Optimizing with respect to W is easy since
it amounts to computing the eigenvector associated with the
largest eigenvalue of Ay = K — ZZ”. The most difficult part
is to optimize F with respect to z. We make use of a gradient
descent algorithm with an adaptive step. The first derivative
of F with respect to z can be shown to be (see details of the
computations in Appendix A)

0F(e,Z -
% — [ 2vee(dw)  (Z® Iy + Iy ® 2)
+42" 272" |(Ir ® 1,). ®)
In a practical implementation, (8) can be simplified into

OF (e, W)

—4Z"By + 4n?z7 77
0z

Vz Fw =
where Bz is an N x n matrix such as Bz(i, j) = Vz((j — 1) %
Nsxn+i,1)and Vz = vec(Az).

There remains next the problem of initializing the algorithm
and of computing the step of the gradient in the gradient
descent algorithm.

a) Initialization: A natural way of initializing the gra-
dient descent is to compute the couple (z, W) which yields
the closest (Z, W) (in a quadratic error sense) to the global
optimum of the unconstrained optimization problem. We thus
take Winit = /u2v2 where vy is the normalized eigenvector
associated with the second largest eigenvalue u» of the matrix
K and Zinit = argmin, ||z ® I, — MD1||2 where v is the
normalized eigenvector associated with the largest eigenvalue
w1 of the matrix K.

To solve for zini;, we again consider a gradient descent
where the direction of the gradient is given by

afinit
0z

—2 [zT - mol] (Ir ® 1,). 9)

b) Adaptive gradient step: The step of the gradient
descent in the main optimization procedure can be made
adaptive by computing at each iteration r the step y,*

such as

Y= arg min F(zt — y V:Fw,, Wy). (10)
In [31], a suboptimal solution to (10) is shown to be given
by: y, = argmin ||A;z — y A,g||2 where A;z = z; —z;—1 and
Atg =V, Fw, — V, Fy, ,, which yields

(M)A
' (AIZ)T Arg

The whole optimization procedure is
Algorithm 1 presented in Appendix B.

We now have at our disposal a constrained projection
enforcing certain properties on the projected data. The follow-
ing section is dedicated to the manipulation of the obtained
2-D projection and shows how the imposed constraints allow
user-oriented information to be very easily extracted from it.
In particular, we introduce several controls which allow the
user to manipulate the representation, by choosing for instance
which period of time to represent, or by isolating specific
point collections whose evolution over time is of interest
to him.

summarized in

IV. VISUAL INFORMATION EXTRACTION

To provide an insight into the implementation of our
approach, we consider the topical issue of energy management
within buildings. The CMDS algorithm will be run on both
experimental and synthetic data (inspired on the original ones),
describing the (mainly thermal) dynamics inside experimental
houses. These data consist of temporal series; the postprocess-
ing step further described helps to make their visualization and
analysis through the CMDS algorithm easier.

A. Postprocessing of the Raw Constrained 2-D Projection

We first transform the raw projection given by our CMDS
algorithm by repositioning the projections of the point col-
lections along the x-axis. The original representation may
indeed be quite difficult to interpret visually due to numer-
ous superimpositions. The x-position of a point collection
projection is moreover not very informative since, it mainly
betrays the fact that two point collections which correspond to
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(b) Graph of the x-repositioning of the projections of the point collections obtained using our CMDS algorithm. (a) Graph of the corresponding raw

output of the CMDS algorithm. The x-repositioning clarifies the representation by eliminating the superimpositions of point collection projections. Each point
collections are displayed in a different color; the color map being chosen so that consecutive point collections (time indexes) have similar colors. Due to the
periodic nature of the signal, the point collections corresponding to the end of the pseudoperiod are very similar to the one corresponding to the beginning
of the pseudoperiod, creating many superimpositions in the projection space and adding visual confusion in (b) by mixing together visually different colors
with the continuous color map used. The vertical axis is a discriminative axis which allows to assess the distance between two trajectories.

two consecutive time indexes will yield projections with very
close x-coordinates. So, we can reposition the projections of
the point collections C1, ..., Cr regularly along the x-axis,
and order them according to the index of the corresponding
point collection (which indicates the order of appearance
in the signal period). An illustration is shown in Fig. 5.
This repositioning preserves the important information which
resides in the relative positioning of the projections of the
point collections along the y-axis, and, more importantly, in
the relative positioning of point projections inside a collec-
tion. The reader could argue that the above section concern-
ing the optimization of Z is useless since we discard the
Z-coordinates obtained by the CMDS algorithm in the rep-
resentation we present to the user. But imposing from the
beginning arbitrary x-positions (i.e., an arbitrary Z vec-
tor) for the projections of the point collections introduces
a great amount of distortion that would introduce a large
error in the computation of W which is the informative
vector. Thus, the pertinence of the obtained W vector depends
largely on the correct computation of the Z vector. Moreover,
x-repositioning is not meaningless as it corresponds to unfold-
ing the cyclical representation of the projected data, the
cyclical nature of the projection being the consequence of the
pseudoperiodicity of the original data (see Fig. 4). We plainly
justify the x-repositioning in Section IV-C.1 by arguing that
the important information which will be used in the informa-
tion visualization step is the distance between behaviors and
that this distance is not impacted by the x-repositioning whose
role is only to make the representation clearer to the user.
Finally, we obtain a 2-D projection where the x-axis repre-
sents the (time) index inside the system pseudoperiod and the
y-axis the variability inside measurements at this index of the
pseudoperiod. The x-axis is discrete with T possible positions
on it. The y-axis is continuous and a point projection can

take any possible values. This axis does not bear any semantic
related to the physical quantities that are measured by sensors.
This is a discriminative axis which allows to compare profiles
between each other at any point in time or in their globality:
it provides the user with the visual hint he needs to isolate
nominal or deviant behaviors.

B. Multiscale Analysis of the System Behavior

Users are generally interested in identifying nominal and
deviant behaviors at different time scales. In the following,
we define precisely a behavior over an interval of time as the
profile/trajectory induced by joining together the projections
of points corresponding to consecutive time indexes contained
in this time interval and belonging to a same pseudoperiod
of the signal. A behavior is thus identified uniquely by a
given time interval and the index of a given pseudoperiod.
Fig. 6 shows an illustration of this definition on time series
data with a pseudoperiod of one day. A behavior here simply
represents a sub-interval of time inside a particular day, for
instance, we wish to visualize the sub-interval [7H30, 17H50]
of day(/period) 16, which is represented by a yellow line
in Fig. 6.

The notion of behavior is directly related to the application
which will be presented in Section V-B1, whose purpose is
to allow the user to isolate behaviors which are of interest to
him: if we consider a system exhibiting a pseudoperiod of a
day, a typical user need may be for instance to characterize
the system nominal behavior inside the time interval 10—11H
and to isolate the top 10% behaviors which differ the most
from the nominal behavior. The user may also want to display
only a reduced interval of the total data acquisition time.
To account for these specific user needs, we make available to
him a graphical interface and several user controls. A complete
overview of the interface is shown on Fig. 12.
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(a) Two behaviors defined over different sub-intervals of the signal pseudoperiod (which is taken equal to a day in this example). The vertical dotted

lines show the limits of the time sub-interval associated with each behavior. Thin dotted lines are used to represent the corresponding complete behaviors
defined over the whole pseudoperiod. (b) Graph that replaces the extracted behaviors within the total constrained projection in which all days(/periods) are
represented. In this graph, times indexes (points) belonging to a same pseudoperiod (day in this example) are displayed with the same color.

In the following section, we introduce the way to compute
the distances between two profiles and the way we can
determine the nominal behavior over an interval of time.

C. Computational Considerations

A behavior/profile is entirely defined by the set of points
composing its trajectory. It is possible to consider both the
set of points after or before postprocessing of the result of
the CMDS algorithm. The tests we made reveal that the
x-repositioning of the projections of the point collections does
not impact significantly the computation of the degrees of
outlierness.

1) Distance Computation: Graphically, behaviors/profiles
can take the form of piecewise linear curves defined over the
same domain and at the same positions on the x-axis. Under
these hypotheses, it is natural to compute an interbehavior
distance by considering only the y coordinates of the points
defining the curve. A behavior is thus defined by a vector
of y coordinates and the distance between two behaviors can
be simply computed as the L1 distance between two vectors,
which is equivalent to computing the sum of L1 distances
between points with the same x coordinates. Denoting by
b = {‘pll, . pf‘} a behavior consisting of k points and by
{x{,y]} the coordinates of the point p], the distance between
two behaviors b; and b; is defined as

k
d(b bu) = > |v] = vih|.
j=1

Y

Using this definition of distance between behaviors, we see
that the x-repositioning operation described in Section IV-A
does not impact the distance between behaviors, which is an
important consideration since the distance between behaviors
is the information of interest to make appear nominal or
abnormal behaviors in the representation.

2) Nominal Behavior Computation: The nominal behavior
bnom associated with an interval of time is defined as the robust
mean of the n existing behaviors over that interval. We iterate
the following two steps until convergence to determine it

! 1 —1\?
w; < exp —md (bl>bnom)
21 Wb

2= w]

using 0 = % >/ by to initialize the iterative process. This
scheme has the advantage of preserving the computation of the
nominal behavior from the influence of deviant behaviors by
down-weighting the latter in the averaging process.

3) Outlierness Degree Computation: We then define the
degree of outlierness o(b;) of a behavior b; as a normalized
robust Z-score

t
bnom <~

d bi, bnom
o(bi) = % (12)
~oy_ o)
o(bi) = max_o(b;) (13)
jell,...,n}

where

o — \/Z?:l wid2 (bi, bnom)
’ o1 W .

The outlierness degree is normalized in (13) by its maximum
value over the considered time interval to obtain a quantity
comprised between 0 and 1, 1 being the highest possible
degree of outlierness.

4) Multimodality: If the observed period of time is too long,
the behavior distribution can be multimodal due, for instance,
to seasonal variations if a natural phenomena such as temper-
atures evolution is observed. In this case, it is not possible to
isolate a single nominal behavior. To handle this situation, we
suggest that the user restrains the interval of time displayed on
the screen until the behavior distribution becomes monomodal.
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Fig. 7. Result obtained by projecting a three months interval of time with the
CMDS algorithm. The different colors attributed to the profiles correspond to
the date of acquisition (from dark blue to dark red), so that visual groupings
appear among daily behaviors with close acquisition dates.

An example of multimodality is shown in Fig. 7. On the plot of
this figure, we can clearly identify several nominal behaviors
corresponding each to a specific meteorological regime, and
transitory regimes in between corresponding to intervals of
time with unstable meteorological conditions. As another
example, the plots of Fig. 8 represent isolated monomodal
groups of behaviors. This example illustrates the effectiveness
of our tool to perform visual monitoring of the deviant
behaviors.

V. RESULTS

This section is divided into two parts. In the first part, we
evaluate the performance of our CMDS algorithm, comparing
it for instance to standard DR methods. In the second part,
we assess the usefulness of our algorithm when integrating
it into a complete system for monitoring pseudoperiodical
time series. This second part is rather oriented toward
testing the information visualization potential of our method
through the available user—system interactions described in
Section IV-B.

A. Performance of the CMDS Algorithm

An important advantage of our algorithm is that it is
formulated as a constrained kernelized MDS problem, and, as
such, it allows the definition of a large variety of constrained
nonlinear DR methods. As mentioned in Section III-B, a large
number of DR algorithms amounts to performing a kernelized
MDS, the main differences between these algorithms residing
in the way the Gram matrix containing the kernel dot products
is defined. We can thus perform a systematic empirical eval-
uation by comparing the constrained and the unconstrained
versions of several popular DR techniques. In the experiments
below, we choose four of the most standard DR techniques:
kernel-PCA with RBF kernel, ISOMAP, LLE, and Laplacian
eigenmaps. The comparison is based on three criteria com-
monly used in the literature to assess the performance of DR
techniques: embedding error, trustworthiness, and continuity.
A detailed explanation of how they are computed is given in
the following section.

It should be noted here that the goal of these experiments
is not to prove that our method performs better in terms
of embedding error, trustworthiness, and continuity compared
with the unconstrained versions of the algorithms considered
in the tests. These experiments are rather conducted with the
goal of demonstrating that our CMDS framework sustains
the comparison in a reasonable way with the state-of-the-
art methods with respect to these criteria, while possessing
a major advantage in term of visual interpretability and in
term of exploitation from the point of view of information
visualization.

In Section V-A.1-4, we first give a formal definition of
the three criteria used to compare the constrained and uncon-
strained versions of the four state-of-the-art methods used
for the tests. We introduce next the kernelized MDS-like
formulations of these techniques and we conclude this part
by presenting an experimental evaluation on both a synthetic
and a real dataset.

1) Evaluation Criteria:

a) Embedding error: The embedding error is a man-
ifold learning notion which is generally computed as the
squared error between the recovered low-dimensional embed-
ding in the latent space and the nonreduced data transposed
into the latent space (this measure is used for instance
in [32]). If we consider the example of linear PCA, the
latent space is defined by the (normalized) eigenvectors of
the covariance matrix of the data. The embedding error
will thus be the distortion (in the quadratic error sense)
produced by keeping only a subset of principal axes with
dominant eigenvalues. The same definition applies for ker-
nelized MDS in the feature space induced by the kernel
function and it can be shown that the embedding error is as
follows:

d
>

i=r+1

¢ 2 ¢ 2
2 i —uily= | 20 Ixily =
i=1 i=r+1
where r is the reduced dimensionality, d is the dimension of
the original space, u; is the recovered ith coordinate of the
low-dimensional embedding in the latent space (#; € M(N, 1)
since there are N datapoints), and u;" are the coordinates of
the nonreduced data in the latent space.

In the CMDS projection, the definition above has to be
slightly altered: we take u] = /A;*u;* where u;*® and
A% are the eigenvectors and the associated eigenvalues of
the matrix R = K — ((z® 1,,)(z ® 1,)T + WWT) which is
the Gram matrix of the residual in the latent space after the
constrained projection. The distortion can then be expressed
in a similar way as above

d—r 5
2 il =
i=1

d—r

res
24
i=1

with r = 2.

Hence, the embedding error is rather a global measure
assessing the distortion caused by the DR process. On the
other hand, trustworthiness and continuity [33], [34] are rather
employed to quantify the amount of local distortions, and mea-
sure, respectively, the amount of false neighborhoods and tears.
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(a)—(d) Monomodal groups of behaviors extracted from the Fig. 7. Each graph represents a user-restrained interval of time over the total acquisition

time, so that the behavior distribution becomes monomodal with a clearly identifiable nominal behavior. The latter is represented on each graph with a green
continuous line. The color associated with a behavior represents its degree of outlierness in the displayed interval of time. The color map ranges from blue
(low outlierness) to dark red (high outlierness). Note that the colors are not related to the ones used in Fig. 7 and that there are no color-based correspondences
between the curves of the four graphs presented in this figure. The color only indicates the distance to the nominal behavior (outlierness) within a graph and

thus, each graph has to be taken independently.

These are very popular measures used in numerous works,
including recent ones, to assess the quality of an embedding
method, though it may also be interesting to use other criteria
such as the ones recently proposed in [35] and [36].

b) Trustworthiness: This criteria measures the proportion
of points which are close to each other in the low-dimensional
embedded space but not in the original high-dimensional
space. Thus, the lower the trustworthiness, the better. This
quality measure is defined as

2 .
T (k) = 100 x Nk(2N—3k—1)z > G-k

i=1 je Mk(x;)
(14)

where k in the neighborhood size, r*(i, j) is the rank of the
Jjth point when taking as ranking criterion the distance to the
ith point in the high-dimensional space. The ensemble M* (x;)
is the set of points which are among the k-NN neighbors of
x; in the low-dimensional embedded space but not among the
k-NN neighbors of the corresponding point x; in the high-
dimensional space.

c) Continuity: In contrast to trustworthiness, continuity
measures the proportion of points which are far from each
other in the low-dimensional embedded space but not in the
original high-dimensional space. Thus, the lower the continu-
ity, the better. This measure is defined in an analogous way

as follows:

100 x

C(k) = N (2N 21 /\% )(r(l s J) —k)
1=l je Xi
(15)

where r(i, j) is the rank of the jth point when taking as
ranking criterion the distance to the ith point in the low-
dimensional embedded space. The ensemble N*(x;) is the
set of points which are among the k-NN neighbors of x} in
the high-dimensional original space but not among the k-NN
neighbors of the corresponding point x; in the low-dimensional
embedded space.

2) Kernelized MDS-Like Formulations of ISOMAP, LLE,
and Laplacian Eigenmaps: The following properties are given
without any justification. Details can be found in [30] or [37].

a) ISOMAP: ISOMAP is equivalent to kernelized MDS
if Kisomap = Afy where AY = —1HS9H and 89 = (1d] )
is the matrix of squared geodesic distances computed on
a connected neighborhood graph of the data. The double
centering matrix H is defined by (3).

b) LLE: LLE is equivalent to kernelized MDS if K1 g =
Al ,u1,u1T — M where A; and u are, respectively, the largest
eigenvalue of M and its associated normalized eigenvector and

= (Iy — Q)T (Iy — Q). The matrix Q = (¢ij) explains the
local linear relationships between a point and its neighbors



and is computed as

N
0= arnginz X —
i=1

The coefficient g;; is set to 0 if x; is not among the k nearest
neighbors of x;, i.e., if x; ¢ N k (x;), otherwise, it is computed
using the above formula.

¢) Laplacian Eigenmaps: Laplacian eigenmaps are
equivalent to kernelized MDS if Kig = L~ where L™ is
the Moore—Penrose pseudoinverse of the Laplacian matrix
L = D — Q. The matrix Q is a weighted adjacency matrix
whose general term is

2

D dix

JeN*(x;)

(16)

oxpy | il
R p 202
qij =

0, otherwise

], ifXjEM (17)

and D is a diagonal matrix whose ith diagonal element is the
sum of the ith line of Q.

3) Experiments on a Synthetic Dataset: We first illustrate
the performance of our CMDS algorithm on a synthetic
dataset of multidimensional pseudoperiodic data. Therefore,
we generate a 50-dimensional pseudoperiodic signal consisting
of n = 300 pseudoperiods of size T = 100, according to the
general data model (1) introduced in Section III-A. The first
eight dimensions are represented on the graphs of Fig. 9.

We choose the following parameters: the neighborhood size
is set to k = n = 300 in the three methods ISOMAP, LLE,
and Laplacian eigenmaps. This is a natural choice since our
method relies on the fact that points with the same time
index inside a pseudoperiod lie close to a linear manifold
of dimension one. In ISOMAP, it means that the pairwise
geodesic distances between these points will be exactly the
Euclidean distance, and as such, that each point inside this
group should be connected to all the others (or in other terms,
that there should be a complete interconnectivity between
points which possess the same time index inside a given
period). This justifies in the case of ISOMAP the choice of
k = n for the connectivity parameter k in the computation
of the geodesic distance matrix. In LLE, the fact that points
having the same temporal index inside a pseudoperiod lie on
linear manifold of dimension one means that each of these
points can be expressed as a linear combination of the others.
This justifies in the case of LLE the choice of k = n for
the connectivity parameter k in the computation of the weight
matrix expressing the local linear relationships between points
[see (16)]. In Laplacian eigenmaps, the choice of k = n for the
connectivity parameter k simply expresses the fact that points
having the same time index inside a pseudoperiod will have
high-similarity degrees in the similarity matrix W defined in
(17) and, conversely, points with different time indexes inside
a pseudoperiod will have low-similarity degrees in W. The
o parameter in the kernel-PCA and the Laplacian eigenmaps
algorithms is set to 1 (we performed a grid search on this
parameter to determine its best value).

The results are shown in the plots of Fig. 10 and summarized
in the tables of Fig. 11. For each DR method, we display two
plots which correspond to the 2-D projection obtained by using
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Fig. 9. Synthetic pseudoperiodic signal used in our experiments. Only the
first eight dimensions are represented for clarity reasons, each dimension being
displayed with a different color. (a) Zoomed-in view over four pseudoperiods.
(b) Representation over 40 pseudoperiods. We can see the amplitude modu-
lation appear.

successively the unconstrained and the constrained version
of the considered method. We notice that in each case the
constrained projection is more distorted than the unconstrained
one. But, it should be pointed here that the constrained
projections in their raw form [Fig. 10(b), (d), (f), (h), and (j)]
would not be displayed as such to the user: we derive instead
a line-based representation from the raw representation (see
Section IV-A) that provides the user with the insights he
wish to get about the data and facilitates its interaction
with the representation—which is not possible in the raw
representation. The purpose of the diagrams previously cited
is just to show how our constrained projection technique
behaves compared with the corresponding unconstrained state-
of-the-art methods from a DR point of view. Relying solely
on the visual aspects and data mining quality measures, our
method is not better than the unconstrained DR techniques
and even performing a little worse, though, in an acceptable
extent as the numerical results of this section prove it [see
Fig. 11(a) and 11(b)]. Our claim is to provide a better
representation in terms of the potential insights it brings about
the data once the postprocessing on the constrained raw repre-
sentation is performed and the final representation is fed to the
user.

The tables of Fig. 11 summarize the numerical results in
terms of embedding error, trustworthiness and continuity. We
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(a)—(j) Representations of the 2-D projections obtained by using unconstrained DR techniques and their associated constrained (cstr.) version. For

each DR technique, the point collections are attributed the same color in the unconstrained and constrained projections, allowing each time to establish a
visual correspondence between the two projections. Similarity matrices computed from the (k) data in the true latent space and from the (1) result of the

CMDS algorithm using ISOMAP as DR technique.

Emb. err. Ad. dist. Trust. Cont. Emb. err. Ad. dist. Trust. Cont.

NeSstr. cstr. Rd nestr. | cstr. | Rd || nestr. | cstr. | Rd nestr. cstr. Rd nestr. | cstr. | Rd || nestr. | cstr. | Rd

PCA 27.1 41.9 64.5 0.35 6.3 14.6 | 50 3.1 4.5 | 50 PCA 253 34.6 61.8 0.28 53 12.6 | 50 3.0 35 | 50
KPCA 22.1 28.2 47.1 0.27 4.5 9.1 | 50 2.8 44 | 50 KPCA 18.7 232 53.2 0.22 4.1 7.3 | 50 1.9 4.1 | 50
ISOMAP | 30.8 45.1 104.8 0.2 32 6.3 | 50 3.0 44 | 50 ISOMAP | 27.1 31.3 84.9 0.09 3.1 5.6 | 50 1.8 2.7 | 50
Laplacian | 2.7 3.7 5.8 0.34 71 [ 11850 | 51 |73 |50 Laplacian | 22 3.1 6.2 0.27 7.0 10250 | 49 | 53[50
LLE 5.4e-5 | 9.8e-5 | 2e-4 0.28 55 7.5 | 50 4.2 6.1 | 50 LLE 3.0e-5 | 5.9e-5 | 1.9e-4 0.19 52 7.1 | 50 3.7 54 | 50

() (b)
Fig. 11. Performances of the constrained versus unconstrained projection in terms of embedding error (Emb. err.), trustworthiness (Trust.), and continuity

(Cont.). (a) Results on the synthetic dataset described in Section V-A3. (b) Results on the real dataset described in Section V-A4. For each criterion and DR
technique, three values are given corresponding, respectively, (from left to right) to: ncstr. the criterion value associated with the unconstrained DR technique,
cstr. the criterion value associated with the constrained DR technique (CMDS approach), and Rd the criterion value averaged over several norm-constrained
random projections. The additional field Ad. dist. contains the percentage of supplementary distortion incurred by constraining the original DR problem. The
added distortion is computed from the first two values contained in the Emb. err. field and the total inertia associated with the DR method according to (18).

compare each time the performance of the nonconstrained DR
technique with the performance of its constrained counterpart.
Since the eigenvalues obtained using different DR methods
will be of different magnitudes from one method to the
other, the induced projection errors will not be comparable.
Thus, rather than comparing directly the projection errors
between different methods, we chose to quantify for each
method the supplementary amount of distortion incurred by
constraining the projection problem. To do so, we rescale
the value of the embedding error associated with both the
constrained and the unconstrained projections on a 0 — 1
scale by using the total inertia in the latent space induced
by the kernel function as a normalization factor. Thus, it
is possible to compare constrained DR methods between
each other in terms of an added distortion factor comprised
between 0 and 1. Denoting by E, and E. the projection
error, respectively, in the unconstrained and the constrained
case and by JE the added distortion, we write the following
definition E _E
JE="""">0 (18)
Tiot
where [ is the total inertia in the latent space induced by
the kernel function: Iy = Tr(IZ ). The added distortion can
be reinterpreted as the percentage of the total inertia which

would not be explained by the constrained projection and

thus quantifies directly the loss incurred by constraining the
problem.

For each DR method, we also make a comparison with
a baseline given by random projections. More precisely, we
evaluate the average embedding error obtained by a norm-
constrained random projection, i.e., we impose the norm of the
first and second coordinate vectors to be, respectively, &/A1 and
/22 where J; is the ith largest magnitude eigenvalue of the
similarity matrix associated with the considered DR method.

Among all the tested DR techniques, we see that ISOMAP
is the one which performs best in terms of the three envisaged
criteria in the constrained projection case. This could be
explained by the fact that the data lie on a piecewise linear
manifold with a low curvature (point collections can be
approximated by 1-D linear manifolds whose orientations
remain very similar between consecutive point collections).
This may be the reason why ISOMAP, which works very
well for easy-to-embed developable manifolds, performs so
well on the considered data. The experiments on real data
confirm this claim.

The second conclusion we can draw from the numerical
results summarized in Fig. 11 is that our constrained projection
method does not add much supplementary distortion to the
one introduced by applying the unconstrained 2-D embedding.
Our CMDS algorithm performs also very favorably in terms



of trustworthiness and continuity when compared with the
corresponding unconstrained DR technique. This confirms that
the proposed constrained projection can be used as a sound
basis to perform higher level information visualization tasks
and extract user-oriented information.

In addition, a visual assessment can be made by looking at
the similarity matrices computed from the data in the true
latent space induced by the Gram matrix associated with
the ISOMAP technique and from the result of the CMDS
algorithm. We can see on Fig. 10(1) and (j) that both matrices
are very similar visually speaking.

4) Experiments on a Real Dataset: The database of real
data we consider is composed of sensor data acquisitions over
an interval of six months with an acquisition every minute.
Hundreds of sensors are installed inside the experimental
houses of the INCAS platform, comprising five experimental
buildings (with different construction types) dedicated to test-
ing various approaches regarding systems, control, and energy-
saving policies. The physical quantities measured include the
temperature, the pressure, the relative and absolute humidity,
the solar and the infrared level of radiation among others.
Sensors are distributed in all the rooms of the houses with
several sensors of each category per room, yielding a signal
with a very high dimensionality (250 in our case). We perform
basic treatments on the data such as prefiltering with a median
filter and missing data completion using a standard robust PCA
with missing value model (see [38]).

The numerical results are summarized in the table of
Fig. 11(b). The conclusions we draw are very similar to the
ones we obtain on synthetic data: ISOMAP also performs
better than other DR techniques for the three criteria in the
constrained projection case and the constrained problem does
not induce an important deterioration in terms of embedded
error, trustworthiness, or continuity in comparison with the
unconstrained problem.

The experiments conducted on this real dataset also
allow us to confirm the validity of model (1) in Section III-A
regarding the hypotheses it induced on the data structure.

B. Performance from Information Visualization
Point of View

The goal of this subsection is to illustrate the informa-
tion visualization capabilities of our system. We first give a
brief description of the user interface and principal related
user—system controls. Then, we detail several use cases for
this multidimensional pseudoperiodical time series monitoring
system. In first case, we consider a scenario where the user
seeks to identify nominal behaviors over different time sub-
intervals of the total acquisition time. In second case, we
consider a scenario where the user looks for deviant behaviors
and tries to identify whether they are caused by a sensor
dysfunction or by the observed phenomenon’s taking abnormal
values.

1) Description of the Graphical User Interface: To assess
the efficiency of the proposed controls inside the information
visualization part of this tool, we implemented a simple
graphical user interface (GUI) using SDL/OpenGL (com-
pare Fig. 12). Two controls allow, respectively, to select

the time interval the user wants to display inside a signal
pseudoperiod and to tune the wished-for degree of outlierness.
For clarity reasons, the user may also choose to display
only a reduced interval of the total data acquisition time,
which leads to the creation of a third control (for instance,
if we dispose of six months sensor data acquisition, it
may be clearer to display only one month of data acqui-
sition to the user, though the CMDS projection algorithm
makes a batch computation on the whole data acquisition
time).

The proposed interface consists of two parts.

1) The upper part is split between two diagrams. The
one on the left hand side represents the CMDS pro-
jection over the whole time interval (hence the impres-
sion of overplotting). On the one hand, two cursors
on the blue horizontal scrollbar allow to restrain the
displayed interval within a pseudoperiod (equal to a
day in our example). On the other hand, a magenta
vertical scrollbar allows to display a user-restrained
interval of time over the total acquisition time. The
result of using both scrollbars on the left diagram is
shown on the right one. The user can click on any of
the trajectories in this second diagram and the corre-
sponding sensor signal will be shown in the bottom part
of the interface. Finally, the yellow vertical scrollbar
allows to control the degree of outlierness of the plotted
trajectories.

2) The bottom part is particularly useful when trying to
identify potential sensor dysfunction. Therefore, sensors
are sorted by categories, each category being displayed
in a separate tab. The display is entirely controlled by
the right hand side diagram of the upper part of the
interface in the way mentioned above. Hence, when
the user clicks on a deviant behavior on the top right
hand side graph, he can identify on the bottom left hand
side diagram which sensor(s) is/are responsible for the
observed deviance and analyze whether this is due to
a sensor dysfunction or an abnormal behavior of the
observed phenomena.

2) Use Case Examples:

a) First use case: This use case illustrates the effect of
the scrollbars on restraining the displayed time interval and
the number of plotted trajectories, so as to make a nominal
behavior appear. Fig. 13 shows how using the scrollbars
influences the display on the upper right hand side diagram:
on the left hand side diagram, the displayed interval of time
is restrained to 20 days, which is not restrictive enough to
identify clearly a nominal behavior. On the right diagram,
we restrain the displayed time interval to 10 days and the
maximum degree of outlierness to 0.8. In this case, the
nominal behavior symbolized by the green line on the dia-
gram appears visually consistent with most of the represented
behaviors.

The choice of an appropriate interval of time is left to the
user who is supposed to have an a priori knowledge of the
data. As a general rule, the longer is the selected interval of
time to be displayed, the less robust the identified nominal
behavior will be. Here, the notion of robustness is subjective
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Fig. 12.  Screenshot of the proposed monitoring system for multidimensional pseudoperiodical time series. A complete description of the system is given in
Section V-B1. This screenshot also illustrates the use case number two, where the goal is to identify the reason why a behavior deviates from the nominal
one. With the mouse cursor, the user points a deviant profile in the top right hand side figure and the corresponding original sensor signal is displayed in
the bottom part of the interface for the selected time interval (4-20H in this example). The user can then select a category of sensors by using the tabbed

window mechanism. Here, the values represented in the bottom part of the interface correspond to the temperature sensors in room 1.
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Impact of using the magenta and the yellow scrollbars to make a nominal behavior appear. On the left, the selected interval of time is not restrictive

enough to clearly identify a nominal behavior, whereas on the right, a meaningful nominal behavior can be extracted (displayed in light green).

and left to the visual appreciation of the user who will adjust
the selected time interval until he judges significant the
obtained nominal behavior (significant is used in the meaning
of visually consistent with all the other behaviors plotted on
the upper right diagram of the graphical interface). By clicking
on a trajectory close to the identified nominal behavior in the
top right window, it is possible to observe the sensor values
characterizing this nominal behavior in the bottom windows
of the interface and to obtain global statistics on these values.

This is important information to the analyst who will be
able for instance to define a local heating policy from these
observations, or to analyze the thermal behavior of the house—
which may be useful for instance to characterize the properties
of the insulating materials. For the latter, a very simple user
analytical process would be to compare the nominal behaviors
during precise periods of the year between different houses
equipped with different insulating means. If the heating
policies (and of course the location/exposure) are the same



for all the houses as well as the type of measurements taken
inside them, the nominal behaviors will directly characterize
the properties of the materials used. This supposes of course
to run several instances of the system (one for each time
series/house). By correlating these data with meteorological
data, it is possible to determine the performance of insulating
materials for different thermal regimes/seasons, and also, to
make a global assessment of the energetic performance of the
house.

b) Second use case: In this use case, the user selects
a trajectory with a high-outlierness degree and analyzes the
corresponding sensor signal. The actions to be taken are the
following: the user selects first an interval of time over the total
acquisition time with the magenta scrollbar and an interval
to be displayed inside the time pseudoperiod with the blue
scrollbar. On the screenshot shown in Fig. 12, we chose to
display the last fifteen days of October and to visualize an
interval of time comprised between 4 and 20H. The user then
adjusts the wished-for degree of outlierness with the help of
the yellow scrollbar (fixed to 0.9 in the example of Fig. 12)
and clicks on a behavior in the upper right hand side diagram
of the graphical interface. The corresponding sensor data over
the selected time interval (4—20H in the example) are then
displayed in the bottom part of the interface. The tabs allow to
select a specific category of sensors (temperature in room 1 in
the example). The user can then analyze the possible causes
for the deviance of the behavior he clicked on. In example
Fig. 12, we can see very clearly that the observed deviance is
due to temperature sensors yielding abnormal values in room
number 1.

VI. CONCLUSION

In this paper, we define a general constrained projection
technique, which can enter into the framework of any of the
existing DR technique insofar as it can be reformulated under
the form of a kernelized MDS. The loss in terms of embedding
error, trustworthiness, and continuity incurred by adding the
projection constraints is quite limited on both the synthetic
and real data tested for each of the considered DR techniques.
Contrary to their unconstrained counterparts, the constrained
projections obtained with the CMDS approach open the way
to the use of information visualization techniques, decoupling
the interest of the obtained projections in terms of the amount
of information the user can extract from the associated graph-
ical representations presented to him in the display. These
representations indeed allow the superimposition of simple
controls that can be used to obtain a very specific piece of
information as well as to perform standard global monitoring.
Moreover, all the operations effected by using these controls
are costless from a computational point of view, since they
simply imply the reformatting of the visual content of a
graph displayed on the screen. This confirms the initial claim
of the paper which was to combine powerful data mining
techniques with more user-compliant information visualization
approaches.

In terms of advantages, the proposed system provides the
user with an easy-to-use selfexplanatory graphical interface

which does not necessitate any previous user training. The
implemented graphical controls are intuitive and are voluntar-
ily restrained to a few number to maximize the efficiency of the
search process. The main disadvantage may reside in the lack
of generalizability of the system to explore other types of time-
oriented data (i.e., data which do not exhibit any pseudope-
riodicity). This system has indeed been developed in a well-
defined applicative framework in response to real needs in
terms of monitoring environmental sensor data in experimental
houses—but, it could be used on all kinds of pseudoperiodical
time series data, which still opens a broad range of potential
applications. Another limitation of the system may lie in the
fact that it is designed to treat only one source of data at a
time, i.e., the system only allows the processing of a single
(multidimensional) time series resulting from the synchronized
observation of the same phenomenon by different sensors.
In some cases, it may be useful to consider simultaneously
several sources of data corresponding to the observation of
different (but correlated) phenomena, with measurements not
necessarily synchronized in time and/or of different nature,
and envisage a cross-domain treatment of these data. In
the practical use case we considered, it may be interesting
for instance to consider simultaneously meteorological data,
which we expect to be correlated with the sensor measure-
ments inside the house. This is an interesting perspective of
improvement of the system, which will surely raise new chal-
lenges from a data mining and information visualization point
of view.

To conclude on the pro and cons, we provided a system
dedicated to the analysis of pseudoperiodical time series
which has the advantage of simplicity and efficiency, stress-
ing to the user the relevant content and leading him in
a few interactions (less than 3) to the targeted piece of
information. This simplicity may be a disadvantage if we
want to perform more complex tasks (such as cross-domain
analysis) or treat more general data, but more complex
tasks are often implemented at the expense of simplic-
ity of use, and higher generalizability (regarding data that
can be treated) often impacts the efficiency of the search
process.

In addition, in a future part of this paper, we plan to extend
our CMDS algorithm to accept online streaming data to per-
form online monitoring. Indeed, although data can be treated
in an online fashion by recomputing the CMDS projection
after each new acquisition, time series with a high-frequency
acquisition rate will necessitate a real online approach updat-
ing the constrained projection in real time. This problem is
very challenging since it requires a visual continuity in the
successive projection updates. Indeed, if we present the user
with too much varying projections from one update to the
other, he will lose track of what he was observing before
the display got updated. And reversely, the update step may
prove unnecessary if no significant changes in the observed
phenomenon occurred within the update step. Thus, the update
interval has to be controlled dynamically to provide the user
with reasonable updates, making appear an understandable and
continuous evolution of the system.



APPENDIX A

COMPUTATION OF THE FIRST AND SECOND ORDER
DERIVATIVES OF THE CMDS OBJECTIVE

The notations used in this appendix are the same as those
introduced in this paper.
We remind that the CMDS objective is given by

Fe W) = |k - (co1yee 1) + WWT)Hi
Tr (Awdl) — 2T (A z2") + (sz)z

where Ay = K — WWT and Z = z ® 1,. We have

0F (e, W)/0z = (0F (e, W)/0Z)0Z )0z where

A T
0z 0z 0z

o N\T
= -2 |:vec (Aw) ZRIN+1y® Z):|

+ [4 (ZTZ) ZT]
and 0Z/0z = Ir ® 1,,, which yields the first derivative. It can
be shown using numerical examples that the functional F is
not convex with respect to Z and, as such, is not convex with

respect to [z, W]. The second derivative with respect to Z can
be expressed in the following form:

2 [ ]
% -2 [VCC (Az) ® ]IN1|

x[ (Ty.y ®Iy) (Iy ® vec (Iy))

+ (vee (Ty) @ Ty) |
+8WWT +4wTw (19)

where Ty y is such that Ty yvec (A) = vec (AT). By noticing
that the matrix

C=-2 |:vec (Az)T ® ]IN1|
x [(Tn,y ® Iy) Iy ® vec (Iy)) + (vec (Iy) @ Iy)]

is semi-definite negative when Az is semi-definite positive
and that the additive term +8WWT + 4WTW can only
modify the sign of the first two eigenvalues of the Hessian
matrix 02F(z,e)/6W?, it is quite easy to find a vector
W such that the resulting Hessian possesses both positive
and negative eigenvalues. Thus, the Hessian is not posi-
tive definite which proves the functional we optimize is
not convex in W and, as such, is not convex with respect
o [z, W].

APPENDIX B
SUMMARY OF THE CMDS ALGORITHM

Algorithm 1 Constrained Multidimensional Scaling Algorithm

Require: Pseudo-periodic time sequence X € M(N,d) and

associated pseudo-period T, tolerance thresholds €, and
dtol, minimum gradient step ypmin and initialization gradient
Step Vinit-

Ensure: N =n x T with n € N*.

K < Gram matrix associated with X
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