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ABSTRACT.  The interaction between ultrasonic waves and the polycrystalline microstructure of 

metals leads to structural noise and attenuation, which can cause significant losses in detection 

performances. Taking these phenomena into account in UT simulation can help designing suitable 

inspection procedures. It is possible to model them based on the intrinsic scattering coefficients of a 

material. Expressions of this coefficient valid for duplex elongated materials and for any mode and 

scattering direction are given in this communication. Structural noise from a titanium alloy was 

computed based on these expressions and is compared to measurement. 
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INTRODUCTION 

 

 Structural noise and attenuation can be limiting factors in the ultrasonic non 

destructive testing of metallic parts. Modeling these phenomena can help designing 

inspection procedures. Among the possible approaches proposed in the literature, we can 

mention the computation of structural noise signals by [1] and the modeling of statistical 

properties of signals by [2]. A method similar to the one of [1] was developed at CEA 

LIST [3]. In subsequent works, it was modified [4] so that the statistical properties of the 

generated signals match the outputs of a scattering model. This model described the 

microstructure as a single phase and equiaxed polycrystal. In this communication, we 

present an extension of the simulation method and of the underlying model to the case of 

more complex microstructures such as duplex and elongated materials. First, we describe 

the simulation method. Then, we detail the application of the underlying scattering model 

for different microstructures. Finally, we compare outputs of the model to experimental 

results. 

 

SIMULATION OF ULTRASONIC INSPECTIONS WITH ULTRASONIC NOISE 

AND ATTENUATION 

 

 A method [4] previously developed at CEA LIST simulates ultrasonic testing with 

structural noise. It is based on the following assumptions: multiple scattering can be 



 

 

neglected and the noise is a fully developed speckle (which means that the noise is due to a 

large number of subresolved scatterers). The fully developed speckle assumption is 

adequate as long as the grains in the material are small compared to the resolution 

capabilities of the probe. In this assumption, the actual number of scatterers has no impact 

on the statistical properties of the noise and we can describe the scattering by a volumic 

coefficient η. η is the same as the one studied by [5]. We define it as the fraction of the 

incident intensity that is scattered on average by a unit volume of the structure. It depends 

on the modes and the directions of the incident and scattered waves. 

 To use this coefficient to simulate structural noise, we generate a random 

distribution of scatterers. We choose a number N of scatterers per unit volume high enough 

to obtain fully developed speckle. The η of that distribution of scatterer is related to the 

mean of the square of their scattering amplitudes A and to the ratio of the velocity of the 

scattered and incident waves [5]: 
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The distribution of the scattering amplitudes A is set in order to verify the above 

equation for the theoretical η of the simulated microstructure. That way, we ensure that the 

distribution of scatterers produces the same structural noise as the theoretical 

microstructure.  

η can also be used to obtain attenuation coefficients, by relating the energy lost due 

to attenuation to the energy scattered in every direction. These coefficients are used in the 

simulation for the computation of both structural noise and defect echoes. In the case of 

longitudinal waves, we obtain the following relation between the attenuation coefficient αL 

and the integrals over every direction of the scattered energy:  

 

                     
                  

                  
 (2) 

 

where the three coefficients ηL→... are the scattering coefficients from L waves to each 

possible wave. Similar equations can be obtained for transverse waves. A detailed 

development that leads to equivalent expressions is given in [6]. 

η is given by the scattering model described in the next section. 

 

SCATTERING MODEL 

 

 We use a scattering model to establish a relation between the properties of the 

microstructure and the coefficient η. This model is based on the approach proposed by [7]. 

The microstructure is described as an assembly of randomly oriented crystallites. As the 

crystallites are anisotropic, differences in orientation translate into elastic contrasts that 

cause scattering. The Born and single scattering approximation are used to derive 

expressions of η. Assuming that the density of the material is homogeneous, the following 

expression can be obtained: 
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where the indices inc and scat refer to incident and scattering waves. k is the wave vector, 

p the polarization vector and v the velocity. ρ is the density of the material. δC is the 

variation of elastic constants compared to their average: 

 

                         (4) 

 

where <>x denotes an average over the positions    in the material. It is equivalent to an 

average over the possible realizations of the microstructure. 

 The spatial correlation of elastic constants                             depends on the 

geometrical and elastic properties of the microstructure. The adaptation of the model to 

different types of microstructures comes down to the development of that particular term.  

 

Single phase equiaxed microstructure 

 

 Expressions of this scattering coefficient for any mode and any scattering direction 

are given in [5] in the case of an equiaxed single phase material. The geometry of the 

microstructure is described in a statistical manner, by using a spatial correlation function. 

This function, noted      , is defined as the probability that two points separated by    are 

located in the same grains. An exponential form is usually assumed for this function, D 

being a characteristic grain size: 
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 For a single phase microstructure with this correlation function, equation (3) 

simplifies to: 

 

 

  
 

         
       

  
      

      
     

     
      

      
     

   

               
   

   
     

  
  

(6) 

 

where Δk is the difference between incident and scattered wave vectors. <δCijklδCmnpq> is 

an average in a single crystallite over all its possible orientations. The indices of that 

covariance that need to be considered depend on the modes and directions of the incident 

and scattered waves. For example, in the case of the backscattering of L waves 

propagating along the z axis, only <δC3333δC3333> needs to be considered. For a material 

with cubic symmetry, it is equal to: 
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 For a material with hexagonal symmetry, it is equal to: 
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 Expressions for other modes and directions are given in [5].  

 



 

 

Description of a duplex microstructure 

 

 This scattering model has been applied in literature to compute backscattering 

coefficient for L wave in the case of duplex titanium [8]. We describe here a way to obtain 

scattering coefficients of any wave in any direction and for more types of duplex metals. 

 An experimental micrographic picture where a duplex structure appears clearly is 

given by [9]. For modeling purposes, we describe that structure as a mix of primary and 

secondary phase in a manner similar to [8]. The primary phase is the first to appear during 

the solidification. It arranges itself in randomly orientated crystallites called macrograins. 

Later during the solidification, a secondary phase appears. It arranges itself in a set of 

colonies in each macrograin. The orientation of a colony is influenced by the orientation of 

the macrograin. A colony is composed of parallel needle-like crystallites that all have the 

same crystalline orientation. We assume that these crystallites are too small to individually 

affect ultrasonic scattering and we model a colony as a homogeneous mix of secondary 

and residual primary phases. We assume that the orientation of the secondary phase is 

related to the orientation of the surrounding primary phase by an alignment of dense planes 

and directions. Such alignment has consequences on the elastic constants on the materials. 

 We developed expressions of elastic constants for two types of metal. In the first 

one, the crystallographic lattices of the primary and secondary phases are respectively 

body-centered cubic (bcc) and hexagonal and the relation between the two phases is the 

same as given by [8]. It can be used to describe a titanium alloy with beta and alpha 

titanium as primary and secondary phases. In the second type, the crystallographic lattices 

of the primary and secondary phases are respectively body-centered cubic (bcc) and face-

centered cubic (fcc) and they are related by the Kurdjumov-Sachs relationships. It can be 

used to describe a steel with ferrite and austenite as primary and secondary phases. The 

orientation relationships of the two types are given in Table 1.  

 
TABLE 1.  Orientation relationships between primary and secondary phases. 

 

bcc to hexagonal                                        

bcc to fcc                                     

 

 These orientation relationships imply that 6 orientations are possible for the 

hexagonal secondary phase and 24 orientations are possible for the fcc secondary phase. A 

possible orientation is called a variant. We assume that each of the variant has the same 

probability of appearing. We obtained analytical expressions for Euler angles that describe 

all these possible orientations. Listing of all these expressions takes several pages, so they 

are not given here. However, averages of the elastic constants over these variants are given 

later, as they are the quantities needed to calculate scattering coefficients. 

 

Scattering coefficients for a duplex microstructure 

 

 Based on the description of the microstructure, we obtain this expression for the 

covariance of elastic constants that appears in the expression of the scattering coefficient: 
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where pP and pS are the proportions of the primary and secondary phases.        is the 

probability that two point separated by    are located in the same macrograin.        is the 

conditional probability that two point separated by    and located in the same macrograin 

are located in the same colony. C
P
 and C

S
 are the elastic constants of the primary and 

secondary phases. C
SAV

 is the elastic constants of the secondary phase averaged over the 

variants, and is expressed: 
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where N is the number of variants and C
SVa

 is the elastic constants of variant a. 

 For both the bcc to hexagonal and the bcc to fcc cases, the averaged elastic 

constants C
SAV

 have a cubic symmetry. Three terms of C
SAV

 are given in table 2, the others 

can be obtained using cubic symmetry. In the bcc to hexagonal case, C
S
 is expressed in 

coordinates such that      
       

       
 . 

 
TABLE 2.  Elastic constants averaged over variants. 

 

 bcc to hexagonal bcc to fcc 

     
          

        
       

        
 

 
 

       
         

         
 

  
 

     
         

        
        

       
        

 

  
 

       
         

         
 

  
 

     
          

        
        

       
        

 

  
 

       
         

         
 

  
 

 

 By using equation (9) in equation (3), we can obtain a decomposition of the 

scattering coefficient of a duplex microstructure into three scattering coefficients. 

 

                                                          (11) 

 

  
TABLE 3.  Parameters for calculating the scattering coefficient of the decomposition. 

 

 Spatial correlation function Elastic constants 

ηmacrograin_average                
          

    

ηsecondary                 
  

ηvariant_average                 
    

 



 

 

 The three coefficients of this decomposition are the scattering coefficients of three 

fictitious materials characterized by spatial correlation functions and elastic constants 

given in table 3. Equations (3) to (8), as well as the equations in [5], can be used to 

calculate these three coefficients. 

 The three coefficients can be interpreted as follows: ηmacrograin_average is the 

contribution of the macrograins to the scattering, ηsecondary- ηvariant_average is the contribution 

of the colonies (ηsecondary being the contribution of individual colonies and ηvariant_average a 

reduction of the scattering due to orientation relationships).  

  

Elongated material 

 

 All the previous results were for the case of non-elongated grains. Taking into 

account an elongation of the grains means changing the spatial correlation function given 

in equation (5). Following [10], we generalize to elongated structures using the form: 

 

                      
 

 
    

  

  
          (12) 

 

where h and d are the grain sizes respectively in the elongation direction and in the di-

rections perpendicular to it. θ is the angle between    and the elongation direction. Using 

that new function implies modifying the term known as the form factor in equation (6). For 

an equiaxed material, it is equal to: 
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For an elongated microstructure as defined above it becomes: 
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where Δkelong and Δkperp are the components of                respectively in the elongation 

direction and in the directions perpendicular to it. 

 This substitution yields expressions for the scattering coefficient of single 

phase elongated materials. By applying it to each term of the decomposition of equation 

(11), it is possible to obtain expressions for duplex elongated materials. 

  

VALIDATION 

 

 An experimental validation was performed using the measurement setups 

presented figure 1. The main characteristics of the transducer are a focal length F of 

406.2mm, a diameter of 25.4mm and a center frequency f0 of 10MHz. Measurements were 

performed in immersion at normal incidence. Structural noise was measured in a sample of 

duplex titanium, and the echo of a Flat Bottom Hole in a reference block was measured 

using the same transducer. The waterpath zM was chosen such that the beam was focused 

in the half depth of the block.  

 A micrographic study of the titanium alloy sample showed that the grains were 

elongated. It also allowed estimating the sizes of the macrograins and the colonies. The  



 

 

 

 
FIGURE 1.  Pulse/echo acquisition for structural noise and reference echo. 

 
FIGURE 2.  Measured and simulated averages of the envelopes of structural noise as a function of time. 

 

elastic constants of each phase were assumed to be equal to data found in literature. All 

these parameters were used as an entry for a simulation of structural noise, though some 

adjustments were made concerning the size of colonies as they did not appear clearly 

enough on the micrographs. 

 The simulation method is based on the models described in this 

communication. It was integrated in a development version of the CIVA simulation 

platform [11].  

 Simulations were run for both the experiments of figure 1. In order to compare 

measured and simulated structural noise, the envelopes of the noise signal at each position 

of the probe were computed and averaged. The average structural noise as a function of 

time was obtained. It is plotted in figure 2, expressed in decibels compared to the echo of 

the reference defect. 

 This comparison shows a good agreement: the gap between the two results is 

smaller than the oscillations of the noise. Both the absolute value and the evolution of the 

noise are satisfactory. Other simulation results for this configuration, obtained without 

taking into account the grain elongation, had shown a disagreement of approximately 

seven decibels [12]. This illustrates that improving the description of the microstructure 

can help improving the simulation results. 

 

CONCLUSION 

 

 The structural noise that occurs in ultrasonic NDT can be simulated based on 

the coefficient η of the material. We presented a way to compute this coefficient for every 

mode and in every scattering direction for duplex and elongated materials. These 

computations are based and the Born and single scattering approximations. We propose 

decomposing the scattering coefficient of the duplex material into three terms. It leads to 

relatively simple expressions despite the complexity of the material. 
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 Experimental validations on a duplex titanium alloy with elongated grains show 

a good agreement. It demonstrates the relevance of both the simulation method and the 

scattering model. However, they are not expected to be valid for every case of ultrasonic 

structural noise. It is known that in some cases multiple scattering dominates, and it is not 

taken into account by this method. In future works we aim at including multiple scattering 

contributions in this method.  
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