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In spin-based quantum information processing devices, the presence of control and detection
circuitry can change the local environment of a spin by introducing strain and electric fields, altering
its resonant frequencies. These resonance shifts can be large compared to intrinsic spin line-widths
and it is therefore important to study, understand and model such effects in order to better predict
device performance. Here we investigate a sample of bismuth donor spins implanted in a silicon chip,
on top of which a superconducting aluminium micro-resonator has been fabricated. The on-chip
resonator provides two functions: first, it produces local strain in the silicon due to the larger thermal
contraction of the aluminium, and second, it enables sensitive electron spin resonance spectroscopy
of donors close to the surface that experience this strain. Through finite-element strain simulations
we are able to reconstruct key features of our experiments, including the electron spin resonance
spectra. Our results are consistent with a recently discovered mechanism for producing shifts of
the hyperfine interaction for donors in silicon, which is linear with the hydrostatic component of an
applied strain.

I. INTRODUCTION

The spins of dopant atoms in silicon devices have been
shown to have great promise for quantum information
processing (QIP) [1–6]. This has, in part, been encour-
aged by the extraordinarily long spin coherence times
demonstrated, surpassing 1 second for the electron spin
[7] and 3 hours for the nuclear spin [8] of the phosphorus
(31P) donor. Another group-V donor with considerable
promise for QIP in silicon is bismuth (209Bi). Its large nu-
clear spin I = 9/2 and hyperfine constant A = 1475 MHz
(which describes the interaction between the electron S
and nuclear I spins AS · I) provides rich features such as
decoherence-suppressing atomic-clock transitions [9–11],
where coherence times can exceed by two orders of mag-
nitude those typically achieved using other donor species.
The Si:Bi system also possesses a large zero-field splitting
of 7.375 GHz, making it an attractive dopant for use in
hybrid superconducting devices [12, 13] such as quantum
memories [14–17].

In donor-based QIP devices, such as quantum bits and
hybrid quantum memories, the donors are located within
close proximity of control and detection circuitry on the
surface of the silicon chip. Recent experiments on indi-

∗ Present Address: Quantum Computing Institute, Oak Ridge Na-
tional Laboratory, Oak Ridge, TN 37830, USA

vidual donor electron and nuclear spin qubits adjacent to
nanoelectronic circuits [18] have highlighted the impor-
tance of considering the effect of these structures on the
local environment of the spin. For example, it was shown
that the spin resonance frequencies of 31P donors in nano-
electronic devices can experience shifts from their bulk-
like values up to four orders of magnitude greater than
their intrinsic line-widths [5, 19–21]. These shifts have
been attributed to strain and electric fields produced by
surface metallic gates in the devices.

Strain is an inherent feature of metal-oxide-
semiconductor (MOS) electronic devices, which often
combine materials that have vastly different coefficients
of thermal expansion (CTE) [22, 23]. It is therefore
crucial to understand and predict the effect of intrinsic
device strains on donors, as this can aid the design of
scalable donor-based QIP and hybrid superconducting
device architectures, serving as a guide to the often
expensive and time-consuming fabrication process. Here
we study a sample of bismuth (209Bi) donors implanted
from 50-150 nm beneath a thin-film aluminium wire
(Figs. 1a and b). We observe the Si:Bi spin resonance
spectra in the device to be substantially altered from
what is typically found in bulk experiments [10, 24].
Through analyzing a range of mechanisms, we conclude
that strain induced by differential thermal contraction
of the silicon and the surface aluminium structure is
the most likely explanation for the non-trivial spectra.
A model is developed that is able to reproduce many
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facets of our measurements, demonstrating the ability
to predict device behavior and illustrating the impor-
tance of considering strain in semiconductor micro and
nanoelectronic quantum devices.

The article is organized as follows: in Section II we
present the device architecture, physical system and ex-
perimental setup utilized in our study. Section III ex-
amines the electron spin resonance spectra of bismuth
donors beneath an aluminium wire, revealing non-bulk-
like splittings of the resonance peaks. Mechanisms po-
tentially producing the splittings are discussed in Sec-
tion IV and simulations of the spin resonance spectra are
performed in Section V for one of the mechanisms iden-
tified. We conclude by discussing the implications of the
simulations and the broader significance of our results for
QIP in Section VI.

II. EXPERIMENTAL DETAILS

A. Device

Our device (Fig. 1a) consists of three superconduct-
ing aluminium microwave resonators patterned on the
surface of the same silicon chip via electron-beam-
lithograph. The top 700 nm of silicon is an epitaxial layer
of isotopically enriched 99.95% 28Si, grown on a ∼ 350
µm thick high-resistivity float-zone silicon (100) wafer.
The epitaxial layer was implanted with 209Bi donors ac-
cording to the profile depicted in Fig. 1b.

The resonators are a lumped-element LC design, they
contain a central inductive wire that produces an oscil-
lating microwave magnetic field B1 to drive and detect
spin resonance. The drive field B1 is proportional to
the magnetic vacuum fluctuations δB1 in the resonator,
a quantity that we can simulate directly for our de-
vice. We utilize δB1 in the following calculations and
discussion: it is readily determined from our simula-
tions (unlike B1, which requires an accurate calibra-
tion of losses and other experimental parameters), and
it provides us with another important measure, the spin-
resonator coupling strength g. A simulation of δB1 is
performed knowing only the impedance of the resonator
Z0 and its frequency ω0/2π, and by calculating the re-

sulting vacuum current fluctuations δi = ω0

√
~/(2Z0)

in the wire (where ~ is the reduced Planck’s constant).
The current density distribution in the superconducting
film (depicted in Fig. 2a) is evaluated using DC equa-
tions adapted from Ref. [25], which are valid for the
calculation of our microwave current due to the negli-
gible ohmic losses at milli-Kelvin temperatures and be-
cause the typical resonator frequency (∼ 7 GHz) is sig-
nificantly smaller than the superconducting gap of alu-
minium (2∆(0) ≈ 140 GHz) [26]. The current density
distribution is then fed to a finite-element magnetostatic
solver (COMSOL Multiphysics), with the resulting |δB1|
profile shown in Fig. 2b.

We observe a strong spatial dependence of the δB1
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FIG. 1. (a) Sketch of an LC superconducting resonator
made from a 50 nm thick film of aluminium, patterned on a
silicon substrate, with central inductor 5 µm wide and 700 µm
long. Whilst we only show one resonator here, there are three
(almost identical) resonators patterned on the same chip (see
panel c). The silicon sample was cleaved along the 〈110〉 crys-
tal axes and we specify a sample frame such that X ‖ [110],
Y ‖

[
110

]
and Z ‖ [001]. The static field B0 is oriented in the

XY-plane at a variable angle φ to X. (b) Bismuth donor dop-
ing profile. The blue dashed curve shows the result of a sec-
ondary ion mass spectrometry (SIMS) measurement, whilst
the red curve is the concentration of neutral donors obtained
from a finite-element simulation performed using the SIMS
profile, that takes into account donor ionization from the
Schottky junction between aluminium and silicon (see Sec-
tion IV A). (c) Three-dimensional copper microwave cavity
sample holder. The silicon chip is mounted on a sapphire
holder (pictured in white) and is probed via the cavity input
and output antennas.

orientation at the donor implantation depth (Fig. 2c).
Underneath the wire, the Y component of the field δB1Y

dominates, whilst to the side δB1Z is the largest. We uti-
lize this trait later in order to study spins in different spa-
tial regions through orientation-dependent electron spin
resonance (ESR) spectroscopy [12, 27].

B. Physical System

At cryogenic temperatures, the bismuth donors bind
an additional valence electron compared to the silicon
atoms of the host crystal, providing a coupled electron
(S = 1/2) and nuclear (I = 9/2) spin system that is
described by the Hamiltonian:

H0/h = γeB0 · S− γnB0 · I +AS · I (1)

where γe = 28 GHz/T (γn = 6.963 MHz/T) is the elec-
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tron (nuclear) gyromagnetic ratio and B0 is a static mag-
netic field applied in the plane of the aluminium res-
onators – with a variable angle φ relative to the inductive
wire (see Fig. 1a) – that allows us to fine-tune the spin
transition frequencies of the 209Bi donors.

At values of the magnetic field where the electron Zee-
man frequency Ez/h = γeB0 . A, the eigenstates be-
come strongly mixed in the electron-nuclear spin basis
and are best described by the total spin F = I + S and
its projection onto B0, mF [9]. We chose the frequen-
cies of the resonators to be close to the Si:Bi zero-field
splitting of 7.375 GHz in order to minimize field-induced
losses in the superconducting films, achieving ω0A/2π =
7.305 GHz for resonator A, ω0B/2π = 7.246 GHz for res-
onator B and ω0C/2π = 7.143 GHz for resonator C. We
therefore operate in the regime where F and mF are good
quantum numbers and we describe states in the |F,mF〉
basis. In the following analysis and discussion we focus
on resonators A and B – those with frequencies closer to
the zero-field splitting which we were able to study the
most extensively. Table I presents important parameters
that characterize the low-field (B0 < 7 mT) spin reso-
nance transitions that are probed in our experiments.

C. Sample Mounting

The device is fixed to a sapphire wafer with a small
amount of vacuum grease (this serves to minimize sample
strains produced through mounting) and the sapphire is
then clamped between the halves of a rectangular copper
microwave cavity (Fig. 1c), which acts as a sample en-
closure and permits high quality-factors of the supercon-
ducting resonators by supressing radiation losses. The
copper cavity is attached to the cold-finger of a dilution
refrigerator and cooled to a base temperature of 20 mK,
where we are able to detect the spin echo signals pro-
duced by the small number of shallow-implanted donors
underneath each wire (estimated at ∼ 107) by utilizing a
quantum-noise-limited ESR setup, as described in Refs.
[12, 28, 29]. We direct readers to the Supplementary Ma-
terial of Ref. 12 for a full schematic of the experimental
setup.

III. SPIN RESONANCE SPECTRA

A. Echo-Detected Field Sweep

In this section we provide a detailed discussion of the
Si:Bi ESR spectra, first reported in Refs. 12, 13. We ob-
serve the ESR spectrum for resonator B by performing
an echo-detected magnetic field sweep on the lowest-field
spin resonance line (indicated by the arrow in Fig. 3a),
corresponding to transition 1B, i.e. between the states
|4,−4〉 ↔ |5,−5〉 (see Table I). We integrate the echo sig-
nal Ae from a Hahn echo sequence [30] (over the dashed
region depicted in the pulse protocol of Fig. 3b) and step
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FIG. 2. (a) Calculation of the current density vacuum fluctu-
ations in the inductor. Equations describing the current den-
sity profile were adapted from Ref. [25]. The only inputs to
this calculation are the impedance of the resonator Z0 = 44 Ω
and its frequency ω0/2π ≈ 7.3 GHz, extracted using CST Mi-
crowave Studio. (b) A COMSOL Multiphysics finite-element
simulation of the spatial dependence of the magnetic field
vacuum fluctuations δB1 magnitude produced by the current
density in panel a. The symbols beneath the white dashed line
identify regions that will be referred to in following sections.
(c) Components of δB1 along the Y and Z axes at a depth
of 75 nm (corresponding to the peak donor concentration),
marked by the white dashed line in panel b.

the magnetic field B0. The sweep is first performed with
B0 ‖ X (φ = 0◦), and then repeated with the orthogonal
orientation B0 ‖ Y (φ = 90◦); the resulting traces are
shown in Fig. 3c. The doped silicon sample investigated
in this study has also been characterized using a standard
“bulk” ESR spectrometer at X-band and with no planar
on-chip resonator [24]. The grey-solid curve in Fig. 3c
represents the spin resonance spectrum from this study
extrapolated to the spin transition and frequency utilized
in our experiment (see Appendix B for further details).
Instead of measuring a single peak with a line-width of
∼ 20 µT (as expected from the X-band measurement),
we observe that the resonance is split into two peaks.
Each peak has a line-width of ∼ 100 µT, representing a
total broadening of over an order of magnitude.

Varying the amplitude of the refocusing π-pulse in the
echo sequence reveals a series of Rabi oscillations (Ae is
maximized whenever the refocusing pulse equals an odd-
multiple of π) and the frequency of these oscillations is
observed to depend strongly on the magnetic field B0

(Fig. 3b) across these two peaks. The traces in Fig. 3c
were recorded in a “compensated” manner, ensuring that
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Resonator A, ω0A/2π = 7.305 GHz
Transition ∆F∆mF B0 (mT) M (df/dB0)/γe df/dA df/dg (MHz) df/dQ
1A |4,−4〉 ↔ |5,−5〉 -1 2.86 0.47 -0.90 5.00 -36.0 2.45
2A |4,−4〉 ↔ |5,−4〉 0 3.22 0.30 -0.80 5.00 -35.9 -19.1
3A |4,−4〉 ↔ |5,−3〉 1 3.69 0.07 -0.69 5.00 -35.8 -35.9
4A |4,−3〉 ↔ |5,−4〉 -1 3.69 0.42 -0.69 5.00 -35.8 6.14
5A |4,−3〉 ↔ |5,−3〉 0 4.32 0.40 -0.59 5.00 -35.7 -10.6
6A |4,−3〉 ↔ |5,−2〉 1 5.22 0.13 -0.49 5.00 -35.4 -22.6
7A |4,−2〉 ↔ |5,−3〉 -1 5.22 0.37 -0.49 5.00 -35.5 7.42
8A |4,−2〉 ↔ |5,−2〉 0 6.60 0.46 -0.38 5.00 -35.0 -4.54

Resonator B, ω0B/2π = 7.246 GHz
Transition ∆F∆mF B0 (mT) M (df/dB0)/γe df/dA df/dg (MHz) df/dQ
1B |4,−4〉 ↔ |5,−5〉 -1 5.20 0.47 -0.90 5.00 -65.4 2.49
2B |4,−4〉 ↔ |5,−4〉 0 5.88 0.31 -0.79 5.00 -65.1 -19.0
3B |4,−4〉 ↔ |5,−3〉 1 6.74 0.07 -0.69 5.00 -64.8 -35.7
4B |4,−3〉 ↔ |5,−4〉 -1 6.75 0.42 -0.69 5.00 -64.9 6.27

TABLE I. Numerical calculations of the spin transition parameters for the Si:Bi system at the LC resonator frequencies
listed. Parameters include: resonance field (B0), transition matrix element (M = |〈F,mF|SX,Z|F ′,m′F〉| for |∆F∆mF| = 1, 0
transitions) and transition frequency sensitivity to: magnetic field (df/dB0), electron g-factor (df/dg), hyperfine interaction
(df/dA) and quadrupole interaction (df/dQ).

at each value of B0 the pulse amplitude was chosen to
provide well-calibrated π and π/2 pulses (yellow dashed
line in Fig. 3b).

The non-trivial peak splitting and field dependence of
the Rabi frequency observed in Figs. 3b and 3c can be un-
derstood by examining the experimental details, starting
with the relevant bandwidths of the echo sequence. The
π/2-pulse of the Hahn echo readout provides the initial
excitation of spins that contribute to the echo signal. It
has a duration of tπ/2 = 2.5 µs and an excitation band-
width of ∼ 500 kHz. This pulse is heavily filtered by the
resonator, reducing its bandwidth to a value determined
by the resonator line-width κ = ω0/Q ≈ 2π × 25 kHz
(where Q = 3.2 × 105 is the quality factor of resonator
B). Thus, only spins with resonant frequencies that lie in-
side the resonator bandwidth contribute to the measure-
ment. In addition, these spins experience a relaxation
rate which is three orders of magnitude greater than the
intrinsic value, due to the Purcell effect [13]. This en-
hanced relaxation is suppressed quadratically with the
spin-resonator frequency detuning, such that off-resonant
spins display substantially longer energy relaxation times
T1 and quickly become saturated under the 0.2 Hz rep-
etition rate of the experiment. Each B0 in Figs. 3b and
3c therefore corresponds to a highly-selective measure-
ment on a small sub-ensemble of spins with a resolution
∆B = κ/(df/dB0) = 1 µT, where df/dB0 is the transi-
tion frequency field sensitivity (listed in Table I).

Comparing the echo-detected spectra for the differ-
ent orientations of B0 (red and blue circles in Fig. 3c)
provides strong evidence that the splitting and inhomo-
geneous broadening of the ESR transition results from
the presence of the on-chip LC resonator. We find that
the low-field peak vanishes for B0 ‖ Y (φ = 90◦) while
the high-field peak remains relatively unchanged. This
can be understood by referring to Fig. 2c and noting
that the spin transition probed here (1B, see Table I)

obeys the selection rule |∆mF| = 1 and is therefore ex-
cited only when δB1 ⊥ B0. For B0 ‖ Y, the condition
δB1 ⊥ B0 is only met for spins to the side of the wire
(which experience a δB1 field along Z). Spins underneath
the wire (where δB1 field almost entirely along Y) are not
measured in this scan. For the spectrum recorded with
B0 ‖ X (φ = 0◦), spins underneath the wire as well as
those to the side observe B0 ⊥ δB1 and thus contribute
to the echo signal. Thus the low-field (vanishing) peak
likely corresponds to the spins below the wire whilst the
high-field peak is produced by spins to its side, indicating
that the presence of the inductive wire is the source of the
splitting. In Section IV we discuss a number of potential
mechanisms (e.g. electric field, Meissner-induced mag-
netic field inhomogeneity and strain) through which this
could occur. The spin resonance frequency of the donors
therefore depends on their location relative to the wire.
By measuring only a small fraction of the large inhomo-
geneously broadened transition at each B0 field (1 µT
against ∼ 200 µT) in Fig. 3c, we are effectively probing
sub-ensembles of donors residing in specific locations in
the device.

We now return to the B0 dependence of the Rabi os-
cillations (Fig. 3b) and demonstrate that the picture de-
scribed above is in good agreement with this data. The
coupling strength between each spin and the resonator is
given by g = γeM |δB1⊥|, where M is the ESR tran-
sition matrix element (see Table I) and |δB1⊥| is the
magnitude of the δB1 component felt by the spin that
is perpendicular to B0. The Rabi frequency ΩR then has
a linear dependence on the δB1 field through the rela-
tion ΩR = 2g

√
n, where n is the mean intra-cavity pho-

ton number (proportional to the input microwave power).
For the high-field peak in the ESR spectra (originating
from spins located to the side of the wire), the sharp tran-
sition at the low-field edge likely corresponds to spins far
from the wire that are bulk-like in their behavior. Being



5

τ τ

Vary

θ1
θ2

Pu
ls

e 
am

pl
itu

de
 (n

W
1/

2 )

0.5
1

1.5

2

2.5

Ae
(a.u.)

1

2

3

4

0

B0 (mT)
4.9 5.0 5.1 5.2 5.3

A
e (

a.
u.

)

0

0.2

0.4

0.6

0.8

1

B0 || X
B0 || Y

0

4.9 5.0 5.1 5.2 5.3
B0 (mT)

B0 (mT)
0 50 100 150 200

Ei
g.

 E
ne

rg
y/

h 
(G

H
z)

-5

0

5

4, -4   ↔  5, -5

○□∆◊

b

c

a

FIG. 3. (a) Eigenstate frequencies of the Si:Bi system.
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transition (1B) probed in panels b and c. (b) Rabi oscillations
as a function of B0 for transition 1B. The amplitude of the
refocusing pulse in a Hahn echo sequence (shown above) is
varied to reveal oscillations in the integrated echo signal Ae

(marked by the black dashed box in the sequence). Symbols
identify spectral regions that are generated by spins at specific
locations in the device (see Fig. 2b). (c) A compensated
echo-detected field sweep, taken using the calibrated π-pulse
amplitudes of panel b (yellow dashed line). The grey-filled
curve depicts the expected ESR spectrum, whilst the solid
circles show the measured spectra (averaged over 8 sequences
with a repetition rate of 0.2 Hz) for different field orientations.
A 2% correction was applied to B0 for the measured data
(within the magnet calibration error) so that the high-field
peak aligns with the theoretical transition field. The same
correction was applied to all experimental data in this study.
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tem for B0 < 7 mT. Solid lines represent the spin transitions
that obey the selection rule ∆mF = ±1 (i.e. δB1 ⊥ B0)
whilst the dashed lines show ∆mF = 0 transitions (δB1 ‖ B0).
The purple solid line indicates the frequency of resonator A
(ω0A/2π = 7.305 GHz). (b) Compensated echo-detected field
sweeps of the ESR transitions below 7 mT of resonator A and
(c) resonator B. The theoretical spin transition frequencies
are identified by the black solid and dashed lines.

far from the wire, these spins also experience a reduced
δB1 (see Fig. 2c) and thus Rabi frequency, observed as
longer-period oscillations in Fig. 3b. Moving closer to
the wire increases the spin resonance shifts (i.e. through
larger electric or strain fields) as well as the magnitude
of the δB1 field felt by the spins. We thus anticipate
the tail regions of the lines to have an enhanced Rabi
frequency, and this is indeed the case. The symbols over-
laid on Fig. 3b summarize the above discussion by corre-
lating the different spectral regions with spins from spe-
cific locations in the device (see corresponding symbols
in Fig. 2b).

B. Extended Spectra

To help identify the mechanism behind the wire-
induced peak splitting and broadening, we probe addi-
tional spin resonance transitions (listed in Table I) using
resonators A and B, which display different sensitivities
to the various Hamiltonian parameters. In Fig. 4a we
plot the calculated low-field ESR transition frequencies
and their crossing with resonator A. Transitions obeying
the usual spin selection rule ∆mF = ±1 (displayed in red)
are accessed in the experiment by ensuring B0 ⊥ δB1, as
was the case for the previous measurement on transition
1B. Such transitions are typically referred to as being
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of “SX” type, since it is primarily the SX operator that
drives spin flips between the states. Transitions obeying
the selection rule ∆mF = 0 (blue lines in Fig. 4a) – of
so-called “SZ” type – are probed in the experiment with
the alignment B0 ‖ δB1 (i.e. B0 ‖ Y ). We refer the
reader to Appendix A for a detailed discussion of these
two types of spin resonance transitions.

A measurement of the first transitions with B0 ‖ X
(∆mF = ±1) is shown in the compensated echo-detected
field sweep of Fig. 4b (red trace) for resonator A. Also
presented here is the spectrum recorded with B0 ‖ Y
(blue trace), which is composed of both ∆mF = 0 reso-
nances from spins underneath the wire (where B0 ‖ δB1)
and ∆mF = ±1 resonances from spins to the side of the
wire (where B0 ⊥ δB1). The ∆mF = 0 transitions are
observed to lack a splitting, this is further evidence that
they originate from spins located predominantly under-
neath the wire (the only region with B0 ‖ Y). The exper-
iments are repeated for resonator B and displayed in the
lower traces of Fig. 4c. We display the extracted peak
splittings of the recorded transitions in Table II.

IV. PEAK SPLITTING MECHANISMS

We now turn to the analysis of possible mechanisms
through which the presence of the aluminium wire may
induce a splitting and broadening of the observed ESR
spectra.

A. Built-in Voltage

The aluminium/silicon interface formed beneath the
resonator constitutes a Schottky junction. Band bend-
ing at the interface results from the difference in work
functions of the aluminium and silicon (or from Fermi
level pinning to surface states) [31]. The band bending
causes ionization of bismuth donors within an area known

Resonator A, ω0A/2π = 7.305 GHz
Transition B0c (mT) ∆B0 (mT)
1A 2.87 0.11
4A 3.71 0.15
7A 5.28 0.20

Resonator B, ω0B/2π = 7.246 GHz
Transition B0c (mT) ∆B0 (mT)
1B 5.24 0.11
4B 6.84 0.14

TABLE II. Experimental center fields (B0c) and peak split-
tings (∆B0) extracted from the measured ESR transitions
for resonator A and B. ∆F∆mF = 0 transitions do not dis-
play a splitting and are therefore not included. Although the
∆F∆mF = ±1 transitions are almost degenerate here, we
attribute the peaks to the ∆F∆mF = −1 transitions, which
exhibit larger transition matrix elements M . We do not at-
tempt to extract line-widths of the peaks due to their highly
asymetrical shapes.
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FIG. 5. Fraction of ionized donors, in-built electric field
and doping profile versus depth beneath the aluminium res-
onator. The implanted Bi profile (as determined from a sec-
ondary ion mass spectrometry measurement) is shown in or-
ange. The green curve provides the space charge density ρsc
(which represents the density of ionized donors) divided by
the donor concentration CBi. Calculations were performed
with the finite-element electrostatic solver ISE-TCAD, with
a simulation temperature of 5 K (the minimum temperature
at which convergence was achieved) and an assumed back-
ground boron doping density of 1013 cm−3. The grey dashed
box highlights the edge of the depletion region, this roll-off
is expected to get steeper at the experimental temperature
of 20 mK. At ∼ 275 nm depth the bismuth donors are ion-
ized once again (this time to the background boron accep-
tors present in the sample), before the space charge density
becomes negative, indicating the presence of ionized boron
dopants.

as the depletion region. Donor ionization continues into
the semiconductor until a sufficient space-charge has been
accumulated to counter the band bending. Immediately
outside of the depletion region, the total electric field is
reduced to zero. At finite temperatures, however, the
edge of the depletion region is broadened according to
Fermi-Dirac statistics, and a small fraction of neutral
donors can experience large electric fields. Such donors
would display a Stark shift of the hyperfine interaction
[20] or electron g-factor through the electric field, alter-
ing their resonant frequencies from those to the side of
the wire away from the depletion region.

We have performed finite-element simulations with the
commercial software ISE-TCAD, which solves the Pois-
son equation self-consistently to extract the electric fields
and ionized bismuth concentration underneath the wire,
the results of which are shown in Fig. 5. This plot demon-
strates that the broadening of the depletion region edge
is small relative to the width of the implantation pro-
file, even at the elevated simulation temperature of 5 K
— the minimum temperature at which convergence was
achieved. Donors at depths less than 50 nm are mostly
ionized, whilst donors deeper than this are neutral and
experience negligible electric fields (< 50 kV/m, with ex-
pected Stark shifts below 1 kHz [32]). At the experimen-



7

tal temperature of 20 mK, we expect an even sharper
depletion region boundary. We therefore discount this
mechanism as the cause for the spectral broadening and
remove the shallow donors (< 50 nm) beneath the wire
from the spectra simulations in the following sections.

B. Magnetic Field Inhomogeneity

It is conceivable that the superconducting resonator
could perturb the static magnetic field in a manner that
produces differing magnetic field profiles beneath the
wire and to its side. For example, this might result from
the component of a misaligned B0 field perpendicular to
the aluminium film, concentrating above or below the
wire due to the Meissner effect [33]. The strength of
any such inhomogeneity increases in proportion with the
magnitude of B0, and as the resonators are fabricated
within 2 mm of one another on the same silicon chip, the
inhomogeneity would be nearly identical for each of the
resonators. We can rule this mechanism out due to the
fact that we observe the same splitting and line-width
of the first spin transition for resonators A and B (see
Table II) and also C (see Appendix C), despite the tran-
sition for resonator C occurring at almost twice the field
of resonator B and three times that of resonator A.

C. Strain

Strain can alter the spin transition frequencies of
donors in silicon through several mechanisms. It has been
shown that the nuclear magnetic resonance (NMR) fre-
quencies of donors with nuclear spin I > 1/2 [34, 35] (e.g.
arsenic, antimony and bismuth) can be shifted through
a strain-induced quadrupole interaction (QI). Strain can
also modify the hyperfine interaction strength A [36] or
the electron g-factor ge, both resulting in shifts of the spin
resonance frequencies. Here we will analyze all three of
these mechanisms (QI, A and ge) to determine if they are
capable of accounting for the ESR spectra presented in
Section III.

In order to aid in our discussion, we first explain the
origin of strain in our device and provide an estimate
of its magnitude and spatial distribution through sim-
ulations. The aluminium resonator is deposited on the
silicon substrate by electron-beam evaporation at room
temperature, where the device is assumed to be strain-
free [37, 38]. Whilst the evaporation temperature may
be above room temperature in practice, it is assumed
to be only a fraction of the total temperature range ex-
plored in our experiments (∆T ≈ 300 K). As the device
is cooled to 20 mK, the approximate ten-fold difference in
the CTEs of silicon and aluminium produces substantial
device strains through differential thermal contraction.
We perform finite-element simulations of these strains us-
ing the software package COMSOL Multiphysics, where
we include temperature-dependent CTEs of the materials
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FIG. 6. Finite-element COMSOL simulations of the strain
tensor components along the principle crystal axes x ‖ [100],
y ‖ [010] and z ‖ [001] and their variation as a function of
position in the device. A cross-section of the aluminium wire
(drawn to scale) is represented by the grey gradient-filled box
above the silicon substrate (which bounds the strain data).
Only half of the wire is displayed here due to it being sym-
metric about its center. Here the xyz crystal axes are related
to the sample frame XYZ (used to describe δB1 and the ori-
entation of B0) by a 45◦ rotation about Z (see Fig. 1a). We
show the result for the wire running parallel to the [110] (or
X) axis, the direction in which the sample was cleaved.

[39–41] and the anisotropic stiffness coefficients for sili-
con [42]. Three of the six independent strain tensor com-
ponents (those along the 〈100〉 crystal axes) have been
plotted in Fig. 6 as a function of position. The full strain
tensor and its spatial dependence can be found in Ap-
pendix D.

1. Quadrupole Interaction

There have been several recent studies that report on
quadrupole interactions of group-V donors in silicon, gen-
erated by strain [34, 35] or interface defects [43]. Nuclei
with a spin I > 1/2 can have a non-spherical charge dis-
tribution and associated with this is a quadrupole mo-
ment Q [44]. This charge distribution has an axis of
symmetry that aligns with the nuclear angular momen-
tum and interacts with an electric field gradient (EFG)
Vαβ (where α and β are principal axes in the local crystal
coordinate system) produced by external charges, such as
the donor-bound electron. The interaction is described
by the following quadrupole Hamiltonian:

HQ/h = γ
eQVzz

4I (2I − 1)h

[
3I2z − I2 + η

(
I2x − I2y

)]
(2)

where γ is a multiplicative scaling factor (resulting from
the Sternheimer anti-shielding effect [44]), e is the elec-
tron charge, h is Planck’s constant, I is the nuclear
spin operator with components Iα, I in the denomina-
tor is the scalar value of the nuclear spin (I = 9/2) and
η = (Vxx − Vyy) /Vzz is an asymmetry parameter. It is
evident from Eq. 2 that the existence of an EFG Vαβ
produces a frequency shift between states with different
nuclear spin projections mI. In the case of the Si:Bi spin
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system, quadrupole shifts in the ESR spectra are evident
at low magnetic fields because the electron and nuclear
spin states are strongly mixed by the hyperfine interac-
tion.

In Table I we list the sensitivities of the transitions to
the quadrupole coefficient Qzz = γeQVzz/ [4I(2I − 1)h]
(the prefactor in the quadrupole Hamiltonian HQ). By
comparing the sensitivities df/dQ to the extended ESR
spectra (Fig. 4) and observed peak splittings (Table II),
it becomes apparent that the quadrupole interaction
is unlikely to be the origin of the non-trivial spectra
shape. The peak splittings ∆B0 of different transitions
for the same resonator approximately follows their mag-
netic field sensitivities df/dB0 (see Table I), implying an
underlying mechanism with a constant frequency distri-
bution across all transitions. This is clearly not the case
for the quadrupole interaction, where df/dQ increases
with transition number. Furthermore, the ∆F∆mF =
0 transitions have sensitivities of opposite sign to the
∆F∆mF = −1 transitions – the asymmetry of this res-
onance is therefore expected to be opposite that of the
low-field peak in the ∆F∆mF = −1 transition, as they
both correspond to spins in the same region of the device
(underneath the wire). However, this is not apparent in
Fig. 4.

Whereas df/dQ is strongly dependent on the transi-
tion, we note that df/dA is constant (see Table I) so that
a strain-induced inhomogeneous hyperfine interaction is
likely to have the desired properties for the comparison
of different transitions.

2. Hyperfine Interaction

Silicon has a conduction band minimum that is six-fold
degenerate along the 〈100〉 equivalent crystallographic di-
rections — commonly referred to as “valleys” [45]. The
degeneracy of these valleys is broken by the confining po-
tential of the donor, resulting in a singlet A1 ground state
and doublet E and triplet T2 excited states [46]. For a
donor in a bulk silicon crystal (in the absence of strain
and electric fields) the electron is perfectly described by
the singlet ground state |ψ〉 = |A1〉. The E and T2 state
wavefunctions have vanishing probabilities at the nucleus
(i.e. |ψ(0)|2 = 0) and consequently do not exhibit a hy-
perfine interaction (A = 0). Applying strain to a valley
shifts its energy relative to the conduction band mini-
mum, resulting in a rearrangement of the relative popu-
lations of each valley which can be described as a mixing
of the donor A1 and E states. The degree of mixing
can be calculated using the “valley repopulation” model
(VRM) [47], which predicts a quadratic shift of the hy-
perfine interaction with an applied strain [48]:

∆A(ε)

A(0)
= − Ξ2

u

9E2
12

[(εxx − εyy)2 + (εxx − εzz)2

+(εyy − εzz)2]

(3)
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FIG. 7. Calculation of the hyperfine interaction reduction
as a result of the simulated device strain. (a) Calculated hy-
perfine shift ∆A according to the valley repopulation model,
which predicts a quadratic dependence on strain. (b) Calcu-
lation performed using the second-order strain model of Eq. 4.
The second-order model predicts shifts an order of magnitude
larger than the VRM does, as well as displays bipolar frequen-
cies due to its strong linear dependence.

with Ξu ≈ 8.7 eV the uniaxial deformation potential
of silicon, E12 the energy splitting between the A1 and
E states and ε is a general strain tensor with principal
components εαα (where α are the cubic axes x ‖ [100],
y ‖ [010] and z ‖ [001]). This expression is valid in the
limit of small ε (|εαα| . 1×10−3) and is applicable for the
range of strain produced in our device. In Fig.7a we plot
the hyperfine shift ∆A(ε) close to the inductive wire, cal-
culated using Eq. 3. The quadratic dependence of A(ε)
on strain implies that it is only reduced from A(0), the
un-strained value. It is apparent that such a distribution
could not explain the spectra of Section III, which would
require both positive and negative frequency components
in order to split the resonance peak in the manner ob-
served. In addition, the VRM predicts ∆A ≈ 100 kHz
for strains of order 10−4, equating to a resonance shift of
∆A×(df/dA)/(df/dB0) = 20 µT, an order of magnitude
smaller than our observed peak broadening.

Very recently, it was found that the hyperfine interac-
tion of donors in silicon is also sensitive to the hydrostatic
component of strain [48]. This result is surprising, as
the VRM predicts no hyperfine reduction for strains that
shift all of the valleys by the same energy. A second-order
strain model for the hyperfine shift was proposed:

∆A(ε)

A(0)
=
K

3
(εxx + εyy + εzz) +

L

2
[(εxx − εyy)2

+(εxx − εzz)2 + (εyy − εzz)2] +N(ε2xy + ε2xz + ε2yz)

(4)

with K = 29, L = −9064 and N = −225 the model co-
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efficients for 209Bi calculated using tight-binding theory
and K = 17.5 extracted from a first principles calcula-
tion using density functional theory (DFT). Remarkably,
for |ε| . 1 × 10−3 the model predicts that the linear
hydrostatic strain dominates the hyperfine shift. It is
suggested that this term is due primarily to strain effects
on the central-cell potential, inducing a coupling between
the 1s A1 state and higher donor orbital states with the
same symmetry. Experiments confirmed the existence of
the linear term and the extracted coefficient K = 19.1
was in good agreement with theory. A calculation of the
hyperfine shift distribution in the device using the full
second-order strain model (Eq. 4) is shown in Fig. 7b.
For strains of order 10−4, we expect ∆A ≈ 1 MHz and
an equivalent resonance shift of ∼ 200 µT. In addition,
the sensitivity of the resonance frequency to the hyper-
fine interaction is constant across all spin transitions (see
Table I), in agreement with the peak splittings extracted
in Table II. This mechanism provides bipolar resonance
shifts of the correct magnitude and thus constitutes a
likely explanation for the spectra of Fig. 3c. It should be
noted that such a mechanism is not unique to bismuth,
a linear hyperfine tuning with strain was observed for all
of the group-V donors in silicon [48].

3. g-Factor

The final mechanism we consider is a strain-induced
shift of the electron g-factor ge. Strain modifies ge
directly (by admixing higher-lying energy bands) and
through the valley repopulation effect [47]. This al-
ters the gyromagnetic ratio γe = geµB/h (where µB

is the Bohr magneton), shifting the spin resonance fre-
quency through the electron Zeeman interaction γeB0 ·S.
The g-factor shift for donors in silicon has been pre-
dicted and measured to be several orders of magnitude
smaller than that of the hyperfine interaction [47, 49].
In addition, the electron Zeeman energy for the range of
fields applied in our study (B0 < 7 mT) is small, with
Ez/h = γeB0 < 300 MHz, thus providing a proportion-
ally lower contribution to the transition frequency than
the hyperfine interaction A = 1457 MHz. We quantify
this with the transition parameter data in Table I. For the
same relative change, the hyperfine interaction shifts the
resonant frequency by a factor (A× df/dA)/(ge× df/dg)
greater than does the electron g-factor, which ranges
from 50-100 for the spin transitions explored here. Fi-
nally, comparing the g-factor sensitivity df/dg for the
transitions of resonator A to those of resonator B, we ex-
pect the splittings and broadenings to be a factor ∼ 2
larger for resonator B, which is not observed in the mea-
surements. We therefore safely neglect this mechanism.

6.4 6.6 6.8 7.0
0

0.5

1

A
e (

a.
u.

)

B0 (mT)

0

50

100

g 
(H

z)

25

75

Simulation
Experiment

3.0 4.0 5.0 6.0 7.0
0

1

2

0

1

2

B0 || wire
B0    wire 

Measurement

Simulation

Simulation

Measurement

B0 (mT)

E
ch

o 
am

pl
itu

de
, A

e (
a.

u.
)

b

c

a

FIG. 8. (a) Compensated echo-detected field sweeps of tran-
sitions 1A-8A (resonator A). The bottom traces are measured
data from Fig. 4 (plotted again here for ease of comparison
with theory), whilst the top traces have been offset inten-
tionally and are the results of our theoretical modeling. (b)
Compensated echo-detected field sweeps (measurement and
simulation) of transitions 1B-4B (resonator B). (c) The single
spin-resonator coupling strength g as a function of field B0,
extracted from transition 4B (marked by the black dashed
box in panel b). The red open circles are derived from mea-
surements of the Rabi frequency. Quantitative agreement is
observed with the simulated data (red solid line).

V. ESR SPECTRA SIMULATIONS

In this section we assess whether the hydrostatic hy-
perfine shift can reproduce the measurement data by per-
forming a full simulation of the extended ESR spectra of
Fig. 4. The upper offset traces of Figs. 8a and 8b are
the results of a numerical model incorporating the finite-
element simulation of δB1 and the hyperfine shift calcu-
lations (found by applying Eq. 4 to the strain simulations
of Fig. 6). For every pixel in the device where dopants are
present, we use the pre-determined ∆A(ε) (with the ex-
perimental value of K) and calculate the spin transition
parameters by solving the modified Hamiltonian:
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H/h = H0/h+ ∆A(ε)S · I (5)

At each B0 we calculate the spectral overlap of all al-
lowed transitions (∆mF = ±1 and ∆mF = 0) with the
resonator and weight the resulting spectrum from each
pixel with the corresponding donor concentration and
the appropriate component of the magnetic field vac-
uum fluctuations (Fig. 2), summing over all pixels to
achieve the spectra in Figs. 8a and b. We note that the
donor doping profile used in this model (red solid curve in
Fig. 1b) is the output of a TCAD simulation (discussed
in Section IV) that takes into account the ionization of
donors in the depletion region of the Schottky junction
formed between the aluminium wire and the silicon sub-
strate. The simulation strikingly reproduces many fea-
tures in the experimental data, including peak splittings,
peak-height asymmetries and field orientation φ depen-
dence, without a single free parameter in the model.

Having successfully reproduced key features of the ESR
spectra, we investigate whether our model can also cap-
ture the correlation of the magnetic field vacuum fluctu-
ations δB1 and spin resonance frequency, as discussed in
Section III. As noted previously, the Rabi frequency can
be expressed in terms of the single spin-resonator cou-
pling strength g = γeM |δB1⊥| and the mean intra-cavity

photon number n through the relation ΩR = 2g
√
n. In

the compensated sweeps ΩR is held constant as we pass
over the transitions. We extract g as a function of B0 for
transition 1B (identified by a black dashed box in Fig. 8b)
by estimating n at each field using the experimental in-
put power and a calibration of the loss in our setup [13].
In Fig. 8c we plot the result of the experiment (red open
circles) overlaid on the simulated spectra (grey dashed
line). The data quantifies the qualitative description of-
fered earlier: the coupling strength (or equivalently the
vacuum fluctuations δB1) increases for the spins that are
further detuned (those close to the edge of the wire) and
reduces towards the center of the transition, reaching the
lowest couplings at the inner-edge of the high-field peak
(the spins farthest from the wire). Next, we use our
model to simulate the expected g versus B0 dependence,
the result (red solid line in Fig. 8c) is an almost quanti-
tative match to the experimental data.

VI. SUMMARY

We discussed a range of mechanisms capable of al-
tering the resonance frequencies of donors in micro and
nanoelectronic devices and found that strain resulting
from differential thermal contraction plays a considerable
part. We presented a technique to study such strains
in silicon devices through high-sensitivity orientation-
dependent ESR spectroscopy. Our results are quanti-
tatively reproduced by considering the shift of the hy-

perfine interaction caused by the hydrostatic component
of strain [48]. The resulting resonance frequency shifts
of ∼ 5 MHz for strains of ∼ 10−4 contributed to an
order-of-magnitude broadening of the ESR lines. Whilst
the measurements were performed on bismuth donors in
silicon, similar effects are expected for the other group-V
donors [48].

The level of agreement demonstrated between our
model, which combined finite-element simulations
and experimentally-determined Hamiltonian parameters,
with the measured data shows that it accurately cap-
tures the underlying physics. Remarkably, the simulation
quantitatively reproduces the experimental results with
no free parameters in the model. This analysis could
be adapted to other device geometries and spin systems,
and may prove to be useful for spin-based device design.
The results presented in this work have implications for
QIP with donors and in hybrid systems such as supercon-
ducting quantum memories, which require predictability
of spin resonance frequencies and the ability to engineer
narrow spin line-widths.

The high sensitivity of the donor hyperfine interaction
to hydrostatic strain could be used to create a sensitive
local probe for strain in nanoelectronic devices. We esti-
mate that with typical intrinsic line-widths achieved for
donors in isotopically enriched silicon of ∼ 2 kHz [5],
a single donor could be used to measure strains below
10−7. This could be integrated with other techniques
for donor metrology [50] to provide valuable insight into
the spatial variation of physical system parameters in
nanoscale quantum devices. The large strain sensitiv-
ity also opens the prospect of driving spin resonance via
mechanical resonators, or coupling donors to phonons in
circuit quantum electrodynamics experiments.
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Appendix A: Spin Resonance Transitions

The hyperfine interaction AS · I couples states in the
|mS,mI〉 basis that differ in the electron and nuclear spin
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projections such that ∆mS = ±1 and ∆mI = ∓1. This
can be seen by rewriting the interaction as a product of
the spin raising and lowering operators:

AS · I =A (SXIX + SYIY + SZIZ) (A1)

=A

(
SZIZ +

1

2
[S+I− + S−I+]

)
In the coupled |F,mF〉 basis, these states therefore share
the same value of mF = mS + mI. In general, we can
expand the |F,mF〉 basis on the |mS,mI〉 basis as:

|F±,mF〉 = a±mF
|± 1

2
,mF∓

1

2
〉+b±mF

|∓ 1

2
,mF±

1

2
〉 (A2)

where we use F± to represent the higher or lower mul-
tiplet F± = I ± S (i.e. F+ = 5 and F− = 4 for 209Bi
or the triplet and singlet states for 31P). This is true for
all states aside from those with mF = ±(I + S) (cor-
responding to |mS = ±S,mI = ±I〉), which remain un-
mixed. The mixing coefficients a±mF

(a+mF
= a−mF

) and b±mF

(b+mF
= −b−mF

) are determined by the value of mF, the
hyperfine interaction strength A and the external mag-
netic field B0 (or more precisely, the electron Zeeman

energy relative to the hyperfine interaction) [9]. At high
magnetic fields (where Ez/h = γeB0 � A) a±mF

→ 1 and
b±mF
→ 0, whilst at low magnetic fields (where γeB0 . A)

strong mixing occurs.

1. “SX” Type

When operating in the “orthogonal mode” of spin res-
onance (B1 ⊥ B0), the B1 field couples to the SX and
IX spin operators. Electron spin resonance transitions
may be driven between |F,mF〉 states that contain com-
ponents of the uncoupled basis that differ by ∆mS = ±1,
i.e. |F±,mF〉 ↔ |F±,mF−1〉 and |F±,mF〉 ↔ |F∓,mF−
1〉, as can be seen from Eq. A2. The first two transitions
(|F+,mF〉 ↔ |F+,mF−1〉 and |F−,mF〉 ↔ |F−,mF−1〉)
correspond to high-field NMR transitions (which become
ESR-allowed at low fields), whilst the third transition
(|F+,mF〉 ↔ |F−,mF− 1〉) is a high-field ESR transition
and the fourth (|F−,mF〉 ↔ |F+,mF − 1〉) is completely
forbidden at high fields – it corresponds to transitions
where ∆mS = ±1 and ∆mI = ∓2.

The transition matrix elements between these states
are given by:

〈F±,mF|SX + δIX|F±,mF − 1〉 =
[
a+mF

b+mF−1 + δ(a+mF
a+mF−1 + b+mF

b+mF−1)
]
/2, (A3a)[

b−mF
a−mF−1 + δ(a−mF

a−mF−1 + b−mF
b−mF−1)

]
/2 (A3b)

〈F±,mF|SX + δIX|F∓,mF − 1〉 =
[
a+mF

a−mF−1 + δ(a+mF
b−mF−1 + b+mF

a−mF−1)
]
/2, (A3c)[

b−mF
b+mF−1 + δ(b−mF

a+mF−1 + a−mF
b+mF−1)

]
/2 (A3d)

where δ = γn/γe is the ratio of the nuclear and electron
spin gyromagnetic ratios, which is typically of order 10−4

for group-V donors in silicon. At low and intermediate
fields (γeB0 . A), the first term in the matrix elements
of Eqs. A3a-d dominate over the components generated
by the nuclear spin (those multiplied by δ). At high
magnetic fields, the nuclear spin component of the matrix
element is negligible for Eq. A3c but is the dominant
term in Eqs. A3a,b (the high-field NMR transitions). It
should be noted that, in general, the matrix elements
above are non-zero at low-fields, with the exception of
identical particles (S = I and δ = 1) where the singlet
state (F = 0) is ESR inactive. The singlet state becomes
ESR active (for example, in the case of phosphorus S =
I = 1/2) due to the differing gyromagnetic ratios of the
electron and nuclear spins.

2. “SZ” Type

In the “parallel mode” of spin resonance (B1 ‖ B0),
the B1 field couples to the SZ and IZ spin operators.

Electron spin resonance transitions may be driven be-
tween |F,mF〉 states that contain identical components
of the uncoupled basis, i.e. |F±,mF〉 ↔ |F∓,mF〉 (see
Eq. A2). These correspond to high-field flip-flop transi-
tions (∆mS = ±1 and ∆mI = ∓1). The matrix element
between these states is given by:

〈F+,mF|SZ + δIZ|F−,mF〉 = (a+mF
b−mF
− a−mF

b+mF
)/2

+ δ[a+mF
b−mF

(mF − 1/2) + a−mF
b+mF

(mF + 1/2)]

= −a+mF
b+mF

+ δa+mF
b+mF

(A4)

where we have used the symmetry of the mixing coeffi-
cients (a+mF

= a−mF
and b+mF

= −b−mF
) to arrive at the final

form of Eq. A4. Note, for identical gyromagnetic ratios
(δ = 1) the components of the matrix element cancel ex-
actly, and driving in the parallel mode is forbidden. Fur-
thermore, at high fields (where a±mF

→ 1 and b±mF
→ 0)

the matrix element becomes negligibly small. For the
Si:Bi system (δ ≈ 10−4) at low magnetic fields, the “SZ”
transitions are appreciable, comparable in strength to the
“SX” type.
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Appendix B: Predicted ESR Line Shape

Previous studies of the sample utilized in this work
[24], performed using a bulk ESR spectrometer (i.e. with-
out the on-chip resonator) revealed a Gaussian line-shape
with a peak-to-peak width of σB = 12 µT for the high-
field mI = −1/2 transition (|4,−1〉 ↔ |5, 0〉 in the
|F,mF〉 basis), at a frequency of ω/2π = 9.53 GHz.
This transition displays a df/dB = 0.6γe and thus an
equivalent σf = σB × df/dB0 = 200 kHz broadening
in the frequency domain. This value agrees well with
other studies of bismuth-doped isotopically enriched sili-
con [10], where a line-width of 270 kHz was measured and
found to be constant in the frequency domain. For the
|4,−4〉 ↔ |5,−5〉 transition studied in this work (with
ω/2π ≈ 7.3 GHz), df/dB0 = 0.9γe (see Table I) and we
expect a σB = σf/(df/dB0) = 8 µT, providing a full-
width-at-half-maximum (FWHM) of ∼ 20 µT. This is
substantially lower than the broadening we observe in
our measurements using the on-chip micro-resonator, as
depicted in Fig. 3.

Appendix C: Magnetic Field Inhomogeneity

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

B0 - B0c (mT)

0

0.5

1

E
ch

o 
am

pl
itu

de
, A

e (
a.

u.
)

Res. A 
(7.305 GHz)
Res. B
(7.246 GHz)
Res. C 
(7.144 GHz)

FIG. 9. Compensated echo-detected magnetic field sweep
(see Section III for measurement details) recorded for three
resonators (frequencies are listed in the figure legend) over the
first spin transition |4,−4〉 ↔ |5,−5〉. The horizontal axis
displays the difference with the transition center fields B0c

(listed in Table II). The transition frequency has a magnetic
field sensitivity of df/dB0 = −0.9γe for all three resonators.

A magnetic field inhomogeneity, for example produced
by Meissner screening of the static magnetic field B0 in
the vicinity of the superconducting wire, is not suspected
to contribute to the splitting and broadening of the elec-
tron spin resonance (ESR) peaks observed in our exper-

iment (Figs. 3 and 4). We rule this mechanism out by
comparing measurements of the first spin resonance tran-
sition |4,−4〉 ↔ |5,−5〉 (see Table I) for each of the three
resonators A, B and C (see Fig. 9). The width and split-
ting of these peaks are of similar size for each resonator,
despite the transition for resonator C (B0 = 9.29 mT,
df/dB0 = −0.90γe) occurring at twice the field of res-
onator B and three times the field of resonator A. A
broadening resulting from an inhomogeneous magnetic
field would increase in proportion to the strength of the
field.

Appendix D: Strain Tensor Simulation

We have performed finite-element strain simulations of
our device using the software package COMSOL Multi-
physics. Our model consists of a 50 nm thick, 5 µm wide
aluminium wire on a silicon substrate. We assume the
aluminium to be strain-free upon deposition and we sim-
ulate cooling the device to 20 mK using the temperature-
dependent CTE of aluminium [40, 41] and silicon [39], as
well as the anisotropic stiffness coefficients for silicon [42].
The wire is constructed at a 45◦ degree angle to the x-axis
in the xy-plane (where x ‖ [100]) such that it is aligned
with the [110] crystal axis. The difference in the CTE of
Si and Al produces device strains at low temperature. At
each pixel in the device we extract the six independent
strain components in the 〈100〉 basis, which are plotted
in Fig. 10.
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FIG. 10. Spatial dependence of the six independent compo-
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