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Abstract. The scattering of elastic waves from an obstacle is of great interest in ultrasonic 
Non Destructive Evaluation (NDE). There exist two main scattering phenomena: specular 
reflection and diffraction. This paper is especially focused on possible improvements of the 
Geometrical Theory of Diffraction (GTD), one classical method used for modelling diffraction 
from scatterer edges. GTD notably presents two important drawbacks: it is theoretically valid 
for a canonical infinite edge and not for a finite one and presents discontinuities around the 
direction of specular reflection. In order to address the first drawback, a 3D hybrid method 
using both GTD and Huygens secondary sources has been developed to deal with finite flaws. 
ITD (Incremental Theory of Diffraction), a method developed in electromagnetism, has also 
been developed in elastodynamics to deal with small flaws. Experimental validation of these 
methods has been performed. As to the second drawback, a GTD uniform correction, the UTD 
(Uniform Theory of Diffraction) has been developed in the view of designing a generic model 
able to correctly simulate both specular reflection and diffraction. A comparison has been done 
between UTD numerical results and UAT (Uniform Asymptotic Theory of Diffraction) which 
is another uniform solution of GTD. 

 
 
 
 

1. Introduction 
The scattering of elastic waves by an obstacle is constituted of phenomena such as the specular 
reflection and the diffraction. The simplest way to model scattering is the strong approximation 
of the Geometrical Elastodynamics (GE) which just considers incident and reflected waves. This 
approximation gives rise to three main regions of space when a plane wave interacts with a crack 
half-plane: the region illuminated by both incident and reflected waves, the region illuminated 
only by the incident waves and the shadow region where there is no wave. These regions (see 
Fig. 1) are separated by shadow boundaries (SB), the incident and reflected shadow boundaries. 
GE predicts a discontinuity of the elastodynamic field when crossing these shadow boundaries. 

This discontinuity of the geometrical field comes from the fact that diffracted waves by 
the crack edge are not taken into account in GE. There exist a number of methods to model 
diffraction as the Kirchoff Approximation(KA) [1, 2] and the Geometrical Theory of Diffraction 

(GTD) [2, 3, 4]. They are all high frequency methods and thus own some limitations. For 
instance the quantitative prediction by KA of edge diffraction can be erroneous notably for SV 
waves [5]. Numerical methods as finite elements or finite differences are also used to model the 
scattering problem. They are time consuming and are generally used for inspection of component 

or flaws with complex geometry. 
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Figure 1: Scattering of a plane wave by a semi-infinite crack embedded in an elastic homogeneous 
solid. Thick arrows - incident waves, dash arrows - reflected waves, dotted arrows - diffracted 
waves. 

 
 

GTD is an extension of GE. Indeed, it adds diffracted rays to incident and reflected rays. 
These diffracted rays propagate in shadow regions whereby the classical geometrical rays could 
not (see Fig. 1). The GTD diffracted field is the product of the incident field weighted by a 
diffraction coefficient and a divergence factor. The phase function of the diffracted field respects 
the eikonal equation and the divergence factor ensures the energy conservation in a tube of 
rays. The diffraction coefficient is obtained thanks to canonical configurations as half-planes or 
wedges. Therefore, GTD does not take into account the finite length of the diffracting edges 
encountered in NDE. Furthermore, GTD fails in the zones where edge diffracted waves interfere 
with incident or reflected waves. For this reason, GTD solution is said to be non-uniform. 

To overcome these shortcomings of GTD, in a first step, points on the diffracting edge 
are considered as fictive sources of a field called incremental field. This approach of the 
problem is called incremental method. Incremental methods have been principally developed 
in electromagnetism: Incremental Theory of Diffraction (ITD) [6, 7, 8], Incremental Length 
Diffraction Coefficient (ILDC) [9] and Equivalent Edge Currents (EEC) [10]. They have also 
been developed in acoustics [11, 12, 13]. In this paper, it is shown that ITD can be extended 
from electromagnetism to elastodynamics and another incremental model based on Huygens’ 
principle has been developed. In a second step, a uniform extension of GTD, the Uniform 
Theory of Diffraction (UTD) [14, 15] based on the Pauli-Clemmow process [16], has been 
developed in elastodynamics in the aim to overcome the second GTD drawback (failure at  
specular direction). UTD is preferred to UAT (Uniform Asymptotic Theory of diffraction) 
[17, 18], another uniform extension of GTD, because UAT involves artificial extension of the 
scattering surface and fictitious reflected rays while UTD does not. UTD is also preferred to 
the Physical Theory of Diffraction (PTD), a correction of KA in diffraction [19, 20, 21], shown 
to be equivalent to UAT at the first order [22]. PTD can be time consuming for large scatterers 
since it is an integral method. 

This paper focuses on the development of incremental models and of UTD in elastodynamics. 
The geometry of the problem is first introduced in section 2. Then, in section 3, the 
two incremental models, ITD and Huygens-based, are developed in elastodynamics and then 
experimentally validated. In section 4, UAT result is recalled and UTD is developed in 
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elastodynamics. A numerical comparison between UTD and UAT is performed. Conclusions 
are provided in section 5. 

 
2. Problem statement 
In the following, the symbols α and β are used to denote the wave type, i.e. α, β = L, TV or 
TH (Longitudinal, Transverse Vertical or Transverse Horizontal, respectively). α is used for the 
incident wave and β  for reflected and diffracted waves.  Scalar quantities are labelled by taking 
α and β as subscripts, while α is used as superscripts for vectors related to the incident wave 
and β as subscripts for vectors related to scattered waves. 

 

Figure 2: A plane wave of propagation vector kα incident on a semi-infinite stress-free crack. 
Thick black arrow - direction of the incident wave; thick gray arrow - direction of the diffracted 
wave (kβ). 

 
The geometry of the problem is presented in Fig. 2, using the Cartesian system based on an 

orthonormal basis {e1, e2, e3} and the origin O on the crack edge. The crack is embedded in 
an elastic homogeneous and isotropic space and is the half-plane {x2 = 0, x1 ≥ 0}. The edge 
coincides with the x3 axis and is irradiated by a plane wave 

uα(x, Ω  , θ  ) = A dαei(−ωt+kα·x), (1) 

where A is the wave displacement amplitude; dα is its polarization; kα its wave vector defined 
thanks to the angles Ωα and θα (described in Fig. 2), whose magnitude kα = ω/cα, with ω - the 
angular frequency and cα - the speed of the corresponding mode; t is time; and x is the position 
vector, expressed in the Cartesian coordinates as (x1, x2, x3) and in cylindrical coordinates as 
(r, θ, x3). The exponential factor exp(−iωt) is implied but omitted everywhere. 

The approximate GTD-based total field [4] can be expressed as 

utot(GTD)(x, Ωα, θα) = uα(GE)(x, Ωα, θα) + 
Σ 

uα(GTD)(x, Ωα, θα), (2) 
β 

 

where 
uα(GE)(x, Ωα, θα) = H (ηα) uα(x, Ωα, θα) + 

Σ 
H (ηβ) uα(ref)(x, Ωα, θα), (3) 

β 

with H being the Heaviside function and 
 

uα(ref)(x, Ωα, θα) = ARα dβ (−qβ cos θβ) ei kβ pβ·x (4) 
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the reflected field. In equation (4), pβ = (sin Ωβ cos θβ, − sin Ωβ sin θβ, cos Ωβ) is  the  unit 
reflected wave vector and dβ (−qβ cos θβ) its polarisation vector. The polarisation vector of 
the reflected field depends on the parameter qβ cos θβ where qβ = kβ sin Ωβ and θβ is the 
reflection angle which is related to the incidence angle θα by SnellJs law 

qβ cos θβ = qα cos θα. (5) 
 

The diffraction angle Ωβ is related to the incidence angle Ωα by Snells law in diffraction 
 

kβ cos Ωβ = kα cos Ωα. (6) 
 

The arguments ηα = sgn (θ θα) and ηβ = sgn(θ 2π +θβ) of the respective Heaviside functions 
determine whether the observation point is in the illuminated region or shadow of incident and 
reflected waves (see Fig. 1). The GTD diffracted field [4] is expressed as 

 

 
α(GTD) 

 
α α α(GTD) eikβSβ 

uβ (x, Ωα, θα) = u  (xβ )Dβ (θ, Ωα, θα) dβ (−qβ cos θ) √
k  L  

, (7) 

 

where uα(xα) = uα(xα) · dα, xα(0, 0, x3 − Sβ cos Ωβ) is the diffraction point on the scattering 

edge (see Fig. 2); Dα(GTD) is the so-called diffraction coefficient; Sβ is the distance between 

the diffraction point xα and the observation point x; Lβ = Sβ sin2 Ωβ is a distance parameter 
and dβ (−qβ cos θ) is the diffracted polarisation vector. In (7), kβLβ  is the far field parameter. 
GTD diffraction coefficients contain poles θ = θβ and θ = 2π θβ. These poles correspond 
respectively to the directions of incident and reflected shadow boundaries (see Fig. 1). GTD 
solution thus diverges at shadow boundaries and is obtained for canonical configurations such 
as the half-plane in this case. It does not take into account the finite length of the obstacle. 

 
3. Incremental methods 
At the diffraction point xα, any crack of contour L is locally approximated by a canonical form, a 
half-plane in this case (see Fig. 3). This half-plane is tangent to the crack at the diffraction point. 
The diffraction point xα is the origin of the orthonormal basis vector {e1, e2, e3} associated to 
the half-plane. In this localised basis, (S, φ, θ) are the spherical coordinates of the observation 
vector x. 

Incremental methods assume that points of the diffracting edge are virtual sources of a field 
defined as the incremental field Fβ(xα, x). Thus, the field diffracted by the contour L at an 
observation point is the integral of the incremental field on the contour L: 

 

uα(x, Ωα, θα) = Fβ(xα, x) dl, (8) 
L 

with dl being the edge increment. We have developed two different methods in elastodynamics 
to determine this incremental field: one based on the GTD locality principle (ITD) and one 
based on the Huygens principle. 

 
3.1. ITD in elastodynamics 
ITD is based on the locality principle. It has been developed in electromagnetism [6] and has 
been extended in elastodynamics in [23]. The ITD incremental field is 

 

uα(xα)  α(GTD) eikβS 
 

 Fβ(xβ, x) = √
2iπ  

sin φ Dβ (θ, Ωα(φ), θα) 
S 

dβ (−qβ cos θ) , (9) 
α 
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β 

L 

Fβ(xβ, x) 
ITD 

= u (xβ )K(φ(l)) 
S 

dβ (−qβ cos θ) , (13) 

Fβ (xβ, x) 
Huygens 

= u (xβ )K(Ωβ) 
S 

dβ (−qβ cos θ) , (14) 

 
 
 

 
 

Figure 3: A plane wave of propagation vector kα incident on a stress-free obstacle (in gray) of 
contour . Thick black arrow - direction of the incident wave; thick gray arrow - direction of 
the wave kβ scattered by the half-plane tangent to the crack edge at the flash point xα. 

 
 

where 
 

Ω  (φ) = arccos 
kβ 

cos φ    . (10) 
α kα

 

This incremental field, valid in the far field zone kβS 1, is a spherical wave weighted by a 
coefficient. Therefore, the contour points act as fictive source of spherical waves. It has been 
checked that ITD gives back GTD solution in the case of the plane wave scattering from a  
half-plane i.e. for an infinite straight edge. Another incremental model based on the Huygens 
principle is developed in next section. 

 
3.2. Huygens method 
The second method is based on the Huygens principle. It also supposes that points on the 
diffracting edge are fictive sources of spherical waves which interfere between each other and 
give rise to the displacement field at an observation point. An Ansatz is proposed so that each 
spherical wave is weighted by a diffraction coefficient proportional to GTD diffraction coefficient 

Dα(GTD). The diffracted field can therefore be written as 

α 

∫ 
α α 

 

α(GTD) eikβS 
 

 uβ (x, Ωα, θα) = C u  (xβ )Dβ (θ, Ωα, θα) 
L S 

dβ (−qβ cos θ) dl (11) 

where is the crack contour;  C is an unknown parameter to determine and dl is the edge 
increment. To find the value of the parameter C, the stationary phase method is applied to 
(11) in the case of a straight infinite edge and equalized to (7) because the contribution of the 
stationary point corresponds to the edge diffracted field. Finally, 

sin Ωβ 
C =  √

2iπ 
. (12) 

The incremental fields ITD and Huygens-based are respectively 

α . α α eikβS 
 

 

 

α . α α eikβS 
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− 

 

 

with the coefficient  
sin ζ 

 

α(GTD) 

K(ζ) = √
2iπ 

Dβ (θ, Ωα(ζ), θα). (15) 

Huygens method (14) differs from ITD (13) in the case of a straight edge only by the argument 
ζ of the coefficient K(ζ). For Huygens, this argument ζ is the diffraction angle Ωβ linked to the 
incidence angle Ωα by SnellJs law of diffraction (6) whereas for ITD it is the angle φ between the 
observation point and the discretization point (see Fig. 3). These incremental models can be 
applied to GTD and also to uniform GTD corrections. They have been validated experimentally 
in the following. 

 
3.3. Experimental validation 
Diffracted echoes generated by the top tip of a 40 mm large and 10 mm high backwall breaking 
planar notch simulated by incremental methods are compared to experimental results for various 
flaw orientations with respect to the probes one. 

Diffraction echoes have been measured in the TOFD (Time Of Flight Diffraction) inspection 
of a ferritic steel component (see Fig. 4) using two 6.35 mm diameter mono-element probes 
emitting P45 waves at 2.25 MHz with a 60 mm PCS (Probe Centre Spacing).   This ferritic  
steel component is defined in the Cartesian coordinates (X, Y, Z) shown in Fig. 4. The defect is 
initially perpendicular to X axis so that it is inspected in a 2D configuration. Then, the skew 
angle (angle between the flaw top edge and the Y-axis) is increased from 0˚(2D configuration) 
to 70˚(see Fig. 4) in order to be in a 3D configuration by rotating the specimen around the  Z-
axis. The echo generated by a 2 mm diameter and 40 mm length side-drilled hole (see Fig. 4) is 
employed for calibration. 

 
 

 

Figure 4: TOFD simulation configuration. 

 
The measured and simulated results are presented in Table 1. ITD and Huygens lead to 

the same results. The errors between ITD/Huygens simulations and experimental results are at 
most or around 1dB and are less than the measurements incertitudes (around 2dB). 

 
4. Uniform corrections of GTD in elastodynamics 
The classical edge-diffracted GTD ray field is not valid near and at shadow boundaries (directions 
of specular reflection and direct transmission). Indeed GTD evaluates asymptotically the exact 
solution of the scattering from a half-plane which is a Sommerfeld integral [24, Ch. 3] and just 
takes into account the contribution of the integral stationary phase point. This contribution 
corresponds to the diffracted field whereas the integrand’s poles contribution gives rise to the  
geometrical field. To handle the coalescence of stationary phase points and integrand’s poles, 
interference of diffracted waves with incident and reflected waves of GE, other methods of 
approximation are used such as the Van Der Waerden’s one which gives rise to UAT and the  
Pauli-Clemmow’s one which leads rise to UTD. UAT has already been derived in elastodynamics  
by [4, 18]. 
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Table 1: Amplitude of diffracted waves in dB. 
 
 

Skew angle (˚) experiments ITD Huygens 

0 -13.1 -12.9 -12.9 
10 -12.6 -13.0 -13.0 
20 -14.2 -13.1 -13.1 
30 -13.3 -13.3 -13.3 
40 -13.7 -13.7 -13.7 
50 -13.6 -14.3 -14.3 
60 -14.0 -15.2 -15.2 
70 -14.4 -16.3 -16.2 

 
 
 

4.1. UAT 
The approximate UAT-based total field [4, 17, 18] can be expressed as 

utot(UAT)(x)   =   A 
h

F (ξα ) − F̂ (ξα 
 

 

)
i 

eikα·x dα 

 

+ 
Σ 

ARα 
h
F (ξβ) − F̂ (ξβ)

i 
eikβ  pβ ·x dβ (qβ cos θβ) (16) β 

Σ 
α α 

 

 

 

α(GTD) eikβSβ 
 

 

  

 

where 

     F̂ (X) = ei 
π

 

 
eiX2 

√ 

 

, (18) 
2X 

   1 +∞ 

F (X) = √
iπ

 

π 
 

eit2 

 
 
dt (19) 

is the Fresnel function and the parameters 

 
ξα =   −sgn (θ − θα 

) 

s

2kαLα sin2 

    

(20) 
θα − θ 

 

 
 

 
 

 

and ξβ =   −sgn (θ + θβ 
— 2π) 

s

2kβLβ 
sin2 

   
θβ + θ

 

(21) 

 

are the detour parameters [17]. The divergence of GTD near shadow boundaries is removed by 

the function F̂ .  The asymptotic development of the Fresnel function for large arguments [25] is 
 

F (X) ' H(−X) + F (X). (22) 

Then, far away of the shadow boundaries, UAT total field (16) gives back GTD total field (2). 
In this UAT solution, the incident and reflected field are no more defined only in illuminated 
regions.  They are defined on the whole space.  Indeed,  UAT needs to extend reflected rays in 
the shadow region by introducing fictitious rays [26]. 

2 

β L β 
β 

X 

+ dβ (qβ cos θ) , (17) 
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4.2. UTD 
The approximate UTD-based total field [27] can be expressed as 

utot(UTD)(x, Ωα, θα) = uα(GE)(x, Ωα, θα) + 
Σ 

F (kβLβ a) uα(GTD)(x, Ωα, θα), (23) 

where F is a transition function and the parameter a describes the proximity of the observation 
point to a shadow boundary. When the observation point is far away from the shadow 
boundaries, the transition function tends to 1 and then, UTD is equal to GTD. When the 
observation point is close to the shadow boundaries, the transition function tends to 0 and 
removes the singularity of GTD diffraction coefficient; it also introduces a discontinuity in the 
diffracted field at the shadow boundaries which is cancelled by the GE one so that the total 
UTD field is continuous at shadow boundaries contrary to GTD. 

The UTD just modified the amplitude of the diffracted rays. It does not require fictitious  
rays as UAT. It is then more simple to implement. UTD asymptotics do not include all terms 
of the order (kβLβ)−1/2  as UAT [26, 28].  A comparison between UAT and UTD is performed 
in the next section. 

 
4.3. Numerical results 
The numerical results are presented in the (e1, e2) plane, which is perpendicular to the edge 
crack, since the problem is invariant along the x3 direction (see Fig. 2). The observation vector 
x is specified using the cylindrical coordinates (r, θ) associated with the (e1, e2) plane. The solid 
material used for simulations is ferritic steel with Poisson’s ratio  ν  = 0.29, longitudinal velocity 
cL = 5900 m.s−1 and transversal velocity cT = 3230 m.s−1. 
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Figure 5: Directivity pattern of the total field predicted by different models (GTD, UAT and 
UTD) at r = 10λ (kβLβ = 20π, β  = TV )  for  ΩT V  = 90˚  -  (a)  θT V  = 60˚  -  (b)  θT V  = 120˚. 
Each circle represents amplitude of the total field normalized by the incident amplitude. 

 
In Fig. 5, all approximate total fields are calculated using all scattered modes, with GTD- 

based non uniform asymptotics given by (2), UAT - by (16), and UTD - by (23). The used 

UAT 

GTD 

  UTD 
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≈ 

≈ ≈ − ≈ 

 

 

configuration is 2D: the incidence is normal to the edge crack (Ωα = 90˚). The incident 
wave is transverse vertical. There are three shadow boundaries in Fig. 5.a, the incident TV 
shadow boundary θ = 60˚, reflected TV shadow boundary θ = 300˚ and reflected L shadow 
boundary θ 336˚. There also have three shadow boundaries in Fig. 5.b, the incident TV 
shadow boundary θ = 120˚, reflected TV shadow boundary θ = 240˚ and reflected L shadow 
boundary θ     204˚.  The peaks near critical angles θc     56.8˚ and 2π     θc     303, 2˚ are due 
to the interference of the diffracted T wave with the corresponding head waves generated by 
diffraction at the edge (see Fig. 6). 

 

Figure 6: Waves diffracted from a crack edge: L stands for longitudinal wave, TV for transversal 
and H for head wave; θc is the longitudinal critical angle. 

 
As expected, both UTD and UAT are continuous at shadow boundaries and  practically 

coincide far away from the shadow boundaries. There is a slight difference between them near 
the shadow boundaries. In Fig 5.a, there is a difference of peak amplitude at the critical angles 
between UAT and UTD. That is because,  such  critical  angles  are  located  near  the  incident 
and reflected shadow boundaries. In this observation region the diffracted rays (contribution of 
stationary phase point) interfere with incident or reflected rays (poles) and head waves (branch 
point). UAT reproduces the peaks of GTD field since it just modifies the geometrical field 
whereas in UTD, the transition function tends to 0 near shadow boundaries and then reduces the 
head wave peak amplitude. Nevertheless, both GTD and its uniform corrections are classically 
not considered to be valid for observation near a critical angle [29]. A modified version of UTD 
is proposed in [27] so that its prediction is the same as GTD or UAT at critical angle θc for a 
longitudinal incident wave. 

In Fig 5.b, the poles are far away from the critical angles. In this case, UTD and UAT give 
approximately the same result far and near shadow boundaries. The maximum error in dB 
between UTD and UAT is 2dB. 

 
5. Conclusion 
This paper focuses on recent advances in modelling the scattering of elastic waves from an 
obstacle. The GTD ray method, classically used to model edge  diffraction,  is  valid  for  an 
infinite edge and not for a finite size scatterer. Moreover, GTD diverges at observation directions 
of specular reflection and direct transmission (called shadow boundaries). To overcome these 
limitations of GTD, two incremental models and a GTD uniform correction have been derived 
in elastodynamics. The two developed ITD and Huygens’ models permit to take into account 
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the finite size of the scatterer edges. These two models give back GTD solution in the case of a 
straight infinite edge. They have also been both successfully validated experimentally. UTD, a 
uniform correction of GTD, permits to have a continuous total field. It modifies the amplitude 
of the diffracted rays near the shadow boundaries in order to remove the GTD divergences and 
to cancel the discontinuity of the geometrical field.   UTD is simpler to implement than UAT 
which required to build fictitious rays. It gives results close to UAT ones. Incremental methods 
can be coupled with UTD to build a generic model both spatially uniform and able to deal with 
finite size flaws. 
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