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Abstract. On-site inspection of bimetallic or austenitic welds can be very difficult to interpret owing to their internal
structures. Skewing and splitting of the ultrasonic beam may occur due to the anisotropic and inhomogeneous properties
of the welding material. In this paper, we present a ray-based method to simulate the propagation of ultrasonic waves in such
structures. The formalism is based on dynamic ray tracing system in Cartesian coordinates along a reference ray. Standard ray
tracing consists in the solution of a system of linear ordinary differential equations of the first order and is used to determine
the trajectory of the ray. Likewise, dynamic ray tracing (DRT) also called paraxial ray tracing consists in the solution of
an additional system of linear ordinary differential equations along the ray allowing paraxial quantities to be computed. It
is used to evaluate the geometrical spreading and amplitude along the ray and in its vicinity. DRT is applied on a smooth
representation of the elastic properties of the weld obtained thanks to an image processing technique applied on a macrograph
of the weld. Simulation results are presented and compared to finite elements and experimental results.
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CONTEXT AND OBJECTIVES

The interpretation of on-sites inspections of austenitic or bimetallic welds is particularly difficult due to their internal
structures. Indeed, some disturbances of the beam, such as splitting and skewing [1], can be observed on experimental
echoes. It has been highlighted that these disruptions are due to the anisotropic and inhomogeneous polycrystalline
structure of the weld [2]. Simulation of ultrasonic inspection can help to understand these phenomena. Various models
have been developed to simulate the ultrasonic propagation such as finite differences [3], finite element models [4, 5]
or ray-tracing models [6]. A semi-analytical propagation model, based on Dynamic Ray Tracing model (DRT), has
been implemented in the CIVA software [7, 8]. This model has been applied on a weld described as a set of several
homogeneous domains with a constant crystallographic orientation. However, if the domains have small dimensions
compared to the wavelength, the results are valid only if the contrast of impedance between two neighboring media
is small. In some cases, the weld may be described as a continuously varying description of the crystallographic
orientation. This paper describes the modeling approach and the developments made in order to apply the DRT model
on a smooth cartography of the crystallographic orientation. To obtain this description, an image processing technique
has been developed and applied on the original macrograph of a weld. The DRT model has been numerically validated
in 2D by a comparison of the transmitted ultrasonic wave field evaluated with a finite elements model on a weld
described thanks to an analytical law, and experimentally in 3D on a smooth cartography of the crystallographic
orientation.

IMAGE PROCESSING TECHNIQUE FROM THE MACROGRAPH

The image processing technique developed in this study has been applied on the macrograph of a bimetallic weld
composed of a ferritic steel and a stainless steel. The aim is to obtain a cartography of the crystallographic orientation.
This cartography will subsequently be used as input data for an ultrasonic propagation model. The processing is
composed of four steps performed thanks to the ImageJ and Matlab softwares. The first stage is to detect the external
contours of the weld. This operation allows us to extract the entire region of the weld containing the buttering and the
welded zone. Figure 1 represents the original macrograph of a bimetallic weld and the external detected contours.
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FIGURE 1. Representation of (a) the original macrograph of the studied weld and (b) its external detected contours.

The second step of the process is the calculation of the local orientation θ of the grains. This is done by using one
of the functionalities of an ImageJ plug-in called OrientationJ [9]. Based on the evaluation of the structure tensor in
local neighborhood, the plug-in determines the orientation of a region of interest. The algorithm consists in applying
a Gaussian-shaped window on the image, then the structure tensor is evaluated for each pixel of the entire image by
sliding this window. Finally, the program computes a colored image of the local orientation properties as shown in
figure 2.

FIGURE 2. Representation in grayscale of the local orientation θ of the grains evaluated thanks to the OrientationJ plug-in [9].

As the DRT model is based on a high frequency approximation, the cartography of the local orientation has to
be smooth. In Geophysics, Thierry et al. [10] have worked on obtaining a continuously varying description of the
propagation velocity of the seismic waves in the ground. It has been realized by applying a smooth low-pass Gaussian
filter on the representation of the velocity. The cut-off frequency of the filter is given by the relation:

f (x) =
1

2πτ
exp

(

−
x2

τ2

)

, (1)

where the correlation length τ is half of the wavelength. As we want to smooth the direction of the grains instead of the
orientation, the filter is applied on the cosine and the sine of 2θ . The images of the cosine and the sine of 2θ smoothed
by a Gaussian filter with dimensions equal to the wavelength λ (around 3 mm or 63 pixels) are shown in figure 3.

FIGURE 3. Smoothed representations of the (a) cosine(2θ ) and (b) sine(2θ ).

Finally, the cartography of the orientation θ is obtained from these two images (figure 4).
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FIGURE 4. Representation of a smooth cartography of the crystallographic orientation of the studied weld.

DYNAMIC RAY TRACING MODEL FOR A SMOOTH DESCRIPTION OF WELD

The DRT model [11] has been applied to inhomogeneous media. This model is based on the evaluation of the ray
trajectories and the travel-time and the computation of the amplitude of a ray tube during the propagation. To evaluate
the ray-paths and travel-time, we have to solve the eikonal equation (2):

(∇T )2 =
1

c(x)2 , (2)

representing a non-linear partial differential equation of the first order for the travel-time T (x), where c(x) is the phase
velocity of the wave at position x. By deriving this equation, written in Hamiltonian form, a differential ray tracing
system (3) called the axial ray system is expressed. This system is composed of two ordinary coupled differential
equations describing the variation of the position xi and the slowness pi with respect to the travel-time:

{

dxi
dT

= ai jkl plg
(m)
j g

(m)
k = U

e(m)
i ,

d pi

dT
= − 1

2
∂a jkln

∂xi
pk png

(m)
j g

(m)
l ,

(3)

where T is the travel-time, ai jkl the elasticity constants of the medium at the position xi normalized by the density ρ .

The eigenvectors g
(m)
j of the Christoffel tensor are the components of the polarization vector and U

e(m)
i is the energy

velocity for the m mode.
To describe the conservation of the energy inside the ray tube and compute the amplitude of a ray tube, the transport

equation (4) has to be solved along a ray Ω in an anisotropic inhomogeneous medium:

A(x)∇2T (x)+2∇A(x).∇T (x) = 0. (4)

It is a non-linear partial differential equation of the first order in scalar A(x), the amplitude function. By deriving the
axial ray system with respect to an initial parameter γ , we obtain a second system (5) of ordinary linear differential
equations of the first order for the paraxial quantities Qi and Pi :

⎧

⎨

⎩

d
dT

(

∂xi

∂γ

)

= dQi
dT

= 1
2

∂ 2Gm

∂ pi∂γ
= Ai jQ j +Bi jPj,

d
dT

(

∂ pi

∂γ

)

= dPi
dT

= − 1
2

∂ 2Gm

∂xi∂γ
= −Ci jQ j −Di jPj.

(5)

γ represents any parameter of the ray Ω and can be chosen, for example, as a take-off angle between a reference axis and
the initial slowness vector. This system, called the paraxial ray system, is expressed with the parameter Gm representing

the normalized eigenvalues of the Christoffel tensor, written as Gm = ai jkl p j plg
(m)
i g

(m)
k . Three eigenvalues Gm are

evaluated, associated to three eigenvectors g
(m)
i representing the three plane waves that propagate in the medium.

Axial and paraxial ray systems are solved simultaneously by using numerical techniques such as the Euler method
in this case. The paraxial ray system (5) is written in a Cartesian regular coordinates system xi with i, j = 1,2,3.
It consists of six ordinary linear differential equations. It may be convenient to express this system in a wave front
orthonormal coordinates system yi where the indexes M and N are equal to 1 or 2 [11]. The origin of this coordinate
system moves along the ray Ω with the propagating wave front and the y3-axis is orientated along the slowness vector
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�p at the origin point. Axes y1 and y2 are mutually perpendicular in the plane tangent to the wave front at this origin
point. The system consists then of four scalar linear differential equations.

The paraxial quantities QM and PM , with the index M = 1,2, are the components of the vector �Ψ describing a
paraxial ray. Q1 and Q2 represent the spatial deviation of the paraxial ray from the axial one, and P1 and P2 are the
slowness deviation of the paraxial ray from the axial ray as shown in figure 5.

FIGURE 5. Representation of the paraxial quantities describing a paraxial ray.

The paraxial ray system is then written in a matrix form in the wave front orthonormal coordinates system (6)
between two points:

(

Q
(r+1)
M

P
(r+1)
M

)

=

(

Π11 Π12
Π21 Π22

)

·

(

Q
(r)
N

P
(r)
N

)

=

(

1+AMN∆T BMN∆T

−CMN∆T 1−DMN∆T

)

·

(

Q
(r)
N

P
(r)
N

)

. (6)

The paraxial quantities at iteration (r + 1) are written in function of the same quantities at (r) through a 4x4
propagation matrix Π. Finally, the paraxial quantities at the last position are expressed in function of those at the
first iteration through a propagation matrix Πtot describing the complete propagation of the ultrasonic waves (7):

(

Q
(n)
M

P
(n)
M

)

= L(n) ·L(n−1) . . .L(1) ·L(0) ·

(

Q
(0)
N

P
(0)
N

)

=

(

Π11tot Π12tot

Π21tot Π22tot

)

·

(

Q
(0)
N

P
(0)
N

)

. (7)

The evolution of the ray tube is represented in figure 6. At each time-step, the matrices AMN , BMN , CMN and DMN

are re-evaluated so the propagation matrix is updated and the position and slowness vectors are computed from the
axial ray system. Finally, the evolution of the ray tube between a source point and an observation point is expressed in

FIGURE 6. Representation of the evolution of a ray tube and its paraxial quantities during the propagation.
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3D through the geometrical spreading L (8):

L =| detΠ12tot |
1/2 . (8)

NUMERICAL VALIDATION ON AN ANALYTICAL DESCRIPTION

The DRT model has been applied on a V-shaped weld on which the crystallographic orientation is described by a
closed-form expression (9) proposed by Ogilvy [6]:

θ =

⎧

⎨

⎩

arctan
(

T (D+z∗tanα)
xn

)

, for x ≥ 0,

−arctan
(

T (D+z∗tanα)
(−x)n

)

, for x < 0.
(9)

Parameters D and α describe the geometry of the weld when T and η express the evolution of the orientation of the
grain. First, the ray trajectories have been compared to the literature in order to validate the resolution of the axial ray
system. Figure 7 represents the ray trajectories evaluated by Connolly [12] in his thesis and with the DRT model in a
V-weld whose parameters are: D = 2mm, α = 21,80◦, T = 1 and η = 1.

FIGURE 7. (a) Description of the parameters of the analytical law proposed by Ogilvy [6], (b) comparison of the ray trajectories
evaluated by Connolly [12] (oo) and the DRT model (–).

The trajectories of a ray between a source point and an observation point evaluated with the dynamic ray tracing
model are identical to those obtained by Connolly in his work. So, the axial ray system has been validated through the
comparison of the ray trajectories with the literature. Then, the computation of the ray amplitudes has to be evaluated.
To this aim, we have compared the ultrasonic wave field computed with the DRT model in this V-weld to results
obtained with a hybrid code [13] involving a FE computation inside the weld. Results are shown in figure 8. The
comparison of the maximum particle velocity obtained with the DRT model applied on a smooth cartography of the
crystallographic orientation shows an excellent agreement with those of the hybrid code.

NUMERICAL AND EXPERIMENTAL VALIDATION ON A REALISTIC WELD

Numerical Validation

Now that the DRT model has been validated in 2D on a simple description, we aim to apply it to a more realistic
description of the crystallographic orientation (figure 9).

First, a comparison of the maximum particle velocity evaluated with the DRT model and the one obtained with
the hybrid code is made (figure 10). The simulation has been done, on the cartography presented in figure 4, with an
immersion probe with a 12,7 mm diameter emitting L60◦ waves at 2 MHz.

The comparison of the longitudinal wave field evaluated with both models (10) presents a very good agreement.
Nevertheless, some differences are observed since the simulation with the DRT model has been made only for the
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FIGURE 8. Representation of the maximum particle velocity for a weld described by a closed-form [6] and comparison of the
results obtained with a 2D hybrid code and a DRT model in 2D.

FIGURE 9. Application of the dynamic ray tracing model on a realistic weld: (a) physical properties of the weld, (b) configuration
of the simulation.

FIGURE 10. Representation of the maximum particle velocity for a weld described by a smooth cartography of the crystallo-
graphic orientation and comparison of the results obtained with a 2D hybrid code and a DRT model in 2D.

direct longitudinal wave while the hybrid code takes into account all the physical phenomenon such as the transverse
wave, the reflections or the mode conversions. The beam of greater intensity on the wave field evaluated with the hybrid
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code corresponds to the transverse wave propagating in the weld. Furthermore, a beam is observed on the ultrasonic
wave field evaluated with the DRT model. This beam is an artefact caused by the vertex interface between the weld
and the cladding.

Experimental Validation

Experimental validation have also been performed on a mock-up of the weld used for the numerical validations.
The acquisition has been realized with a L60◦ wedge probe with 12,7 mm diameter at 2 MHz fixed on the weld. The
2D scanning in reception has been performed using a 0,2 mm needle hydrophone. The setup is shown in figure 11.

FIGURE 11. Illustration of the experimental setup.

This configuration has been reproduced in simulation in order to compare experimental and simulated evaluation of
the ultrasonic longitudinal wave field. Results are shown in figure 12.

FIGURE 12. Comparison of the experimental and 3D computed transmitted wave field of the longitudinal wave.

The experimental and simulated results present a good agreement as shown in the representation of the wave field
and on the superposition of the echodynamics. Furthermore, the dimensions of the longitudinal focal spot at -3 dB
are well evaluated with the DRT model. However, some numerical problems are shown in the simulated wave field.
The high intensity contribution is a numerical artefact due to the interface. Indeed, it comes from the discontinuity of
the normal at the interface between the weld and the stainless steel part. The region corresponding to the weld appear
pixelated on the ultrasonic wave field.
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Because of an excessive degree of inhomogeneity in the cartography of the crystallographic orientation, the average
geometrical spreading exponentially increases with the length of the rays. In the same time, the number of caustics
also becomes large. This corresponds to a chaotic behavior of the rays [14], resulting in an inaccurate wave field
computation. In order to overcome this problem, a work can be made to smooth the description thanks to the
minimization of the Sobolev norm of slowness [15] or on the model by treating the problem of caustics with the
Maslov method [16].

CONCLUSION AND PERSPECTIVES

This paper has presented the developments made to simulate the ultrasonic propagation in anisotropic and inhomoge-
neous media, such as welds, taking into account its physical internal properties. A dynamic ray tracing model, usually
applied in geophysics, has been developed. Firstly, this model has been validated for a V-butt weld whose crystal-
lographic orientation has been described by a closed-form expression. The ray trajectories have been successfully
compared to the literature while the longitudinal wave field evaluated from these trajectories has been validated by
comparison with results obtained with a hybrid code making a FE computation inside the weld. Then, both models
have been applied on a smooth cartography of the crystallographic orientation. This description has been obtained by
the application of an image processing technique on the macrograph of the weld. The steps of this process have been
presented in this paper. Its aim was to obtain a smooth description compatible with the DRT model. The 2D simu-
lations of the ultrasonic longitudinal wave field realized with both models have shown really good agreement. Then
the DRT simulation in 3D has been successfully compared to experimental results. Nevertheless, some developments
are expected to deal with numerical problems such as the chaotic behavior of the rays. We are currently working on
the computation of the transverse wave propagation in order to validate the DRT model entirely by comparison to the
hybrid code. In order to improve the computation time and the numerical precision, we intend to increase the order
of the iterative numerical scheme by using the common fourth-order Runge-Kutta method. Then, the model will be
applied to other mocks-up of bimetallic and austenitic welds and to curved composites described with a continuously
varying crystallographic orientation.
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