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Modelling of the effect of grain boundary diffusion on the oxidation of Ni-Cr 
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Grain boundaries in oxide scales have a strong effect on oxidation kinetics when they act as diffusion short
circuits. This study proposes a quantitative evaluation of the phenomenon by modelling. Various cases of oxide
microstructure evolution are treated using both analytical and numerical resolutions. Results showed that the
effect of oxide grain growth on the oxidation kinetics can be analysed considering a transitory stage for which
the oxidation kinetics is not purely parabolic. Some guidelines for choosing the appropriate post-treatment
method for the analysis and extrapolation of experimental oxidation kinetics are given.

1. Introduction

Parabolic constants values reported in literature for chromia
forming alloys [1–13] are distributed on several orders of magnitude,
these values are gathered on Fig. 1. It has been shown that under O2

atmospheres, chromia grow by diffusion of spieces across the oxide
scale [13,15,16] and that diffusion short-circuits, such as grain
boundaries in oxide scales, have a major effect on oxidation kinetics
[10,17,18].

In his review on the influence of grain boundary diffusion on high
temperature oxidation, Atkinson [1] showed that the values of the ex-
perimental parabolic constant (kp) published for chromia are dis-
tributed over a range of about three orders of magnitude for the same
temperature. Atkinson calculated theoretical kp values for polycristal-
line chromia using tracer diffusion coefficient from Hagel et al. [14],
and kp value for single cristal chromia using single cristal tracer diffu-
sion coefficient for chromia that he determined experimentally [1]. He
showed that experimental reported kp values were closer to theoretical
values corresponding to polycrystalline chromia than to theoretical
value corresponding to single crystal chromia. These experimental and
theoretical kp values are plotted on Fig. 1. Knowing that the calculated
kp for polycrystalline chromia can be up to six orders of magnitude
higher than the one of single crystal chromia, it was concluded that
chromia growth was quantitatively affected by grain boundary diffu-
sion [1]. Notice that such a dispersion of reported kp values can also be

explained by other phenomena such as a transitory regime caused by
formation of NiO [19] or the presence of reactive elements that can
slow down diffusion [10,20].

Concerning the influence of grain boundaries, several authors pro-
posed oxidation models taking into account accelerated diffusion by
short-circuit diffusion paths. Perrow et al. [18] proposed an analytical
solution for oxidation kinetics taking into account grain boundary dif-
fusion in nickel oxide scales. They used the effective diffusion coeffi-
cient proposed by Hart [21], which is a weighted average between
lattice and short-circuit diffusion coefficients. Hart’s law was initially
established for the modelling of accelerated diffusion by dislocation.
However, it can be adapted to diffusion through grain boundaries.
Besides the use of Hart’s law, Perrow et al. [18] added the influence of
grain size evolution via a parabolic growth law. Hussey et al. [22], who
worked on iron oxides growth kinetics, followed the same hypotheses
as Perrow et al. [18] and determined an instantaneous parabolic rate
constant in the case of a parabolic oxide grain growth. Rhines et al.
[23,24] observed cubic oxidation kinetics on NiO scales associated with
a cubic grain size growth. Davies and Smeltzer [25,26] proposed an
analytical treatment by means of an exponential law for the decay of
short-circuit proportion over time. More recently, Hallström et al. [27]
proposed a numerical approach based on thermodynamics calculations
applied to chromia growth. Nevertheless, this model does not take
oxide microstructure evolution into account. Other authors have con-
sidered the diffusion through grain boundaries in oxide scales [28–30]
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and even the influence of oxide microstructure on oxidation kinetics
[31,32], with an experimental approach.

Some different approaches have been developed concerning oxida-
tion kinetics modelling by taking into account formation and growth of
several phases which are also steps forward the description of complex
oxide microstructure. Larsson et al. [33] performed a numerical simu-
lation of multiphasic iron oxide growth. Nijdam et al. [34,35] devel-
oped coupled thermodynamic-kinetics oxidation model, which is able
to predict the phases formed and their impact on oxidation kinetics.

In this framework, this study proposes a new quantitative estima-
tion of the influence of grain boundary diffusion on oxidation kinetics.
Oxidation models proposed are applied on chromia-forming alloys. The
studied cases consider (1) the evolution of grain size over time, (2) a
grain size gradient across the oxide scale, and (3) a combination of
both. For the simplest cases (1) and (2), some new analytical solutions
were found. However, for the complex cases (3), which combine grain
size evolution in time and space, a numerical approach is required. The
numerical EKINOX model [36–38] has been used and modified for this
study in order to take into account grain boundary diffusion and mi-
crostructural evolutions in the oxide scale. Chromia growth kinetics
were then modelled using input data based on literature experimental
data [10].

The first part of this paper presents the existing oxidation kinetics
models available in the literature. These models take into account both
lattice and grain boundary diffusion in the oxide scale according to A-
type diffusion [39] and consider homogeneous oxide grain size or
simple grain size growth law. The second part is dedicated to new
analytical models proposed, and to the numerical modelling using the
EKINOX code. These new models are able to take into account the oxide
grain size growth according to a cubic law and a grain size gradient
across the oxide scale. Moreover, a numerical model is adapted in order
to treat the complex case of grain size growth and grain size gradient
combination.

In results section kinetics obtained using the various analytical and
numerical models are presented. Firstly, these oxidation kinetics are

discussed, and then, a parametric study is carried out on the effects of
the oxide grain size growth kinetics. In the discussion part, the two
methods, which are usually performed for the analysis and the extra-
polation of experimental oxidation kinetics, are used on calculated ki-
netics and they are compared. These are referred in this work as the
“parabolic law” method and the “log-log” method. Finally, the two
methods are compared for long term extrapolation.

2. Literature models for oxidation kinetics and extrapolation
methods

2.1. Wagner’s theory simplified

In the case of continuous oxide scale formation, Wagner proposes a
model for oxide scale growth that looks at diffusion across the oxide
scale as the rate-limiting step [40]. A simplified expression for the
parabolic rate constant can be given assuming that the species con-
centrations at metal/oxide and oxide/gas interfaces are time invariant.
This assumption supposes that diffusion occurs through lattice only,
that the diffusion coefficient is constant and that usual hypotheses of
stationarity, electroneutrality and fluxes conservation are assumed
[40]:

= − +e k t t e( )2
p,L 0 0

2 (1)

= ∼k ΩD C2 Δp,L L (2)

2.2. Diffusion models taking into account bulk and short-circuit diffusion

When the influence of diffusion along short circuits is taken into
account within the global diffusion phenomenon, several limiting cases
can be described. These different cases depend on the space distribution
of grain size and on the values of diffusion coefficients in lattice and in
short circuits [41,42]. Hence three different regimes involving grain
boundary diffusion are classically considered and called A-type, B-type

Fig. 1. Arrhenius plot of experimental parabolic rate constant for Cr2O3 reported in literature [2–13], and calculated by Atkinson [1] using single crystal or polycrystalline chromia
diffusion coefficient from Hagel et al. [14].
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and C-type diffusion. A-type and C-type diffusion represent the two
limiting cases of the more general B-type.

In the A-type diffusion model, diffusing atoms are considered to get
through lattice and short circuits many times during the studied time
period. Therefore, A-type diffusion is often used for long term diffusion,
at high temperatures. The diffusion front then corresponds to the mean
of paths taken by the diffusing atoms in lattice and short circuits. A
schematic illustration of the diffusion front for A-type diffusion is pre-
sented in Fig. 2. The diffusion front can be addressed by an effective
diffusion coefficient expressed according to Hart’s law [21]:

= − +∼ ∼ ∼D D f D f(1 )eff L gb (3)

The parameter f can be expressed as the fraction of short-circuit
surface in the material, according to Eq. (4). In the literature, there are
other expressions that take into account various grain geometries and
surfacic or volumic short-circuit fraction. Eq. (4) corresponds to
equiaxed grains and was used by Perrow for high temperature oxidation
[18].

=f δ g2 / (4)

If grain boundaries are considered as diffusion short circuits, δ
corresponds to the grain boundary thickness and g corresponds to the
grain size.

Using the A-type diffusion model requires a condition [42]. As dif-
fusing atoms are considered to go through lattice and short circuits
several times during the experiment, the typical observation time for
this regime must be much longer than the time needed by the atoms to
move from a short circuit to another through a lattice region. In other
words, the mean free path must be far superior to the short-circuit
spacing:

> >∼D t g2 L (5)

B-type model is effective if the free mean path is the same order of
magnitude as the grain size. C-type model is effective for very short
times, low temperature, or very high diffusion coefficients in short
circuits. The diffusion is assumed to occur almost exclusively through
the short-circuit network. The following study looks at A-type diffusion,
consequently, B-type and C-type diffusions are not developed.

2.3. Simplified Wagner’s theory and effective diffusion coefficient

The effective diffusion coefficient for A regime, as given by Eq. (3),
can be combined with the parabolic kinetics coming from Wagner’s
theory in order to take into account the influence of short-circuit dif-
fusion on oxidation kinetics. Using Eqs. (1) and (3), the oxidation ki-
netics becomes:

= − +e k t t e( )2
p,eff 0 0

2 (6)

with

= ∼k ΩD ΔC2p,eff eff (7)

and using (1), (2), (3), (4) and (7) the effective parabolic constant is
expressed as follows:

= ⎛

⎝
⎜ + ⎛

⎝
⎜ − ⎞

⎠
⎟

⎞

⎠
⎟

∼

∼k k δ
g

D
D

1 2 1p,eff p,L
gb

L (8)

The use of Eq. (6) requires the assumptions involved in Hart’s and
Wagner’s laws, but also the hypothesis that the oxide microstructure is
immobilized presenting a uniform and constant grain size. Since mi-
crostructure evolutions are common, Perrow et al. [18] proposed a
model that takes into account the grain growth over time.

2.4. Perrow’s model

Hence, Perrow et al. [18] proposed a more complex oxidation ki-
netics model for oxide scale growth with the effective diffusion coeffi-
cient calculated with Hart’s relation (3), but also taking into account
the evolution of the grain boundary fraction over time, which is re-
presented by a parabolic grain growth during scale growth:

= − +g t k t t g( ) ( )2
g 0 0

2 (9)

All grains are supposed to be identical in size and follow the same
growth kinetics. The oxidation kinetics proposed in Perrow’s work [18]
contains a calculation error, the exact expression is given below:

− = + + −
∼

∼e e k t
k δD
k D

g k t g
4

( )2
0
2

p,L
p,L gb

g L
0
2

g 0
(10)

Using the same assumptions as Perrow [18], Hussey et al. [22]
proposed an expression of instantaneous growth rate given by Eq. (11).
This relation illustrates the fact that the scale growth can be expressed
with a parabolic rate constant that evolves over time.

= =
⎛

⎝
⎜ +

+

⎞

⎠
⎟

∼

∼k e e
t

k
δD

D k t g
2 d

d
1

2
p,I p,L

gb

L g 0
2

(11)

2.5. Other laws for short-circuit density evolution

2.5.1. Cubic law
Rhines et al. [23,24] proposed a model with a grain volume pro-

portional to time. If the grain volume is considered as the cube of grain
size, this is equivalent to a cubic growth law applied to grain size, as
expressed in Eq. (12). Rhines noticed that his experimental oxidation
kinetics of Ni was in good accordance with a cubic law.

= − +g t k t t g( ) ( )3
h 0 0

3 (12)

However, by using the cubic grain growth law, Rhines did not dis-
play the corresponding analytical expression of oxidation kinetics. This
point is developed in part II of this study.

2.5.2. Exponential law
Davies and Smeltzer [25,26] modelled the case of inward oxygen

diffusion through oxide scale by assuming that the diffusion of oxygen
happened through the lattice and an “array” of low resistance paths
(diffusion short circuits). They assumed that the proportion of low re-
sistance paths decays according to an exponential law during the oxi-
dation experiment. This model is not discussed or used in this study.
Since it was developed for the diffusion through a random array of
dislocations, it does not seem adequate for the description of diffusion
in oxide grain boundaries.

2.6. Analysis of experimental oxidation kinetics and extrapolation methods

This paragraph focuses on the different methods available in the
literature to interpret and extrapolate the experimental oxidation ki-
netics. These methods usually enable to characterize the experimental
oxidation kinetics with an analytical law, and then to extrapolate them
over longer time periods.

Fig. 2. schematic illustration of diffusion front for A-type diffusion model.
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2.6.1. Parabolic law method
One way to interpret and extrapolate experimental oxidation ki-

netics curves is to assume that the diffusion phenomenon in the oxide is
the main rate limiting step for oxide growth. The oxidation kinetics is
thus defined as a parabolic law. However, a purely parabolic law should
be applied only in specific cases with the growth of a unique type of
oxide, having the same diffusion properties throughout the entire ex-
periment. Most of the time, a transitory regime precedes the estab-
lishment of a stationary regime. It is thus necessary to adapt the
parabolic law so as to correctly describe the system. Two studies by
Pieraggi and Monceau [43,44] propose several parabolic laws designed
for different experimental hypotheses. The following mass gain equa-
tions have been written for thermogravimetric experiments, however
they can be adapted to express oxide thickness. The rate Eq. (13) and
kinetic law (14) given below adequately describe oxidation kinetics
purely controlled by diffusion. In this case, the initial oxide grown
during the transient period (t < ti) has the same protective properties
as the oxide growing at t > ti. The apparent growth rate constant can
be determined by plotting e2 or Δm2 versus t.

=Δm
t

k
Δm

d
d 2

p

(13)

− = −Δm Δm k t t( )2
i
2

p i (14)

The rate Eq. (15) and kinetic law (16) given below also adequately
describe oxidation kinetics purely controlled by diffusion. But in this
case, the initial oxide growing during the transient period (t < ti) is
much less protective than the oxide growing at t > ti. The apparent
growth rate constant can be determined by plotting e or Δm versus t1/2.

=
−

Δm
t

k
Δm Δm

d
d 2( )

p

i (15)

− = −Δm Δm k t t( ) ( )i
2

p i (16)

The rate Eq. (17) and the kinetic law (18) given below adequately
describe a general oxidation process controlled by a diffusion step
characterized by the “kp” constant and an interfacial reaction step
characterized by the “kl” constant. In this case, the protective properties
of the initial oxide are identical to those of the stable oxide.

=
+

Δm
t k Δm k

d
d

1
(1 ) (2 )l p (17)

− =
−

+ −t t
Δm Δm

k
Δm Δm

ki

2
i
2

p

i

l (18)

The growth rate Eq. (19) and the kinetic law (20) given below
adequately describe an overall oxidation process controlled by a dif-
fusion step characterized by the “kp” constant and an interfacial reac-
tion step characterized by the “kl” constant. In this case, the initial
oxide that grows during the transient period (t < ti) is much less pro-
tective than the oxide growing at t > ti. This case is the most general
one.

=
+ −

Δm
t k Δm Δm k

d
d

1
(1 ) (2( ) )l i p (19)

− = − + −t t Δm Δm
k

Δm Δm
k

( )
i

i
2

p

i

l (20)

If none of the equations above (14), (16), (18) or (20) match the
entire experimental curve, it is possible to look at kp as a parameter
evolving over time rather than a constant.

This approach has been proposed by Hussey et al. [22]. They cal-
culated the variation of the parabolic rate constant kp over time using
Eq. (21). Later, Atkinson [45] also concluded that the kp value could
change over time particularly when oxide grains grow during the ex-
periment. The kp value determined using Eq. (21) is sometimes called

“instantaneous kp” [22,43]. However, this expression must not be used
in a general way because it corresponds to the specific case described by
Eq. (13).

=k Δm Δm
t

2 d
dp,I (21)

Monceau and Pieraggi [43] have developed a method to calculate kp
value locally that is better adapted to experimental cases. It is based on
the local fit of experimental data within a sliding window using the
complete parabolic law. Indeed, what is interesting in Eqs. (13)–(20) is
that the four rate laws (13), (15), (17), (19) have a common solution in
the form of Eq. (20). This means that when the growth of an oxide scale
is controlled by diffusion and reaction, even after a transient regime
with different oxidation kinetics, then the complete parabolic law (20)
can be used to fit the oxidation kinetics. Nevertheless, in order to obtain
a good fit, both kp and kl should be constant over the fit interval. This
last point can be verified by using the complete parabolic law (22) over
a sliding time interval over all the experimental data. By using this
method, it is then possible to measure the variation of kp over time and
detect the time interval for which kp is or becomes constant.

= + +t A B Δm C Δm( ) ( )2 (22)

with

=k
C
1

p (23)

Contrary to Eq. (21), Eq. (22) is compatible with the growth of a
first porous, or non-continuous or fast growing transient oxide layer and
a second stable and slowly growing oxide, this corresponds to the most
general case. When a transitory oxidation regime occurs, the value of kp
changes at the beginning of the oxidation experiment and then stabi-
lizes to a stationary value, corresponding to the stationary regime. The
extrapolation procedure consists in identifying of the stationary kp
value and using the kinetic law (22) to extrapolate the mass change
kinetics.

This local kp approach differs from the instantaneous kp approach
presented previously. Indeed, the instantaneous kp corresponds to the
derived kinetics for time t, whereas the local kp corresponds to a fit of a
portion of the oxidation kinetics curve.

2.6.2. Log-log method
If oxidation kinetics cannot be identified at first as a parabolic or a

complete parabolic kinetic law, there is another method commonly
employed to describe the oxidation kinetics: the “log-log” method.
Without assuming any oxidation mechanism (linear, parabolic or cubic
laws), the oxidation kinetics is fitted by a power law:

− =Δm Δm k t( )m
i log (24)

The logarithm of the mass gain (log(Δm)) is then plotted as a
function of the logarithm of time according to Eq. (25) in order to ex-
tract the values of m and klog from a linear fit.

− = +Δm Δm
m

t
m

klog( ) 1 log( ) 1 log( )i log (25)

The extrapolation for a longer duration is done using Eq. (24).
These two methods, “parabolic law” and “log-log”, are discussed in

section 5 of this study.

3. Modelling developments for oxidation kinetics

It has been shown here that several analytical models exist to de-
scribe oxidation kinetics. Some of them take into account the influence
of diffusion by short-circuit paths, and their density evolution over
time. The hypotheses made in the oxide microstructure evolution are
quite simple. However, complex microstructure have been observed for
chromia. For example, Zurek et al. [46] observed various grain sizes
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across the oxide scale from nanometric to micrometric scale, and Latu-
Romain et al. [16] observed equiaxed grains of hundreds of nanometers
size in chromia layer in the inner part of the oxide scale, and columnar
grains of hundreds of nanometres length in the layer on the outer part
of the oxide scale. In the light of these complex chromia microstructures
reported in literature, it seems relevant to take into account more
complex grain sizes evolutions in the oxidation kinetics models con-
sidering grain size evolution with time and space. Hence, the next part
proposes some new original analytical models that take into account
different hypotheses on grain size evolution.

3.1. Analytical models

3.1.1. Parabolic oxide grain growth law
First, Perrow’s model [18] can be re-considered without the ap-

proximation − ≈∼ ∼D f D(1 )L L. Indeed, avoiding this approximation al-
lows extending the use of this model to a wider range of parameter
values. The oxidation kinetics given by Perrow (10) can be expressed
without the approximation − ≈∼ ∼D f D(1 )L L and by taking into account
initial conditions (e0, t0):

= ⎡

⎣
⎢ − + ⎛

⎝
⎜ − ⎞

⎠
⎟ + − + ⎤

⎦
⎥ +

∼

∼e k t t δ
k

D
D

k t g k t g e( ) 4 1 ( )2
p,L 0

g

gb

L
g 0

2
g 0 0

2
0
2

(26)

Consequently, the expression of the instantaneous parabolic con-
stant (11) becomes:

= =
⎛

⎝
⎜ +

+
⎛

⎝
⎜ − ⎞

⎠
⎟

⎞

⎠
⎟

∼

∼k e e
t

k δ
k t g

D
D

2 d
d

1 2 1p,I p,L
g 0

2

gb

L (27)

3.1.2. Cubic oxide grain growth law
By applying the cubic grain growth law according to Eq. (12), the

effective diffusion coefficient defined by Eq. (3) can be expressed as
follows:

⎜ ⎟= ⎛

⎝
−

+
⎞

⎠
+

+
∼ ∼ ∼D D δ

k t g
D δ

k t g
1 2

( )
2

( )eff L
h 0

3 1/3 gb
h 0

3 1/3
(28)

The oxidation kinetics model, assuming a cubic oxide grain growth,
can thus be written as follows:

= ⎡

⎣
⎢ − + − + − + ⎤

⎦
⎥ +

∼

∼e k t t δ
k

D
D

k t g k t g e( ) 3 ( 1)[( ) ( ) ]2
p,L 0

h

gb

L
h 0

3 2/3
h 0 0

3 2/3
0
2

(29)

3.1.3. Grain size gradient in the oxide scale
A grain size gradient across the oxide scale is often observed. For

example, Zurek et al. [46] studied the chromia scale growth on a Ni-
25Cr and observed that the microstructure of the oxide scale presented
a variation of grain size across the oxide scale from about 30 nm to
1 μm. Kofstad [28] studied oxidation mechanisms of chromium and also
described a chromia grain size difference between the outer part and
the inner part of the scale.

Facing this problem, Atkinson [50] used the largest grain size in a
NiO scale, grown on pure Ni, to explain the scaling kinetics. But this
approximation requires quantitative assessment. It is therefore relevant
to take into account the influence of heterogeneous grain sizes in the
oxide scale on oxidation kinetics.

Naumenko et al. [32] and Young et al. [47] proposed an oxidation
kinetics model for alumina considering a grain size gradient that re-
mains constant over time i.e. a grain size proportional to the distance to
the oxide gas interface. As the distance to the oxide/gas interface in-
creases over time because of the oxide growth, the global grain size also
increases over time. Therefore, in this model, oxide grain size is a

function of both position in oxide scale and time. According to these
works [32,47] such a model is well adapted to alumina growth de-
scription. It seems also relevant to be able to uncorrelate grain size
evolution over time and across oxide scale for being representative of
complex microstructures.

In the present work, a simple case of a uniform grain size gradient
with set grain sizes at both alloy/oxide and oxide/gas interfaces is
studied. The schematic illustration of the chosen grain size distribution
is shown in Fig. 3. The larger grain size is located at the oxide/gas
interface and the smaller grain size is located at the metal/oxide in-
terface, as observed by Zurek on Ni-25Cr-Mn alloys at 1000 °C in Ar-
20%O2 [46].

Assuming a grain size gradient across the oxide scale, the effective
diffusion coefficient is expressed as follows:

= ⎛

⎝
⎜ −

+ −
⎞

⎠
⎟ +

+ −
∼ ∼ ∼D D δ

g g g
D δ

g g g
1 2

( )
2
( )x

e
x
e

eff L
1 2 1

gb
1 2 1 (30)

The determination of the oxidation kinetics requires the integration
of Eq. (31), using Eq. (30) for the effective chemical diffusion coeffi-
cient expression.

= ∂
∂

∼e
t

ΩD C
x

d
d eff (31)

The following change of variable is done:

=y x
e (32)

With Eqs. (30) and (32), Eq. (31) becomes:

=
⎡
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⎢

⎛

⎝
⎜ −

+ −
⎞

⎠
⎟ +

+ −
⎤
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e
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e
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1 2 1
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1 2 1 (33)

By integrating Eq. (33) the following oxide scaling kinetics is ob-
tained for a constant grain size gradient across the oxide scale:

=
−

+ ⎛
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⎠

+
+

−

+ +

+ +
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L 1 2

gb L L 2

gb L L 1 (34)

3.1.4. Combination of oxide grain size gradient and grain growth
The case of grain growth with a grain size gradient across the oxide

scale corresponds to a variation of grain boundary proportion in both
time and space. Such a complex description of oxide scale micro-
structure and evolution over time is a step further toward a more rea-
listic description of chromia microstructure obtained experimentally.
Moreover, the comparison of the oxide scale microstructures obtained
after 3min oxidation and 30min oxidation indicated a growth of
chromia grains over time.

This complex case of oxide microstructure evolution cannot be de-
scribed with an analytical expression, it is thus treated with the nu-
merical oxidation model EKINOX.

Fig. 3. schematic representation of a linear grain size evolution in the oxide scale.
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3.2. EKINOX model

EKINOX is a 1D numerical oxidation model. It has been developed
to calculate chromia growth kinetics and substrate evolution during
high temperature oxidation. Explicit calculations of the concentration
of Ni, Cr, O, but also of metallic and oxygen vacancies in the metal/
oxide system are carried out by numerical time integration. EKINOX
model can thus be useful to understand high temperature oxidation
mechanisms. The metal/oxide system is divided into space elements in
which fluxes and concentrations are calculated, using Fick’s laws ac-
cording to a finite difference algorithm given in Eqs. (35) and (36). The
set of equations that is numerically time integrated has been detailed in
previous works [36–38]. The Ni-Cr version has been previously used to
calculate the concentration profiles of species and vacancies in the
substrate [36–38]. The present work focuses on the oxide scale growth
kinetics. The oxide scale is described with two sub-lattices, the cationic
sub-lattice containing chromium and chromium vacancies exclusively,
and the anionic sub-lattice containing oxygen and oxygen vacancies
exclusively. The predominant defects taken here into consideration for
lattice diffusion in oxide scale are cationic vacancies, in agreement with
experiments carried out by Tsai et al. [10]. In the present study, the
effective diffusion coefficient according to Hart’s law (3) has been im-
plemented instead of the pure lattice diffusion coefficient, so as to take
into account the influence of grain boundaries on oxidation kinetics.
This effective diffusion coefficient can vary as a function of time and
across the oxide scale. Therefore, the EKINOX numerical model enables
to calculate the effects of different grain growth laws and of a grain size
gradient. It also allows calculating transitory oxidation regimes. Con-
sequently, the next part shows how EKINOX calculations are used in
order to study cases more complex than the ones previously modelled
with analytical solutions. In order to validate the numerical resolution,
the comparison between numerical calculations and analytical solu-
tions previously mentioned is done (Fig. 4).

+ = +
−−

C t Δt C t
J t J t

e
Δt( ) ( )

( ) ( )
X
n

X
n X

n 1
X
n

n (35)

= −
−∼ +

++J t D t
C t C t

( ) ( )
( ) ( )
e eX

n
eff,X
n X

n 1
X
n

2

n 1 n

(36)

3.3. Input data

The input data used for all EKINOX calculations presented here have
been chosen in order to represent realistic physical data related to the
Ni-30Cr/Cr2O3 system. Input data have been either extracted from
published literature or calculated with the Thermocalc software, using
Kjellqvist model for chromia description [48]. Most oxidation para-
meters come from Tsai et al. [10] who performed oxidation and dif-
fusion experiments on Ni-30Cr under 1 atm of O2 at 1173 K. These data
are gathered in Table 1.

For analytical calculations, input data are also gathered in Table 1
and kp,L is determined according to the following relation:

= ∼k D ΔX2p,L L V (37)

With the parameters chosen for this study, kp,L= 8.10−15 cm2 s−1.
Relation (37) is identical to relation (2) with:

=ΔX ΔC
ΩV (38)

The input data relative to grain growth rate depend on the case
studied. All input parameters used to perform the different calculations
are summarized in Table 2. For information, the table also gives the
corresponding grain size in the oxide at the end of the simulation (300 h
oxidation). Cases #P1, #P2, #C1, #C3 lead to unrealistic final grain
sizes. These calculations have been performed for a parametric study in
order to understand the influence of grain growth on the oxidation
kinetics.

For each case, the effective diffusion coefficient is calculated by
combining Eqs. (3), (4) and (9) or (12). The effective diffusion coeffi-
cients for each case are plotted in Figs. 5–7. When the grain growth is
fast, both the proportion of short-circuit diffusion and the effective
diffusion coefficient decrease rapidly. As a result, the faster the oxide
grain growth the larger slowing effect on the oxidation kinetics.

4. EKINOX results

This section focuses on the results of EKINOX calculations. The first
part deals with the validation of the numerical calculations. Oxidation
kinetics obtained with EKINOX are compared with the analytical oxi-
dation kinetics represented by Eq. (26), (29) and (34). The second part
presents the comparison of several EKINOX kinetics obtained for dif-
ferent types of grain size evolution: case #P4 corresponds to a parabolic
grain growth, case #G1 corresponds to a grain size gradient, and case
#G1P4 corresponds to a combination of a parabolic grain growth and a
grain size gradient. Finally, a parametric study is carried out regarding
the influence of kg and kh parameters on the oxidation kinetics of dif-
ferent cases: #P1, #P2, #P3 and #C1, #C2, #C3.

4.1. Comparison between EKINOX and analytical models

The initial grain size chosen for the comparison of these different
cases is g0= 32 nm. The growth grain constants kg and kh are chosen to
reproduce the order of magnitude of the average oxide/gas grain size
observed experimentally by Tsai et al. [10] after 165 h, which is
∼1 μm. kg and kh values are respectively 1.67 10−14 cm2 s−1 for case
#P4 and 1.69 10−18 cm3 s−1 for case #C4. For the case assuming a
grain size gradient within the oxide scale #G1, the chosen grain sizes
are g1= 32 nm at the metal/oxide interface and g2= 95 nm at the
oxide/gas interface.

These grain sizes were calculated to have a ratio of three between g1
and g2, and so that the sum of g1 and g2 equals the initial oxide thickness

Fig. 4. Schematic representation of oxide/metal system in EKINOX model.
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e0. This corresponds to a bi-layer of grains in the oxide scale.
The comparison between EKINOX results and the analytical models

for these three simple cases is presented in Fig. 8. EKINOX results and
analytical models are in very good agreement. The small difference is
due to the numerical space step chosen for numerical integration and
can be reduced with finer space discretization. These results validate
the modifications that were made in the EKINOX code. The oxidation
kinetics corresponding to the grain size gradient appears very fast and
unrealistic compared to chromia growth kinetics usually found in the
literature. This is due to the choice of having very small grain sizes at
metal/oxide and oxide/gas interfaces which remain unchanged during
the calculation process of case #G1. Experimental results from Tsai
et al. [10] have been plotted according to a mass gain of 1.5
10−4 g cm−2 after 8.0 104 s, the conversion has been done with a
chromia molar mass equal to 152 gmol−1 and a density equal to

5.22 g cm−3. The oxide thickness obtained by Tsai et al. [10] after 22 h
is in the same order of magnitude as both EKINOX results and analytical
kinetics.

4.2. Effect of kg and kh values on oxidation kinetics

Oxidation kinetics obtained with Eqs. (26) and (29), corresponding
to the different values of kg and kh are presented in Figs. 9 and 10.
Oxidation kinetics corresponding to the cases #P1, #P2 and #C1 are
plotted in the same figure. These cases correspond to a grain size of
about 100 μm or more after 300 h. Oxidation kinetics of cases #P3, #C2
and #C3 are plotted in the same figure. These cases correspond to a
grain size of about 1 μm or less after 300 h. Oxidation kinetics have
been plotted for a time period of 30 h only, indeed, the shape of the

Table 1
Common EKINOX input data for all simulations.

Parameter Symbol and unit Value Origin

Temperature T (K) 1173 [10]
Alloy composition XCr 0.33 [10]

XNi 0.67
Chromium vacancies concentration difference between the oxide/gas and

the metal/oxide interface
ΔXV (atomic fraction in cationic
sub-lattice)

4.62 10−3 Thermocalc calculation [48]

Chromium chemical diffusion coefficient in chromia lattice ∼DL (cm2 s−1) 5.56 10−13
Adjusted on kp from [10] with = ∼k D ΔX2p eff V and

=
∼

∼ 10
D

D
gb

L
4

Chromium chemical diffusion coefficient in chromia grain boundaries ∼Dgb (cm2 s−1) 5.56 10−9

Grain boundary width δ (nm) 1 [49]
Initial oxide thickness numerically divided into three slabs at t0 e0 (μm) 0.127 Calculation choice

Table 2
Input parameters used to perform EKINOX calculations.

Calculation cases Initial grain size Type of grain size growth law over time Parameter kg (cm2 s−1) Parameter kh (cm3 s−1) Final grain size (t= 300 h)

#P1 g0= 32 nm Parabolic Eq. (9) 10−6 – g300= 1.04 104 μm
#P2 g0= 32 nm 10−10 – g300= 1.04 102 μm
#P3 g0= 32 nm 10−14 – g300= 1.04 μm
#P4 g0= 32 nm 1.67 10−14 g300= 1.34 μm
#C1 g0= 32 nm Cubic Eq. (12) – 10−12 g300= 1.03 102 μm
#C2 g0= 32 nm – 10−18 g300= 1.03 μm
#C3 g0= 32 nm – 10−24 g300= 3.23 10−2 μm
#C4 g0= 32 nm – 1.69 10−18 g300= 1.22 μm
#G1 g1= 32 nm – – – g1= 32 nm

g2= 95 nm g2= 95 nm
#G1P4 g1,0= 32 nm Parabolic Eq. (9) 1.67 10−14 – g1,300= 1.34 μm

g2,0= 95 nm g2,300= 1.35 μm

Fig. 5. effective chemical diffusion coefficient as a function of time for Ni-30Cr oxidized
at 1173 K calculated by combining Eqs. (3), (4) and (9) or (12) assuming a parabolic oxide
grain growth law for cases #P1 (kg= 10−6 cm2 s−1) and #P2 (kg= 10−10 cm2 s−1) and a
cubic oxide grain growth for case #C1 (kh= 10−12 cm3 s−1).

Fig. 6. effective chemical diffusion coefficient as a function of time for Ni-30Cr oxidized
at 1173 K calculated by combining Eqs. (3), (4) and (9) or (12) assuming a cubic oxide
grain growth for case #C2 (kh= 10−18 cm3 s−1) and a slow parabolic grain growth for
case #P3 (kg= 10−14 cm2 s−1).
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curves are more visible over short periods of time.
The higher the value of kg or kh, the slower the oxidation kinetics.

This tendency was expected. It seems interesting however to notice that
the general shape of the oxidation curves evolves with the chosen value
of kg or kh. For cases #P3 and #C3, which have the lowest values of kg
and kh respectively, oxidation kinetics move away from a parabolic law
and appears to be more of a sub-parabolic pattern as shown in Fig. 10.
For the highest values of kg and kh: 10−6 cm2 s−1 and 10−12 cm3 s−1

respectively, oxidation kinetics look like a parabolic law as shown in
Fig. 9. For the intermediate values of kg and kh: 10−10 cm2 s−1 and
10−18 cm3 s−1 respectively, oxidation kinetics seem to display inter-
mediate shapes as shown in Figs. 9 and 10 respectively.

4.3. Study of the combined effect of grain size gradient within the oxide
scale and parabolic grain growth

In this part the three following cases were treated: (1) a parabolic
grain growth law for case #P4 according to Eq. (9) with
kg= 1.67 10−14 cm2 s−1, (2) a grain size gradient for case #G1 with
g1= 32 nm and g2= 95 nm; and (3) a combination of parabolic grain
size growth and grain size gradient for case #G1P4. These different
oxidation kinetics are presented in Fig. 11. They are plotted over short
oxidation time periods of up to 20 h: this time window corresponds to
the interest zone for the simulation parameters chosen.

During the very early stages of oxidation (up to 2 h), the oxide
thickness corresponding to a parabolic growth law for case #P4 is
higher than the oxide thickness corresponding to the grain size gradient
for case #G1. After two hours, this tendency is reversed and the oxide
thickness corresponding to the grain size gradient for case #G1 be-
comes higher than the oxide thickness corresponding to the parabolic
grain size growth for case #P4. This result shows that the two oxidation
kinetics do not follow the same law. According to Eq. (26), the oxida-
tion kinetics corresponding to a parabolic grain size growth is sub-
parabolic, whereas according to Eq. (34), the oxidation kinetics corre-
sponding to a grain size gradient remains purely parabolic.

Concerning case #G1P4, with the combination of parabolic grain
size growth and grain size gradient, the oxide thickness is always
smaller than that of the two other cases. This result was expected since
in this case, the grain size cumulates both growth effects: in time and in
space. The proportion of short-circuit diffusion is thus the lowest of the
three cases. A similar conclusion can be made for a cubic grain growth
law instead of a parabolic grain growth law.

Results from this section can be summarized as follows:

Fig. 7. effective chemical diffusion coefficient as a function of time for Ni-30Cr oxidized
at 1173 K calculated by combining Eqs. (3), (4) and (12) assuming a slow cubic grain
growth law for case #C3 (kh=10−24 cm3 s−1).

Fig. 8. chromia growth kinetics on Ni-30Cr at 1173 K calculated with EKINOX and
analytical models with g0= 32 nm, and kp,L= 1.18 10−14 cm2 s−1 for different hy-
potheses: a parabolic grain size growth for case #P4 according to Eq. (9) with
kg= 1.67 10−14 cm2 s−1, a cubic grain growth law for case #C4 according to Eq. (12)
with kh= 1.69 10−18 cm3 s−1, and a grain size gradient for case #G1 with g1= 32 nm
and g2= 95 nm. An experimental data [10] is also displayed.

Fig. 9. oxidation kinetics of Ni-30Cr oxidized at 1173 K calculated with Eqs. (26) or (29)
assuming a parabolic oxide grain growth law for cases #P1 (kg= 10−6 cm2 s−1) and #P2
(kg= 10−10 cm2 s−1) and cubic oxide grain growth for case #C1 (kh= 10−12 cm3 s−1).

Fig. 10. oxidation kinetics of Ni-30Cr oxidized at 1173 K, calculated with Eqs. (26) and
(29) assuming a parabolic grain growth for case #P3 (kg= 10−14 cm2 s−1) and a cubic
grain growth for cases #C2 (kh= 10−18 cm3 s−1) and #C3 (kh= 10−24 cm3 s−1).
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- A parametric study with analytical calculations showed that kg and
kh parameters, which characterize the grain growth rate, can have a
major influence on the shape of oxidation kinetic curves when
considering the grain boundaries as a fast diffusion path.

- EKINOX calculations taking into account the combined effect of
grain growth and grain size gradient across the oxide scale for case
#G1P4, show that the resulting oxidation kinetics are closer to the
oxidation kinetics corresponding to the grain size gradient only for
case #P4 for short times, and closer to the oxidation kinetics cor-
responding to grain growth only for case #G1 for longer times.

Considering these points, it is interesting to discuss post-treatment
methods of oxidation kinetics curves as well as derived extrapolations
over a longer time range.

5. Discussion

The aim of this discussion is to compare two different methods of
interpretation and extrapolation of experimental oxidation kinetics: the
“log-log” method and the “parabolic law” method. To do so, the results
of the previous calculations are used as if they were experimental data.

5.1. Estimation of the parabolic rate constant values (kp) from calculated
kinetic curves

In this paragraph, oxidation kinetics simulated with EKINOX pre-
sented in the previous section are post-treated according to the “para-
bolic law” method with the local kp calculation method [43]. This
method is presented in Section 2.6.1. The oxidation kinetics considered
for the calculation of local kp values for cases #P4, #G1 and #G1P4 are
plotted in Fig. 11. Corresponding local values of kp are plotted over time
in Fig. 12.

The local kp value corresponding to case #G1 with grain size gra-
dient across the oxide scale but without grain growth is constant. This
result could have been predicted as the corresponding kinetics follows a
pure parabolic law as determined in Eq. (34). The local kp value cor-
responding to the combination of a parabolic grain growth and a grain
size gradient for case #G1P4, is close to the local kp curve corre-
sponding to a parabolic grain growth # P4. These two local kp curves
corresponding to cases with a grain size evolution over time: cases #P4
and #G1P4, decrease rapidly of about one order of magnitude during
the first hour of oxidation. It shows that for short time experiments the
grain growth can strongly affect the value of the parabolic rate constant
determined by a classical fit on the whole kinetic curve. The fact that

the value of kp changes over time could explain the discrepancy of kp
values found in the literature for different oxidation times as presented
in Fig. 1.

5.2. Treatment of oxidation kinetics obtained with EKINOX simulations,
using several values for kg and kh

5.2.1. Log-log method
The usual way of using the “log-log” method is to perform a linear

fit in a log–log plot on the whole kinetic curve. The “log-log” method is
explained more extensively on Section 2.6.2. This method over-
estimates the weight of short times on the global interpretation because
of the logarithm function. For long term extrapolation, a more accurate
description of oxidation kinetics can be obtained by admitting the ex-
istence of a transitory regime for short times. Thus, linear fits are per-
formed on the final portions of the plots, which better describe the
stationary regime. In this part, the extrapolation using the “log-log”
method is compared to the extrapolation using the “parabolic law”
method that also uses the final part of the oxidation kinetic curve. For a
fair comparison, this is carried out on the same time interval.

Examples of calculated oxidation kinetics are post-treated with the
“log-log” method in Fig. 13 for the parabolic grain growth cases: #P1,
#P2, and #P3. Linear fits are performed on a time range from 25 to
30 h. According to the “log-log” method, the parameters m and klog
from Eqs. (24) and (25) can be obtained. These values for the different
oxidation kinetics corresponding to the different values of kg and kh are
gathered in Table 3.

The parameter m reflects the shape of the oxidation kinetics as it
corresponds to the value of the time exponent parameter according to
Eq. (24). For the fastest grain growth conditions: #P1 with
kg= 10−6 cm2 s−1 and #C1 with kh= 10−12 cm3 s−1, the m parameter
equals 1.4 and 1.7 respectively, that means that the shape of the oxi-
dation kinetics can be bounded between a linear dependence with time
and a square root dependence with time. The global oxidation kinetics
could thus be interpreted as an over-parabolic law. For the intermediate
rate of grain growth with kg= 10−10 cm2 s−1 and the case with
kh= 10−18 cm3 s−1 corresponding to cases # P2 and #C2 respectively,
the m value equals 2.15, and 2.8 respectively, that means that the shape
of the oxidation kinetics can be bounded between a square root de-
pendence with time and a cubic root dependence with time. The oxi-
dation kinetic law can be interpreted as parabolic (if m parameter is
close to 2) or as an intermediate law between parabolic and cubic. For
the slowest grain growth rate: case #P3 with kg= 10−14 cm2 s−1, the m
parameter equals 3.8, that means that the shape of the oxidation

Fig. 11. chromia growth kinetics of Ni-30Cr at 1173 K calculated with the EKINOX model
corresponding to different hypotheses: a parabolic grain size growth for case #P4
(kg= 1.67 10−14 cm2 s−1), a grain size gradient for case #G1 with g1= 32 nm and
g2= 95 nm, and a combination of the parabolic grain size growth and grain size gradient
for case #G1P4.

Fig. 12. local kp from chromia growth kinetics of Ni-30Cr at 1173 K, calculated with the
EKINOX model corresponding to a parabolic grain growth for case #P4
(kg= 1.67 10−14 cm2 s−1), a grain size gradient for case #G1 with g1= 32 nm and
g2= 95 nm, and a parabolic grain size growth combined with a grain size gradient for
case #G1P4.
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kinetics can be bounded between a cubic root dependence with time
and a fourth root dependence with time. In this case, the oxidation
kinetics is close to a quadratic law as the m parameter is close to 4.
Finally for the slowest cubic growth rate: case #C3 with
kh= 10−24 cm3 s−1, the m parameter equals 3.0, the oxidation kinetic
law can be interpreted as cubic, the shape of the oxidation kinetics can
be approximated by a cubic root dependence with time. This last par-
ticular case matches Rhines' observations [23,24] with a cubic grain
growth law associated with a cubic oxidation kinetics. The grain size is
thus proportional to the oxide thickness.

By using the “log-log” method, oxidation kinetics could be plotted
with an over-parabolic, cubic or quadratic law despite the fact that
growth mechanisms remain identical (only kinetic constants change).

These results can be explained by means of the analytical oxidation
models presented in part II of this work: Eq. (26) for a parabolic oxide
grain growth and Eq. (29) for a cubic oxide grain growth. The oxidation
kinetic law given by Eq. (26) is composed of three terms. One term
proportional to time, one term proportional to the square root of time,
and one constant term. Depending on the values of the parameters of
the law, one term of the kinetic law can become predominant compared
to the others for a given time range, and the global oxidation kinetics
follows the tendency given by the predominant term. If the pre-
dominant term is the one proportional to time, the global oxidation

kinetics has a parabolic pattern, for example #P1 with
kg= 10−6 cm2 s−1. If the predominant term is the one proportional to
the square root of time, the global oxidation kinetics has a quadratic
pattern, for example #P3 with kg= 10−14 cm2 s−1. Transition values of
kg and kh from one type of law to the other can be determined for a
given duration of the experiment. This calculation is described in
Appendix B.

Some oxide thickness extrapolations from 30 h oxidation kinetics
can be calculated according to kinetic laws using Eq. (24) with the data
gathered in Table 3. The corresponding extrapolated oxide thickness for
1 year and 10 years of oxidation are gathered in Table 3. For compar-
ison, real thicknesses from analytical laws (26) and (29) are also re-
ported. Relative errors in the extrapolation range from 0.1% to 217%.
The gap between extrapolated and analytical values increases with
longer extrapolation times and with the values of kg and kh. Indeed, the
relative error is the highest for cases #P1 and #C1, which correspond
respectively to the highest values of kg and kh.

5.2.2. Complete parabolic law method
Another post-treatment method applied to kinetic curves has been

carried out by using Eq. (22), which corresponds to the complete
parabolic law. This law has been adjusted to fit the curves on the same
time interval as determined previously (for the “log-log” method): from
25 to 30 h. kp,(25h), values obtained following these adjustments are
listed in Table 3.

kp,(25h) values given in Table 3 and obtained in the 25–30 h time
period are higher for cases with the lowest values of kg and kh. As grain
size increases continuously over time, the local kp value decreases over
time, and for a long enough time, the second part of Eqs. (26) and (29)
become negligible compared to the first part of the relations. The kp,stat
value is expected to reach kp,L= 8.10−15 cm2 s−1 for an infinite time. A
similar observation can be made on the values of the effective diffusion
coefficient plotted in Figs. 5–7, which decrease over time with the grain
growth. The effective diffusion coefficients are obviously expected to
reach the lattice diffusion coefficient for an infinite time. In the cases
studied here, the time needed to reach this stationary regime depends
on grain growth kinetics, and is thus linked to the values of kg and kh. If
the grain growth is fast, the effective diffusion coefficient quickly
reaches its stationary value. In contrast, if the grain growth is slow, the
effective diffusion coefficient reaches its stationary value after a long
time.

The kp,(25h) values obtained by parabolic fit gathered in Table 3 for
cases #P1, #P2 and #C1 are of the same order of magnitude as
kp,L= 8.10−15 cm2 s−1. It can thus be assumed that, in these cases, the
stationary regime is reached after 25 h. For cases #P3, #C2 and #C3
however, the local kp value is different from the kp,L value, ranging from
one to three orders of magnitude. This is due to the fact that the sta-
tionary regime has not been reached after 25 h. The kp values obtained

Fig. 13. oxidation kinetics of Ni-30Cr at 1173 K, calculated with Eq. (26), plotted on a
log–log scale (e-e0 (cm), t(s)) assuming a parabolic growth law according to Eq. (9), and
for kg values of 10−14 cm2 s−1, 10−10 cm2 s−1 and 10−6 cm2 s−1. Linear fits are done for
the time interval going from 25 to 30 h. Solid lines correspond to calculated kinetics,
dotted lines to linear fits.

Table 3
Analytical oxide thickness calculated with Eqs. (26) and (29) respectively for parabolic grain growth #P1, #P2, #P3 and cubic grain growth #C1, #C2, #C3. m, klog, and kp,(25h)
parameters are obtained from extrapolations of analytical oxidation kinetics of Ni-30Cr on 30 h at 1173 K according to “log-log” and “parabolic law” methods. Extrapolated oxide
thicknesses corresponding to “log-log” and “parabolic law” extrapolation methods according to Eqs. (24) and (22) and calculated with parameters m, klog and kg,(25h) are given for 1 year
and 10 years. Finally, relative errors on oxide thickness between analytical and extrapolated values are given.

log–log method Parabolic law method

Calculation case Oxide grain growth
parameter

Analytical oxide
thickness (μm)

m klog elog-log (μm) Relative error on
oxide thickness (%)

kp,(25h) = 1/C
(cm2 s−1)

eparablaw (μm) Relative error on
oxide thickness (%)

1 year 10 years 1 year 10 years 1 year 10 years 1 year 10 years 1 year 10 years

#P1 kg
(cm2 s−1)

10−6 5.0 15.9 1.4 2.10−12 10.2 50.4 104 217 8.10−15 4.9 15.8 2 0.6
#P2 10−10 5.2 16.1 2.15 4.10−15 4.8 14.3 8 11 8.10−15 5.1 16.0 2 0.6
#P3 10−14 14.2 28.4 3.8 4.10−19 13.8 25.2 3 11 8.10−14 18.0 51.7 27 82
#C1 kh

(cm3 s−1)
10−12 5.2 16.2 1.7 2.10−13 7.6 29.6 46 83 9.10−15 5.3 16.5 2 2

#C2 10−18 14.4 33.1 2.8 4.10−16 14.8 33.7 3 2 9.10−14 18.2 54.6 21 67
#C3 10−24 135.1 291.3 3.0 9.10−14 135.0 292.2 0.1 0.3 8.10−12 177.4 529.6 31 82
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by parabolic fit for these three cases thus do not correspond to the
stationary kp value. Consequently the parabolic extrapolation is not
correct and should not be employed in these cases. The evolution of
local kp values of cases #P1 and #C3 are plotted in Fig. 14. In case #P1,
local kp is stationary throughout the entire time range chosen, whereas
in case #C3, the value of kp decreases dramatically at early oxidation
times and is still decreasing at the end of the experiment. This illustrates
that the stationary value of kp has not been reached at the end of the
oxidation time chosen here.

The oxide thickness can be extrapolated using complete parabolic
laws with Eq. (22) and parameters given in Table 3. This same table
displays the values of these extrapolated oxide thicknesses for 1 year
and 10 years, and the corresponding analytical values calculated with
Eqs. (26) and (29). The relative errors between extrapolated and ana-
lytical values range from 0.6% and 82%. Contrary to the extrapolations
obtained with the “log-log” method, discrepancies increase as values of
kg or kh decrease. Indeed, the most important relative errors are found
for cases #P3, #C2 and #C3, those with the slowest grain growth rate,
and therefore having the longest transient stage of oxidation. For the
slowest grain growth rates, the oxidation kinetics is far from the para-
bolic regime, even over a long time range. As shown in Fig. 14 with case
#C3, local kp had still not reached its stationary value after 25 h.

To conclude this part, the best way to fit the experimental data is to
use the local kp method first, in order to determine if the parabolic
stationary regime is reached. If so, the best extrapolation is given by the
complete parabolic law using the value of kp obtained for the stationary
regime, i.e. kp,stat. This method is more accurate than the one that uses a
power law, even if this latter has been obtained by a fit over longer
oxidation times. If no parabolic stationary regime can be determined for
the local kp curve, as is the case for very slow grain growth rates, it can
be then more appropriate to use the “log-log” method for extrapolation.

However, when possible, the best method is to perform a longer ex-
periment until the stationary regime is reached, and to extrapolate with
the “parabolic law” method using the stationary kp and the complete
law. The alternative method consists in using an analytical or numerical
model that includes grain growth kinetics, if the evolution of local kp is
assumed to be due to the oxide grain size evolution.

6. Conclusion

The conclusions that can be drawn from this work are the following:

1) Grain boundary diffusion and oxide scale microstructure evolution
over time should be considered to interpret oxidation kinetics which
are not purely parabolic.

2) Analytical models are presented considering a cubic grain growth
law and a grain size gradient across the oxide scale. A numerical
resolution, using for example the EKINOX model, can be used to
simulate more complex cases of combination of grain size growth
and grain size gradient but also other grain size growth laws.

3) Calculation results show that even when using the same oxide
growth mechanism, i.e. control by faster diffusion in the oxide due
to grain boundaries diffusion, the evolution rate of diffusion short-
circuit proportion over time modifies the oxide growth kinetics, and
even their global shapes.

4) Depending on grain growth kinetics, the experimental oxidation
kinetics that derive from a mixed diffusion phenomenon in bulk and
in grain boundaries can be globally interpreted with various laws
from over-parabolic to parabolic, sub-parabolic, cubic and even
quadratic.

5) Extrapolation of oxidation kinetics can be strongly affected by the
choice of the method, and also by the duration of the oxidation
experiment. The use of the “local kp” helps identifying if the para-
bolic stationary regime is reached and thus helps performing accu-
rate extrapolations of oxidation kinetics. If the stationary regime is
not reached during the oxidation time of the experiment, no extra-
polation should be done. If longer experiment cannot be performed,
extrapolation using the “log-log” method might be a better choice.
However, experimenters have to keep in mind that this extrapola-
tion is not based on clearly identified rate controlling phenomena
and then should be used with caution.

This study focuses on the growth of chromia, however, similar
conclusions can be drawn on the growth of other oxides.
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Appendix A. Symbols used

A, B, C: coefficients used for the “complete parabolic law fit” (respectively in s, s cm−1, s cm−2)
XA

n: atomic site fraction of A in the slab n in the EKINOX model
XA: atomic site fraction of A (A=Cr or Ni) in alloy
CX

n: site fraction for specie X calculated on EKINOX model in slab n (dimensionless)
∼Deff : effective chemical diffusion coefficient (cm2 s−1)
∼Dgb: grain boundary chemical diffusion coefficient (cm2 s−1)
∼DL: chemical diffusion coefficient in oxide lattice (cm2 s−1)
JX

n: flux of specie X calculated on EKINOX model in slab n (site m−2 s−1)
e: oxide scale thickness, e0 corresponds to oxide thickness at initial time t0 (cm)
f: atomic site fraction on short-circuits path per unit area (dimensionless)
g: grain size, g0 grain size at initial time t0, g1 corresponds to oxide grain size at metal/oxide interface, g2 corresponds to oxide grain size at oxide/

gas interface (cm)

Fig. 14. local kp value corresponding to the oxidation kinetics of Ni-30Cr at 1173 K,
calculated with Eqs. (26) and (29), corresponding respectively to kg= 10−6 cm2 s−1 for
case #P1 (scale on the left) and kh= 10−24 cm3 s−1 for case #C3 (scale on the right).
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kg: parabolic coefficient for the grain growth law (cm2 s−1)
kh: cubic coefficient for the grain growth law (cm3 s−1)
kl: linear constant of the oxide scale growth (cm s−1) or (g cm−2 s−1)
klog: kinetic parameter used for the power law kinetics of oxide scale growth (“log-log” method) (units depend on exponent of the power law: m)
kp: parabolic constant of the oxide scale growth, kp,eff corresponds to effective parabolic constant in case of diffusion through lattice and grain

boundaries, kp,I corresponds to instantaneous parabolic constant of the oxide scale growth, kp,L corresponds to parabolic constant of the oxide scale
growth in case of diffusion through lattice only, kp,stat corresponds to local parabolic constant corresponding to the stationary regime of the oxide
scale growth (cm2 s−1) or (g2 cm−4 s−1)

m: exponent used for the power law kinetics of oxide scale growth (“log-log” method) (dimensionless)
t: time, t0 corresponds to initial time (s) or (h)
x: position in the oxide scale (cm)
δ: short-circuit thickness, or grain boundary thickness (cm)
ΔC: difference in defect concentration between the oxide/gas interface and the metal/oxide interface (atom cm−3)
Δm: mass gain per unit area, Δmi corresponds to initial mass gain per unit area (g cm−2)
ΔXV: difference between vacancy site fraction at oxide/gas and metal/oxide interfaces (dimensionless)
Δy: difference of relative position in oxide scale (dimensionless)
Ω: volume of oxide per oxide site (cm3 atom−1)

Appendix B. Calculation of transition kg and kh values

With an oxidation time of 30 h, a transition kg value, so called kg
tr can be determined for transition between predominance of the square root part

of time. Right side of Eq. (26) and predominance of the linear part of time i.e. left side of Eq. (26).

+ = −
∼

∼k t e t( 1)δk

k

D

Dp,L 0
2 4 p,L

g
tr

gb

L
(39)

leading to:

=
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⎜ +
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⎟
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k t

D
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e
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L

2

0
2

(40)

Following the same approach, the transition value of the cubic growth rate of grain size kh
tr leading to different regimes of oxidation kinetics can

be determined:

=
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⎝

⎜
⎜ +

−
⎞

⎠

⎟
⎟

∼

∼k
δk

k t

D
D

3
( 1)

e

t

tr p,L

p,L
1/3

gb

L

3

h
0
2

2/3 (41)

By using the parameters chosen in this study for case #P2, with kg= 10−10 cm2 s−1, global oxidation kinetics have a mixed parabolic and
quadratic tendency. For parameters corresponding to case #C2, with kh= 10−18 cm3 s−1, oxidation kinetics have a mixed parabolic and cubic
tendency.

In order to have the time proportionate term predominant in Eq. (26), the value of kg value must respect the condition: kg > > kg
tr, this

corresponds to case #P1, with kg= 10−6 cm2 s−1. By using a similar approach for a cubic oxide grain growth law, the condition kh > > kh
tr

corresponds to case #C1, with kh= 10−12 cm3 s−1. These cases lead to oxidation kinetics following a parabolic law.
In order to have the term proportional to the square root of time predominant in Eq. (26), the value of kg must respect the condition: kg < < kg

tr,
this corresponds to case #P3, with kg= 10−14 cm2 s−1. By using a similar approach for a cubic oxide grain growth law, the condition kh > > kh

tr

corresponds to case #C3, with kh= 10−24 cm3 s−1. These cases lead to oxidation kinetics following a quadratic and a cubic law respectively.

Data availability

The processed data (output of EKINOX code) required to reproduce these findings, which are oxide thicknesses over time, and effective diffusion
coefficient, are already shared in graphs in Figs. 8 and 11.
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