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Sparse and Non-negative BSS for Noisy Data

Jéremy Rapin, Jérdbme Bobin, Anthony Larue, and JeanStarck
firstname.lasthame@cea.fr

Abstract—Non-negative blind source separation (BSS) has conveniently rewritten in matrix form:
raised interest in various fields of research, as testified byhe
wide literature on the topic of non-negative matrix factorization Y =AS+7Z, (2)
(NMF). In this context, it is fundamental that the sources to
be estimated present some diversity in order to be efficientl Where:
:ﬁtrieved. Sparhs_ilty is I((jnoyvn to enhanet such corrlltrast beg;t; « m is the number of measurements.

e sources while producing very robust approaches, esp .
to noise. In this paper we introduce a new algorithm in order °n _'S the number of samples of the sources.
to tackle the blind separation of non-negative sparse soues ¢ ’ IS the number of sources. o _
from noisy measurements. We first show that sparsity and o Y € R™*" is the measurements matrix in which each
non-negativity constraints have to be carefully applied onthe row is a measurement.
sought-after solution. In fact, improperly constrained sdutions « S € R™*" the unknown source matrix in which each row
are unlikely to be stable and are therefore sub-optimal. The .
proposed algorithm, named nGMCA (non-negative Generalize ISa sp?ncxtzum/source. . . . .
Morphological Component Analysis), makes use of proximal * A € R the unknown mixing matrix which defines

calculus techniques to provide properly constrained soluons. the contribution of each source to the measurements.
The performance of nGMCA compared to other state-of-the-at e Z € R™*" is an unknown noise matrix accounting for
algorithms is demonstrated by numerical experiments encom instrumental noise and/or model imperfections.

passing a wide variety of settings, with negligible parametr

tuning. In particular, NnGMCA is shown to provide robustness . . . B .
to noise and performs well on synthetic mixtures of real NMR With the notation||X[|, = S/ Zij |zij|? (Frobenius norm

spectra. for p = 2) and for independent and identically distributed
Gaussian noise, the maximum-likelihood estimate is then

Index Terms—BSS, NMF, sparsity, morphological diversit -
parsity pholeg Y provided by the standard problem:

1
[. INTRODUCTION argm'n§|\Y — AS|3. (3)
N many applications, such as nuclear magnetic resonance A8
(NMR) spectrometry or mass-spectrometry, measurementdiowever, this problem presents an infinite number of solu-
are often made of mixtures of physical components whidlons which are not necessarily of any interest with resfmeat
can be identified by their specific spectrum. Discriminatingiven application. It is therefore standard to constr&iand/or
between these elementary components or sources canSi®® as to limit the search to minima with a desired structure.
made by acquiring several measurements at different timasthis article, we focus on the assumption that battandS
or locations in order to observe different mixtures, yietgli are non-negative, yielding Non-negative Matrix Factditra
multispectral data. (NMF).
In this context, blind source separation (BSS) aims at - . : :
. . ; The non-negativity assumption arises naturally in many
recovering the spectra from measurements in which the com- . ~_.. . . . : '
. . applications, including text minind[1], clusteringl [2]udio
ponents sources are mixed up together in an unknown wa bessing[8] and spectrometiy [4]. Indeed, the sources in
The instantaneous linear mixture model assumes thatithe" 9 b : '

: . . S can for instance be mass or power spectra, which are non-
measurementg; . are linear mixture of sources with spectra

s. € R*™. In other words. there exist mixture coeﬁicientsnegative’ and the mixtures can represent concentratidrishw
- o ' cannot be negative either. The problem is written under the
(ai;) such that:

constrained form:

Yi. = Zaiij,. + 2z, Vi€ {1, ..,m}, Q) argmin D(YHAS) (4)
j=1 A>0, s>0

(.||.) can be thefs distance such as ild(3) or any diver-
ce taking into account other priors on the noise [3], [5],
Copyright (c) 2013 IEEE. Personal use of this material ismiteed. [6]. In this article, we focus on Gaussian noise and thegefor
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constraint which yields a “part-based” representationtaf t while this problem is not convex, the sub-problemAinwrites:
o_Iata. Indee_d, only z?\ddl_tlve/construcnve, and n_ot subtrac argminD(Y]||AS) ®)
tive/destructive combinations are then allowed in order to ASQ

represent the data. -

NMF shares a couple of indeterminacies with other BSt

problems:

« permutationsif 7 is a permutationAS = ). a. ;s;. = _ _ _ _
> @ x(iySx(i).. SO that one cannot hope to recover the The first converging NMF algorithm, designed by Lee &
order of the rows o8 and columns ofA. Seung [[5], [10], updates and S with a weighted gradient

. scales if A € R™*" is diagonal with strictly positive descent. The weights insure that the gradient steps do not
diagonal coefficientsAS = (AA)(A~!S) so that if increase the cost function iml(4) and keép and S non-

(A, S) is a solution of [#)(AA, A~'S) is also solution. Negative, since the update can be recast as a pointwisegtrodu

However, unlike problem[3) for which a solution carPf non-negative matrices. Wittb the element-wise matrix

be conveniently obtained through SVD decomposition fépultiplication and® the .element-wise matrix division, the
instance, NMF is NP-Hard [8] and can present numeroygda.te rule forA a}nd S in the case of a least square cost
local minima. For this reason, additional constraints éongr function can be written as follows:

information can be helpful to recover the sought sources. In A1 — Ap 0 (YST) @ (ASST),

the next sections, we impose a sparse prior on the sources,
’ P . Ski1 ¢+ Sk (AL Y) @ (AL, Ak i1Sk). (6)

together with their non-negativity.
The multiplicative update rule is usually considered as a

standard because of its convenience, with no parameter to

This article details and extends the preliminary worklih [9et. As well, it was the first convergent algorithm proposed
with more complete experimental study and a more advanaedsolve the NMF problem. However, it has been shown to be
understanding of the algorithms. Specifically, noise isuaccslow and that the monotone decrease of the algorithm does not
rately accounted for. It illustrates the proposed appraath insure convergence to a local minimumI[11].][12]. Firstard
realistic data as well. In Sectidd Il, we first give a review ofnethods are also used in projected/proximal gradient desce
the state-of-the-art NMF methods and sparse NMF techniqustgorithms|[[13], interior point gradierit[14], and quaséMon
proposed so far. Our approach aims at obtaining a bettgdgorithms [15].
management of the noise through an ad hoc regularizatio

strateg_y. For that purpose, we |nt.roduce n Seciol “l. LS) algorithm explained in[[7], which solves exactly the
extension of the sparse BSS algorithm GMCA (Generaliz : ) . . :
nconstrained cost function with a pseudo-inverse anapt®]

Morphological Component Analysis) to tackle the problem q - S
. . . e result on the non-negativity constraint:
sparse and non-negative BSS from noisy data. This extension

d the equivalent sub-problem B are often convex and
eir minimization is therefore much easier. These alt@mga
updates are then repeated for a large number of iterations.

Contributions

"Another standard approach is the Alternating Least Square

is motivated by the robustness of GMCA to additive noise A+ [YS{(Sksf)*lh,
tamination. -
contamination Ski1 + [(Af 1 Ari) 1Af+1YL, (7)

We further show that a special care has to be taken to con- _ . .
strain both the sparsity and the non-negativity of the digna'V/ith the operatoriz].. = max(z,0). This algorithm is also
More specifically, improperly constrained methods can le¥§dely used due to its easy implementation and its efficiency
to unstable and sub-optimal solutions. We therefore inteed !N d€créasing the cost function. However, it does not neces-
the non-negative GMCA (nGMCA) which has the ability to'Sarlly converge. In Hierarchical ALS (HALS[[[LG]_T_[]l?]),eh_
provide exact solutions of the constrained and penalizéd Slﬁ:_olumns ofA. and rows ofS are processed one by one. This

problems, thanks to proximal calculus methods. Last but ndf!ds @ simple and fast optimization process to solve the

least, the proposed algorithm is a simple to use technigquue si €ONStraineéd sub-problems.

it barely requires any parameter tuning. It is however possible to solve exactly the constrained sub-
standard NMF and sparse NMF algorithms. Exhaustive experi- Aji1 < argminD(Y||AS},),

ments show that nGMCA allows for better robustness to noise, A>0

Iarge_ numbers of sources and the cond|t|on|.ng of the mixing Sii1 < argminD(Y||As1S). 8)
matrix, and therefore outperforms most algorithms for aadro s>0

variety of settings. Finally, in section]V, we illustrate viho
NGMCA performs also well to separate out synthetic NM
spectra.

[_lp [18] for instance, Lin uses a projected gradient desceint s
routine to solve the sub-problems. Guan et al. later pravide
a faster first-order method [119].

II. STATE-OF-THE-ART NMF METHODS It has to be mentioned that other approaches based on

A. Standard NMF algorithms geometrical methods have also been investigated to solve
The minimization of the cost function from Problef (4NMF problems[20],[[21],[2R]; these approaches are however
is generally solved by alternately updatidgandS. Indeed, generally very sensitive to noise.
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As was previously stated, non-negativity is not alwayister used a different type of sparse prior [in][30] defined for
sufficient to recover the actual sources and mixing matrigome vector: € R™ as follows:

In non-negative ICA[[23], one additionally enforces the in- = _ la=lh
dependence of the sources. However, this approach is also sparsene¢s) = e (10)
sensitive to noise. Sparsity, on the other hand, has beemsho Vvn—1

to provide robustness to noise. We give a short introductiqihjs sparseness function goes from 1 wheris perfectly
about this prior in the next section, before presenting spaisparse —only 1 active coefficient— to 0 when it is not at

NMF algorithms. all —all coefficients active, with the same value. The idea is
therefore to optionally impose a chosen level of sparsity fo
B. Sparsity & NMF the sources and/or the mixtures:
; e argmin [|'Y — AS]||3,
1) An Introduction to Sparsity: A>0.550
sparsenegs. ;) = A4, Vi (optional) (11)

Sparsity constraints have already proved their efficiency t , ]
solve a very wide range of inverse problems (de€ [24] and sparsenegs;,.) = Ag, Vi (optional)

references therein). In the context of BSS, sparsity has begnis problem is solved by using projected gradient descent
shown to increase the diversity between the sources whiglaps followed by a projection on the sparseness constraint
greatly helps their separation [25]. [26]. [27]. In the widgf the constraint is active and with a multiplicative update
sense, a sparse signal is such that its information contenbiherwise. However, the constraint is directly related He t
concentrated into only a few large non-zero coefficients, @kpected sparseness level of the sources which is not neces-
can be well approximated in such a way. The sparsity ofgarily known beforehand. Furthermore, hard-constraittirey
signal however depends on the basis or dictionary in whichdbarseness level may make the solution very dependent on the

is expressed. For instance, a sine wave will be sparse in gﬁrseness parameters and \s. An implementation of this
Fourier domain since it can be encoded with one coefficient iigorithm is available onliffe

this domain, while in the direct domain most of its coeffitgen

are non-zero: the more a basis captures the structures of &Parse HALSI[I6],[[17] aims at solving Problefd (4) with
signal, the sparser will be in such a basis. In this article viSParsity penalization of the fori|S|j;. In the case of an
will however only focus on sparsity in the direct domain. {2 data fidelity term, this problem can be rewritten as:

2) Sparse NMF Algorithms: aramin 1Y — - a.:si 2+ A ~ (S s;:). (12
In many applications the non-negativity and sparsity of wz(g 54,20 | ; o sicllz Z(Z m) 12)

the sources arise naturally as for instance in MS or NMR ) )
spectroscopy. Recent works have emphasized the fact fhat 1R tis algorithm, the columns & and lines ofS are updated

knowledge can indeed help perform more relevant factoriZ21€ Py one. As each sub-problem admits a straightforward
tions [2], [28], [29]. analytic solution and no matrix inversion is required, the

HALS algorithm turns to be a simple and fast NMF solver. In a
In [2], Kim & Park have proposed to formulate the NMFrecent implementation of the HALS [B1], [&]the parameter
problem as: A of is automatically managed in order to obtain a required
n sparsity rate (defined as the ratio of coefficients smallanth
argmin Y — AS|3+nl[A3+ 8 [s.llf. (9) 107° times the largest coefficient).
A>0s>0 t=1

i=1 j=1

It is important to note that none of these algorithms makes

In this equation, the sparsity-enforcing regularizause of the sparse prior explicitly to deal with additive ®gis

Sor_ills..lf favors solutions where a single sourceherefore they may not be robust in case of noise contamina-

dominates at each sample. However, it does not enforce tium.

intrinsic sparsity of each of the sources. The authors made

use of an active-set method to solve this problem. This|||. N ON-NEGATIVE GENERALIZED MORPHOLOGICAL

technique can solve exactly each constrained sub-probiem i COMPONENTANALYSIS

a similar way than in Problent](8). However, it is not clear , . .

how the parameterg and 8 must be set. The authors providéA" A first naive extension

an implementation on their webdite In the last decade the use of sparsity in the field of BSS
In [15], Zdunek & Cichocki used a similar regularizatiornas been widely explored. In [27]. [33], the authors haveint

term for S but with 3 decreasing during the algorithms induced a sparsity-enforcing BSS technique coined Genethliz

order to be more robust to local minima, and without exactiorphological Component Analysis (GMCA) which has been

solving the sub-problems. shown to be effective at separating out sparse signals from

noisy data. Morphological diversity has been defined id [33]

In [29], Hoyer used a sparse regularization of the forjs 5 mean to characterize separable sources based on their
A||S||: that uniformly enforce the sparsity &. The author

Zhttp:/lwww.cs.helsinki.fi/u/phoyer/software.himl
Thttp:/lwww.cc.gatech.eduhpark/nmfsoftware.php Shttps://sites.google.com/site/nicolasgillis/code
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geometrical structures or morphologies : separable seurddgorithm 1 : nGMCA"ave

with different morphologies do not share the same significaRequire: Y, K

coefficients in a given sparse representation. When sparsit: initialize A andS

holds in the direct domain this means that the entries of: for k «+ 1, K do

each source with the most significant amplitudes should be: Normalize the columns oA

different. This does not mean that their supports are disjoi 4: San = (AL | Ax_1)tAL Y

but rather their most significant elements should be disjoin s5: Select the thresholds; consideringSy
The objective of this paper is to extend this sparsity-6: Sy « [Hard\, (San)]

enforcing BSS algorithm to deal with non-negative mixtures 7: Ay — [YS{(S;CS{)‘W

Following [27], the GMCA with an additional non-negative g: end for

constraint estimates the mixing matrix and the sources by: return Ax, Sk

minimizing the following optimization problem:

+

argmin %HY—AS||§+/\”SHO- (13) Limitations: It is very important to notice that this

A>0 s>0 algorithm, as based on alternating projected least-squée
The ¢, pseudo-norm counts non-null coefficients $nand ©Nly @ proxy which generally does not converge to a stable
therefore limits their number, thus enforcing the sparsity COUPIe (A, S), hence the “naive” denomination. This means
S. In the vein of Alternating Least Squares, GMCA alterthat the solution given by this type of algorithm may not be
nately and iteratively estimates the unconstrained lepsare Stable and be sub-optimal. The solution may not provide the
solution and projects on the non-negativity constrainthwi SParsest non-negative sources. This is due to the fact that
an additional thresholding step for the sources in order fodeals with the data fidelity term and the constraints in a
keep only the most significant coefficients. These updates §PMPletely independent way, thus not exactly solving tte su
provided in lines 6 and 7 oflgorithm L where the hard- Problems such as in Probleid (8).

thresholding operator Hagds defined as follows: Next, we therefore propose an alternative algorithm which
. exactly solves the non-negatively constrained &npenalized
0if |z| < A,
Hardy : = — (14) sub-problems and should allow for more robust and stable
x otherwise solutions.

It has been emphasized ih_[27] that one crucial feature
of GMCA is the use of a decreasing threshold At the B. NnGMCA
beginning, this parameter is first set to a high value and thenwe first propose to tackle the sparse non-negative BSS
decreases throughout the iterative down to a final value thgbblem using ar¢, sparse regularization with € {0,1}

depends on the noise level. Simulated annealing has alregdgh as in[(113). This then amounts to solving the following
inspired decreasing, and/; » regularizations in NMF[[15], optimization problem:

[34]. The motivation behind a decreasing threshold is havev 1
different: argmin 5HY — AS|5+AlIS|l, +iT(S) +iT(A), (15)
1) first estimating the mixing matrix from the entries of the S
sources that have the highest amplitude and thus likelhere i is the characteristic function of the non-negative
to belong to only one source. orthant, which enforces the non-negative constraints. The
2) help removing the smallest coefficients which are momaracteristic function of the non-negative orthant is rokfi
sensitive to noise contamination. as:

index i, the threshold\; is set tor,0°""°® where g% is v

an empirical estimator (the median absolute deviationhef t

source noise variation, is chosen at each iteration in ordedn the previous section, we emphasized that a naive approach
to obtain a linear increase of the number of active coeffisierPased on projected least-square does not necessarilydprovi
in S, so as to refine the estimation while maintaining sonfe stable and thus optimal solution to the problem. To go
continuity. The finalr,, 72°, is usually taken in the rangebeyond the aforementioned naive extension of GMCA, one
[1,3] as a trade-off between sufficient denoising and corrgads to alternatively and exactly minimize the constraingat s
separation. Indeed, for a sparse signal contaminated .oy i.problems inA andS so as to obtain stable solutions with the
Gaussian noise with standard deviationthresholding at 8 sought structure. Let's first have a look at the sub-probiem i
rejects noise samples with probability 0.99. Still, in B&& S; assumingA is fixed, the sources are estimated as follows:

In the same way as in the original GMCA, for a source with RN 0if z >0, (16)
X
+o00 otherwise

large a final threshold could leave some leakage between the 1 ) .

sources. This nGMCA will be considered asaiveextension argmin 1Y — ASJl3 + AlIS]lp +i7(S). a7)

of GMCA and used as a reference algorithm. It will be coined L _ _ .
naive non-negative GMCA (NnGMCK"). This problem minimizes a function which can be split into

the sum of a differentiable quadratic term and two non-simoot
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and non-differentiable terms: tlfg norm and the characteristicpy = 0. In the FBS this is made by replacing the soft-
function of the non-negative orthait. The choicep = 1 thresholding operator with the hard-thresholding. Rigisig,
provides the closest convex surrogate to the spgrseorm it is not a proximal operator sincé . |o iS not convex
and in this case, the problem admits a unique solution whialgr semi-continuous; this means that there is no conveggenc
however, cannot be formulated explicitly. Fortunatehartks guarantee of the forward-backward splitting algorithm whe
to recent advances in proximal calculus and splitting techard-thresholding is used.

niques, efficient algorithms can be designed to solve thgs ty

of problems. 2) Description of nGMCA:In the same vein as the naive

NGMCA introduced in the previous sectiod and S are

1) Proximal calculus and splitting methodBroximal split-  ajternately updated with the exception that, now, each sub-
ting methods|[[35] aim at minimizing convex functions whichyroblem is solved exactly, which guarantees that the soiuti
may not be differentiable. The idea of these methods is @  S) is stable and has the sought structure. The main steps of
split the cost function into the sum of several convex funtdi the algorithm are given illgorithm 2] One must notice that
which are alternately locally minimized. Many problems cagxactly solving each sub-problem is costly since it recuire
be decomposed into the general form: sub-iterations at each step. Fortunately, it has been tigcen

: showed that the speed of convergence of the FBS algorithm
argsmlnf(S) +9(8), (18) can be greatly improved by using the multi-step techniques
. L . __introduced by NesteroV _[36]. Both steps have the algorithm
e ey et e useof a acolrte vrsonof e FBS gt (27
tiable A detailed description of how this accelerated algorithm is
' used to updat® is given in appendikA.

Since f is differentiable, it can be locally minimized with
a gradient descent step. Whenis not, but if it is convex,
proper and lower semi-continuous, one can define the praxi
operator ofg:

A special care has to be given to renormalizations since
ngl&e {1 regularization tends to reduce the norm $f More
specifically, since the norm oA can keep increasing to
compensate the reduction of the normSpfthe algorithm can

prox, : z argminlﬂy —z|2 4 g(y). (19) converge to the degenerate solutlbr- Qand A = cc. In the
y 2 algorithm, the columns oA are therefore renormalized fg
In this case, the following process called forward-backivaMNity before updatings. This also assigns to the coefficients
splitting algorithm (FBS, seé [35]): of S their overall importance in the estimation &f.
B 1 Following the general thresholding strategy used in GMCA
T+l = proxfg(xk n va(x’“)) (20) and its extensions, the thresholdlecreases from step to step.
has been shown to converge to the solution of Problemh (1dpwever, the strategy used in this version nGMCA differs
if V£ is L-Lipschitz. from the one used in the naive approach. In the former, the

_ _ _ threshold is applied to the sources as defined by their least-
The update oA is made by solving the following problem: square estimate. On the contrary the threshold in nGMICA
1 . applies at each gradient descent step. The update ri8eirof
ar%m|n§||Y —AS[; +i"(A), (21)  the sub-iterations of nGMCR(without the acceleration) can
) ) ~be written as follows:
which can be recast in the general form](18) by defining )
f(A) = 3||Y — AS|3 andg(A) = i*(A). In this case, the 5, |+ [s, — - ( AT(AS, ~Y) - AL,)],, (24)
gradient off is trivially equal to:Vf(A) = (AS — Y)ST, it L
is L-Lipschitz with L = HSSTHS where|| . |_|s is the matrix with 1,, € R’*" containing only ones. lterative soft-
spectral norm. The proximal operator gfis the projector yresholding therefore operates on the gradient and netijir
onto the non-negative orthapt |,.. The FBS then reduces to, the source values like in the naive NGMCA. Also, unlike
a projected gradient algorithm similar to the updates i.[18\ith hard-thresholding, a variation ofaffects all active coef-
Similarly, the update 08 in ProblemICIE?) witlp = 1 canbe ficients. Our strategy consists in starting with a large patar
solved with FBS, withg(S) = A[[S[[1 77 (S). The proximal ' _ |AT(A(S, — Y)]|.. which forces the coefficients &
operator of this function also takes an explicit form uspially pe non-increasing in the first iteration. The threshold is

termed skewed-position soft-thresholding operator: then linearly decreased in order to refine the solution while
preserving continuity, down te2°c9 wheres 9" is this time
ProXy . 4it( . ) @~ [Softy(z)] ,, (22)  an estimate of the noise level in th8 row of the gradient.

where the soft-thresholding operator is defined as: We also implemented a version of nGMCA using hard-

(23) thresholding aiming at solving Problenh [15) with &
pseudo-norm instead of th§ norm for the regularization.
This soft-thresholding, induced by thg norm, is well- The superscript and® are specified to differentiate between
known to introduce a bias. It is therefore customary to usespectively the hard- and the soft-thresholding versions

Softy :  — sign(z)[|z| — A]+.
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Algorithm 2 : nGMCAS slightly degraded mixing matrix may be preferred if it leads
Require: Y, K to less noisy sources. These points make criteria based®n th
1: initialize Ay, So and \; variable not adequate to measure a good separation. In the
2: for k+ 1, K do next, we will focus on estimating the separation perforneanc
3: Normalize the columns oA _; using a criterion on the sourc&s
4 Sk arg’am%HY = Ap-1S3 + AelSIh In [38], Vincent et al. have proposed different criteria to

evaluate the performance of blind source separation tech-

5. Ay < argmini|Y — AS;|3 . : : .

) nigues. In the noisy setting, they propose separating each
6: Selecth\i1 < Ak estimated source®stinto the sum of several components:
7: end for

est
§7" = Starget+ Sinterf T Snoise T Sartifacts,
8: return Ak, Sk 9

With starget the projection ofs®st on the reference source it
estimates; andintert + Snoise+ Sartifacts IN it orthogonal space,
IV. NUMERICAL EXPERIMENTS respectively standing for interferences with other sosirce

contamination with noise and contamination with algorithm

In this section we first compare the introduced algorith"&rtifacts. They design an SNR-type energy ratio criterion
and classical algorithms on noiseless data, in order to bﬁﬁmed Source Distortion Ratio (SDR):

ter understand their behaviors, and then we benchmark the )
GMCA-based algorithms with state-of-the-art sparse algO'SDR( 5°Y = 10 log, < || starged3 ) . (25)
rithms on noisy data. The settings of the simulations and | Sintert + Snoise+ Sartifacts|3

sections. sure taking into account all the elements of the reconstnct
i.e. a correct separation (lowners), efficient denoising (low
A. Settings snoise) and little artifacts left by the algorithm (IoWartifacts)-

Also, this criterion has the advantage of being scale-iawar
generated respectively from the distribution| &, G..,, | and In the next, the SDR will be used tp evalqate the separation
. performance of the proposed technique with respect to-state
|Bps Gas |, Where:
i . . . I of-the-art methods.
* By |sz_;\Be_rnouII| ra“dom varlable_v_vlth activation Parame- gacause of the permutation invariance, one cannot know
tgrp,_ l.e. 1t eqtualsdl W'(tjh prgbab(;htyé and Ol_ott:jer(\;vlse. %Eriori which estimated source stands for which reference
* o dls a cgnbelzre 'tr?nh reduce e;;nera 1z¢€ ausSllirce. Reference and estimated sources are therefogsl pair
ran. om variable with s "’.‘pe param .r _one-to-one in order to obtain the best mean SDR. The SDR
In practicep anda control 2 kinds of sparsity. The_ Bernoullign g (coined SDR) has be used in the experiments below
parameter affects the number of actual zerosAinand S i order to assess the performances of the algorithms. In the
and therefore exact sparsity. On the other handglects the fo|lowing, the SDR has been evaluated from several Monte-
sharp‘rges‘g of the distribution 6f,, which pdf is proportional carlo simulations; the number of simulations will be given i
to e

Reference matriceA ™" and S™f coefficients are uniformly

5 (with 4 = 0 and g dependent on the standarceach figure’s caption.
deviation which is fixed to 1 here). As special casespfer 2,
G, is a Gaussian random variable, and with= 1 it is @ ¢ Behavioral Study: Noiseless Data

, iable. With < 1, G, | . avie . . .
Laplacian random variable. With < 1, G, is considered as In this first experimental section, NGMCA®, nGMCA"

approximately sparse —the generated signals become spars ; o
whena decreases. and nGMCA are tested on data with a large activation rate

In the experiments and unless stated otherwise, the st:hnc{grr S (_ps = 80%) and _therefore not the Very sparse sources
settings will bepa — 1, a4 — 2, as — 1 with m — 200 or which they are deslgned. These settings are not f_a\@rabl
measurements of — 200 samples. fqr the nGMCA algor_|thms, which allows to emphasize the
differences of behavior between them. Since the problem
reduces to an exact factorization when there is no noise,
B. Evaluation of the Results 72° is set to 0, hence the final threshold in this case is
In order to evaluate and compare the algorithms, a scale a@entical for all the algorithms. ALS[7], the Multiplicat
permutation invariant criterion is needed. This criteriars to  Update [10] and (non-sparse) accelerated HALS| [31] are
be well adapted to measure the reconstruction performangkso performed as standard algorithms to play the role of
In many applications, the signal of interests are the ssurceéeferences. The maximum number of iterations were set to
More precisely, it has to be noticed that noise-reducingrpri large enough numbers in order to assure the convergence of
are applied on the sources only. This implies that a go@d the algorithms. Precisely, the number of iterationseiste
estimate of the sources should be the least contaminatedS90 for HALS, 40,000 for the Multiplicative Update, 500 for
noise and interferences from the other sources. MoreaverALS and the GMCA-based algorithms, with a maximum of
a noisy setting, a perfectly estimated mixing matdx do 80 sub-iterations in nGMCAand nGMCA).
not necessarily yield a good estimate of the sources: indeed



RAPIN et al: SPARSE AND NON-NEGATIVE BSS FOR NOISY DATA 7
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‘\X * -9 -nGMCA by
X AN + naive | . T T nGMCA
\\ nGMCA =g T oo = = m refinement |----ooeeeeeeeee 7 i
607 Q‘* -A--acc. HALS |7 Z \ /‘\v o
= NN I r~ =
2 lakaox s Y — P A
» 45 B --Q--Multlphcatlve ,,,,,,,, = '\‘ ~ /
a4
©n2 \G\\ ~N \\ P R S e
B R A T .
~ \':. -..\_.}\~ ------------------- —
~.Z i {“‘X 0 T y 7 7 e
.~ ot 0 200 400 600 800 1000
15 R - iteration
\'O\ \.\%
\'*0 Fig. 2. Evolution of the cost functioff Y — AS||2 during the iterations for
0 5 l'o 1'5 2'0 2'5 3’0 3’5 4’0 a representative examplgd = 80%, r = 40, noiseless).
T
4 e e e e e e e e eeeeeaanaan
) _ _ 0 —>= nGMCAS
Fig. 1. Reconstruction SDR (SRR with respect to the number of sources - H
r (ps = 80%, noiseless, average of 48 simulations) T nGMCA .
—f nGMCA™"®
B0 -Ac-acc. HALS [~
1) Summary of the experiments: 25_&\& ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, _E_'Q' ALS
. . . o - = Multiplicative
o Figure[d: this benchmark shows the influence of theg & \2‘:~x-~x____ 2
number of sources on the estimationSofThis parameter  ~ 207 N \'g';}ﬁ-’i*’"""”_; """"""" Emm X
is of course important since the more numerous theya _| § 7777777777 B~ \E_\*‘—‘-"e—_x
are, the more difficult they are to separate. nGMEA \@~ T~
outperforms ALS, while withr$® = 0, the final iterations 104 S = ot — e
. . . . ~ ~O—-—.
are identical for both algorithms. The thresholding stra- O —-—-0
tegy of the first stage of the iterations therefore proves 5 = ~(}____o
its efficiency for the separation. Though nGMEAs
i aive 0+ T T T T T T T
not performing as well as nGMCAand nGMCA 05 X s 2 5 ] s B
with few sources, it is much more robust than all the o,
algorithms with large numbers of sources. This is further
detailed in paragragh 1V-C3. Fig. 3.  Reconstruction SDR (SRR with respect to the distribution

. L i . parameteia 4 (r = 35, ps = 80%, noiseless, average of 48 simulations)
« Figure[2: this figure exhibits the evolution of the cost

function ||[Y — AS||3 throughout the iterations, for 40[ a4 050 ] 0.70 [ 0.90 [ 1.20 | 1.60 | 2.00 | 3.00 | 4.00
sources and a large activation rajg; (= 80%). In the [ cond(A) | 6.90 | 836 | 943 | 10.7 | 120 ] 129 | 143 | 153
refinement phase, the sparsity paramater left constant rig. 4. conditioning ofA"™" with respect too 4

at its final valueA> = 75°¢ = 0 in order to observe (r = 35, average of 48 simulations)

the convergence of the algorithms and the possibility

to enhance the reconstruction. nGMEgonverges to a ] o ] ]
lower value than nGMCA while nGMCAMe does not @PPlied non-negativity and sparsity constraints can help r

converge at all. An explanation is provided in paragragifing the reconstruction oA andS once the sources have
TV-CO been sufficiently disambiguated. Indeed, since nGNRCA

does not exactly solve the constrained cost function, itsdoe
not necessarily neither converge to a minimum nor lead to a
stable solution, while nGMCAdoes.

« Figure[3: this benchmark shows the influence AFf
coefficients distribution on the reconstruction. Modifyin
the parametera, is a way to make its distribution
more or less sparse. A sparskf®' yields less correlated 3) 1 Vs{y:
columns and hence a better conditioning of the problenThe explanation of the differences between nGMCand
(table[TV-C1) which simplifies the separation. nGMEA nGMCA" lies in the properties of hard- and soft-thresholding.
tends to be more robust than the other algorithms to iiFhis is summarized in figurgl 5 which shows thresholding

conditioned mixtures. applied to three two-dimensional points= (x1, z2). When
a point —a column ofS— has two large coefficients,
2) Properly accounting for the constraints: i.e. when the point is in the quadrant, it suffers a bias

The differences of performance between nGME&R& and with soft-thresholding while it remains untouched with dwar
nGMCAS for large numbers of sources and large activatiathresholding. On the other hand, the shift induced by soft-
rates in figuré1l can be understood by observing the evolutitmesholding increases the ratio of its larger coefficievdro
of the cost function during the iterations (figlirke 2). Prdperits smaller one, which helps reinforce the affectation of a
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Fig. 5. Difference between soft- and hard-thresholdingegholding atr) 1 3 5 7 9 1'1 1'3 15
Reference Sources
point to the direction of its larger coefficient (in this case). Fig. 6. Correlation matrix between the estimated and refaresources, in
With y = (y1,42) the thresholded point, this means here thatggggfremgtive examlplet_ GMCA 7 — 15, pe — 80%. noisel
% > 22, While the lesser bias created by hard-thresholdirfg atier normaiization, n r =15, ps = 80%, noiseless)
can lead to better accuracy, reinforcing the affectation of
each point to a direction with soft-thresholding leads ttidye Source 6
separation of the sources.

With few sources, both nGMCAand nGMCA' separate
correctly as displays figurl 1. The bias is therefore costly,
for nGMCAS since it leads to some compensation behaviors:
with 80% activation rate, nearly every coefficient suffene t
bias and one source tends to compensate for all the other
with a positive offset. This can be seen on source 5 in figure® 20 40 60 80
[[. The offset correlates with all the ground truth sources sample
as can be observed from the correlation matrix in fiddre 6: Source 5
estimated sourcé gathers all the thresholded coefficients of
the other estimated sources and is therefore affected by th
interferences.

On the other hand, the effect of soft-thresholding on the
coefficients amplitude helps giving more weight to larger
coefficients which is essential for the separation of sairce | :

reference
— — nGMCA®

from ill-conditioned mixtures as shown in figuié 1 with a © 20 o 60 80
large number of sources and in figurd B with a larger 4 for sampie
instance.

Fig. 7. Reference and estimated sources number 5 and 6
(NGMCAS, r = 15, ps = 80%, noiseless, samples 1 to 80)

D. Noisy Data

In this section, noise is addefd o the data and the input of iy, 1o set the parameters. The sparsity level for the sparse
; ; _ Arefqre ; ; . .

algorithms is therefor&” = A™S™ + Z, with Z a Gaussian 4ccelerated HALS is also provided from the ground truth
matrix with independent and uniformly distributed coeffius.  5rces and both algorithms are left running for 5000 itenat
In the experiments, the amount of noise ﬁAgeflgre;f% in term order to assure convergence. In all _this sectigf, = 1
of SNR on the datady, SNRy = 10 log,, (m) in the nNGMCA algorithms, as an effective trade-off between
nGMCA"e nGMCAS and nGMCA' are compared with noise removal and good separation of the sources.
Hoyer's [30], Kim & Park's algorithms[[2] and sparse acce- The comparisons also include an oracle which solves the

lerated HALS [32], which are competitive, publicly availab . . . . .
i L N non-negatively constrained inversion problemSrusing the
algorithms and take sparsity into account in different ways

_ ref.
(paragrapHI[-BR). There is no straightforward way to sdround-truth sourcea ™.
Kim & Park’s algorithm parameters and we therefore used -1 refor 2
the default parameters of the implementation. It is theh lef arsg>n(11|n QHY ATS]z + AlIS:- (26)
running until convergence. For Hoyer’s algorithm, no pigr B
applied onA and the sparsity ratio of is optimally tuned The sparsity parameter is set fo = 72°¢9 such as in
using the ground truth sources, since there is no automai@MCAS. This oracle stands for the optim&l which could
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Fig. 8. Reconstruction SDR (SBR Wl_th respect to the data SNR (SN tg the data SNR (SNR) (ps = 30%, r = 15, average of 192 simulations)
(ps = 10%, r = 15, average of 192 simulations)
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Fig. 11. Reconstruction SDR (SRR minus the oracle SNR, with respect

Fig. 9. Reconstruction SDR (SR minus the oracle SNR, with respect toto the data SNR (SNR) (ps = 50%, r = 15, average of 192 simulations)

the data SNR (SNR) (ps = 10%, » = 15, average of 192 simulations)

be recovered by nGMCRif the uncontaminated mixtures’ algorithm performs similarly to nGMC®for very noisy

were known. Of course, since the mixture are not known in data but it is important to remember that in our expe-
practice in BSS, the oracle yields unachievable resultsjtbu ~ riment, Hoyer’s algorithm and sparse accelerated HALS
provides a reference line for the comparisons and a limit for ~are provided with the ground truth sparsity ratios, which

the progression margin of the reconstructions. would not be available with such precision in practice.
For cleaner data, nGMCA and nGMCA?2"e begin to

b Summary of the experiments: overtake NGMCA, which corroborates the results of the

« Figured8[P anfl10: these benchmarks show the recons- yrevious section for noiseless data with large activation
truction results for 15 sources with activation rate of 10% | 5tes and few sources (figur® 1).
(figures[8 and19) and 30% (figufe]l10) —the lower the
activation rate, the better the sparse prior—with a varying, Figure[12: This benchmarks provides the reconstruction
level of noise contamination in the data. Figlife 9 10 results for noisy data (15dB), 15 sources, a low activation
display the loss in SDR compared to the oracle in orderto  (ate (30%) and a varying number of measurements
facilitate the visualization. In both cases, nGMEi& less The lower the number of measurements, the more difficult
sensitive to noise and outperforms the other algorithms.  the reconstruction is, since the redundancy can help

o Figures[IlL: this benchmark shows the same experience denoising and discriminating between the sources. While
than the previous ones but with a larger activation rate we have exhibited results for a large number of measure-
(50%) which is less favorable to the GMCA-based algo- ments so far, this shows that nGME€Also compares
rithms. NnGMC/ remains better in most settings. Hoyer's ~ favorably with other algorithms when the number of
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Fig. 12. Reconstruction SDR (SRR with respect to the number of (ps = 30%, r = 15, average of 192 simulations)
measurementsn

(SNRy=15dB, ps = 30%, r = 15, average of 72 simulations)

This shows that the automatic estimation of the noise level
within nGMCAS is appropriate, and that the initialization of
NGMCAS and nGMCA@Ve js robust.

E. Conclusion of the Experiments - the Compromise

Remember that the estimated sources ($eé [38]) can be
decomposed as follows:

5%t (27)

= Stargett Sinterf + Snoise T Sartifacts,

Any BSS algorithm must minimize at the same time inter-
ferences, noise and artifacts in order to achieve good perfo
mance. These three terms are strongly affected by the gparsi

« Interferences They intervene when the sources are not

B0
X\Q
25 &'Q e eIl
5
1= SR < 5X
TSNS
y)1 ] = >\\§\\ rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
= NS
: B SR
o” 157 s N - B
) —>— nGMCA ‘S \_'\: \_:\.\
--©--nGMCA" 9\\ ©.7 \%
10 1 + nGMCAnaive """"""""" ~\« """ \o
-A-- sparse acc. HALS (tuned) ‘N
51| =3 constr. Hoyer (tuned) N -
--Q--Kim&Park 0 .
oracle prior:
Q-+ T T T T T T
5 10 15 20 25 30 35

Fig. 13. Reconstruction SDR (SRR with respect to the number of sources
r (SNRy =15dB, ps = 30%, average of 48 simulations)

measurements is more restrained.

correctly, or not completely, separated. The tesi

is computed as the projection on all the sources but the
target. Sparsity, as a measure of diversity, can greatly
help getting a correct separation of the sources, hence
keeping this term relatively small. However, it can
still create interferences when the sparse model for the
sources departs from their actual structure, such as in
figure[d. Interferences then originate from an imperfect

Figure[I3: This benchmarks provides the reconstruction
results for sparse (30% activation rate) and noisy (15dB)
data, and a varying number of sourees'he complexity

of the separation rises with the number of sources hence®
the reconstruction results decrease with it for all algo-
rithms, but in any case, nGMCAperforms best for all

the values.

2) About the initialization and the separation:
Figure[14 provides the same results as figute 10 but compares
NGMCA"@¢ and nGMCA with version of them which are
initialized with A" andS™ and hence, with a perfect separa-
tion from the start. The initialized nGMCRis also provided
with the exact noise standard deviation. The difference ine
term of reconstruction quality between the regular algoni
and their optimally initialized version is extremely small

source prior and/or badly separated sources.

Noise snoise IS the part of the reconstruction that projects
on the noise but not the sources. Since the Gaussian
noise studied in this article spreads uniformly on all
the coefficients, while sparse sources concentrate their
energy on few coefficients, the thresholding effect
implied by ¢, and ¢; regularizations significantly
denoises the estimates. This reduces the importance
of the noise term and therefore helps obtaining better
reconstructions.

Artifacts for a given source, the artifactSariacts
gathers the residues which are neither explained by
the other sources nor the noise. We observed that the
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soft-thresholding operator introduces a bias which is the Menthone Cholesterol
main contributor to the artifacts. Again, this term will
increase when the sparsity level of the sources decrease
in such a case, the sparsity prior is not as well suited
to constrain the morphology of the sources. It is also
important to notice that even when the sources are ver
sparse, improperly constrained solutions are more akir A
to be contaminated with a higher level of artifacts.

|| T

0 2.5 5 7.5 10 0 2.5 5 7.5 10
ppm ppm
All these aspects interact with each other. As shown in Lactose Saccharose

this section, NnGMCA provides an effective trade-off between
noise, interferences and bias. Indeed, through the expatsn
we show that nGMCA outperforms other algorithms in most
scenarios, according to the SDR criterion which takes into
account these three origins of reconstruction deterimmati

For low activation rate (high sparsity), nGMCAperforms
definitely better than the other algorithms for a large range 55 5 75 10 0 25 5 75 10
of noise levels (figure$]18 and_]10) while in the extreme ppm ppm

noiseless case it performs quite reasonably. In this gettin _

the sparsity-enforcing, prior plays its role at: i) getting a '9- 15. NMR spectra of 4 chemical compounds.

good separation process with respect to other priors (ssich a
the ¢y pseudo-norm); this helps reducing the interferences, ii)
correctly denoising the sources; this tends to lower theeoi
contribution and artifacts.

NGMCAS is noticeably quite robust to departures from the
sparsity assumptions: it performs reasonably well witlydar
activation rates (figuresl 1 afd]11) but at the cost of a slight
bias of the estimated sources (figurés 6 [@anhd 7) which tends to
increase the contribution of the artifacts.

Additionally, the nGMCA algorithm provides good sepa- °
ration performance for a large range of numbers of sources' o0 o0 00 00
(figure[I3) as well as for ill-conditioned problems arisimgrfi sample
a lack of observations in figute112, or from correlated mixing
directions in figurd 3. These results can be explained by tRig. 16. Example of mixture (main component: lactose, $NR 15dB)
good separation power of tlie regularizer with an appropriate
tuning of the regularization parameter, in order to disegia

—% nGMCAS
sparse sources, together with the appropriate implementat | | & qucar |
gatvity nts: —# nGMCA™*
V. APPLICATION Y el N
In physical applications, molecules can be identified by _ - - - Kim & Park
their specific Nuclear Magnetic Resonance (NMR) spectra® oracle
. . ) . 4 R I T X
In this section, we simulate more realistic data, using NMR = A
spectra of real molecules. These spectra are well adapted fo ,x'”’ A_,./-"
the current settings since they are very sparse. The intioma I e AT A
about the peaks can be found in the Spectral Database for x,/” _,-:', p—L ':‘_"'_:"_'8
Organic Compounds, SDHS The spectra were convoluted == S 4 o -0
with a Laplacian with width at half maximum of 3 samples, in 0_%_'9“— kot " bty
order to account for the acquisition imperfections. The ham O ——" o
of samples is set tow = 1200. S is made ofr = 15 10 15 20 25 30
real spectra such as the ones displayed in fifute 15. Some SNR,, (dB)

sources can exhibit strong normalized scalar product, such

as cholesterol and menthone spectra for instance (0.68). T#9- 17. Reconstruction SDR (SRRwith respect to the data SNR (SN
mixing coefficients ofA™ are simulated in the same way as ™ = 19, 75 = 2, average of 96 synthetic NMR data simulations)
the previous sectiomp(s = 1, ax = 2). The observed data is

Y = A'®S"®" 1 Z whereZ is an i.i.d. Gaussian noise matrix. .
An example of measurement where the lactose spectrum is

“http:/iriodb01.ibase.aist.go.jp/sdbs/cgi- bin/drelex.cgi particularly strong is provided in figufe116.
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VIl. CONCLUSION

0 300 600 900 1200 In this paper we have introduced a new algorithm, nGMCA,
sample to tackle the problem of sparse non-negative BSS from noisy
mixtures. Inspired by a recent sparse BSS algorithm coined
GMCA, several extensions have been explored which imply
that a rigorous handling of both sparse and non-negative
In figure [I7, the number of measurements is limited t@onstraints are essential to avoid instabilities and sutbval
the number of sources, i.en = 15, which occurs in some solutions. In particular, one extension estimates both>anmi
applications; and the curves show the influence of noise &d a source matrix by exactly solving the non-negatively
the data. With so few measurements, denoising becomes meg@gstrained and; penalized sub-problems, using proximal
important, while at the same time the noise is underestiinat@chniques. Extensive comparisons have been carried tut wi
by the algorithm since the problem is less constrained. Btate-of-the-art algorithms on synthetic data; these exests
compensate this behaviars® is this time set to 2. show that this nGMCA extension is robust to noise contamina-
nGMCA""e fajls to obtain suitable results. Indeed, in thigion thanks to a dedicated thresholding strategy, withigéugé
setting the conditioning of the problem is extremely pooparameter tuning. The experiments also show that it pegorm
cond AT A) ~ 10* and nGMCA®?"¢ js not able to converge. well for a wide variety of settings, including problems with
On the other hand, nGMCAperforms from 3 to 5dB better highly correlated mixture directions, few observations eor
than all the other algorithms. This shows once again thiarge number of sources. Finally, the nGMCA algorithm ygeld
NGMCAS is particularly robust for a large variety of settingshighly competitive results on synthetic mixtures of real RM
An example of reconstruction is given in figure] 18, whergpectra.
NGMCA® s able to identify more peaks that sparse acceleratedy, this article however, the sparsity of the sources onlyihel
HALS. Its reconstruction is however not completely noisele i, the direct or sample domain. Future work will focus on
since there is always a trade-off to find between denoising;ending nGMCA to deal with the more general setting where
separation and bias. the sources are still non-negative in the direct domain abeit
In figure[19, the number of measurements varies from 15sparse in a different signal representation.
90. Since the conditioning greatly improves for larger nensb
of measurements, NnGMCA® results increase very quickly. APPENDIXA
But in any case, although nGMCA'® and sparse accelerated RESOLUTION OF THE SUBPROBLEMS
HALS obtain similar results to nGMCA when there are  Algorithm 8] solves the sub-problem i (I7) withp = 1
enough measurements, nGMEAtill performs better than all using FISTA [37].
the other tested algorithms in most of the settings.

Fig. 18. Example of reconstruction (lactose, SNR- 15dB)
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Algorithm 3 FISTA for the sub-problem irs

1: procedure UPDATES(Y, A, A\, Sp)
Require: Y, A, \

2:
3:

4.

6
7.
8

9:

initialize Ro=Sy, L= HATAHS, ti1=1, k=1
while not convergedlo

1
S, = [SOft% (Rk,1 — ZAT(Akal — Y))]+

1+ 4/14 483
fer =5
tr,—1
Ry =S, + : (Sk — Sk-1)
k41
k=k+1
end while
return S;

10: end procedure
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