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Sparse and Non-negative BSS for Noisy Data
Jérémy Rapin, Jérôme Bobin, Anthony Larue, and Jean-Luc Starck

firstname.lastname@cea.fr

Abstract—Non-negative blind source separation (BSS) has
raised interest in various fields of research, as testified bythe
wide literature on the topic of non-negative matrix factorization
(NMF). In this context, it is fundamental that the sources to
be estimated present some diversity in order to be efficiently
retrieved. Sparsity is known to enhance such contrast between
the sources while producing very robust approaches, especially
to noise. In this paper we introduce a new algorithm in order
to tackle the blind separation of non-negative sparse sources
from noisy measurements. We first show that sparsity and
non-negativity constraints have to be carefully applied onthe
sought-after solution. In fact, improperly constrained solutions
are unlikely to be stable and are therefore sub-optimal. The
proposed algorithm, named nGMCA (non-negative Generalized
Morphological Component Analysis), makes use of proximal
calculus techniques to provide properly constrained solutions.
The performance of nGMCA compared to other state-of-the-art
algorithms is demonstrated by numerical experiments encom-
passing a wide variety of settings, with negligible parameter
tuning. In particular, nGMCA is shown to provide robustness
to noise and performs well on synthetic mixtures of real NMR
spectra.

Index Terms—BSS, NMF, sparsity, morphological diversity

I. I NTRODUCTION

I N many applications, such as nuclear magnetic resonance
(NMR) spectrometry or mass-spectrometry, measurements

are often made of mixtures of physical components which
can be identified by their specific spectrum. Discriminating
between these elementary components or sources can be
made by acquiring several measurements at different times
or locations in order to observe different mixtures, yielding
multispectral data.

In this context, blind source separation (BSS) aims at
recovering the spectra from measurements in which the com-
ponents sources are mixed up together in an unknown way.
The instantaneous linear mixture model assumes that them

measurementsyi,· are linear mixture ofr sources with spectra
sj,· ∈ R

1×n. In other words, there exist mixture coefficients
(aij) such that:

yi,· =

r
∑

j=1

aijsj,· + zi,· , ∀i ∈ {1, ..,m}, (1)

where the vectorszi,· are added in order to account for
noise and model imperfections. This mixing model can be
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conveniently rewritten in matrix form:

Y = AS+ Z, (2)

where:

• m is the number of measurements.
• n is the number of samples of the sources.
• r is the number of sources.
• Y ∈ R

m×n is the measurements matrix in which each
row is a measurement.

• S ∈ R
r×n the unknown source matrix in which each row

is a spectrum/source.
• A ∈ R

m×r the unknown mixing matrix which defines
the contribution of each source to the measurements.

• Z ∈ R
m×n is an unknown noise matrix accounting for

instrumental noise and/or model imperfections.

With the notation‖X‖p = p

√

∑

ij |xij |p (Frobenius norm
for p = 2) and for independent and identically distributed
Gaussian noise, the maximum-likelihood estimate is then
provided by the standard problem:

argmin
A, S

1

2
‖Y −AS‖22. (3)

However, this problem presents an infinite number of solu-
tions which are not necessarily of any interest with respectto a
given application. It is therefore standard to constrainA and/or
S so as to limit the search to minima with a desired structure.
In this article, we focus on the assumption that bothA andS
are non-negative, yielding Non-negative Matrix Factorization
(NMF).

The non-negativity assumption arises naturally in many
applications, including text mining [1], clustering [2], audio
processing [3] and spectrometry [4]. Indeed, the sources in
S can for instance be mass or power spectra, which are non-
negative, and the mixtures can represent concentrations, which
cannot be negative either. The problem is written under the
constrained form:

argmin
A≥0

¯
, S≥0

¯

D(Y||AS). (4)

D(.||.) can be theℓ2 distance such as in (3) or any diver-
gence taking into account other priors on the noise [3], [5],
[6]. In this article, we focus on Gaussian noise and therefore
use theℓ2 distance.

The first publications dealing with this type of problems
comes from Paatero & Tapper [7] and Lee & Seung [5]
who provided convergent gradient descent type algorithms.
They emphasized on the importance of the non-negativity
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constraint which yields a “part-based” representation of the
data. Indeed, only additive/constructive, and not subtrac-
tive/destructive combinations are then allowed in order to
represent the data.

NMF shares a couple of indeterminacies with other BSS
problems:

• permutations: if π is a permutation,AS =
∑

i a·,isi,· =
∑

i a·,π(i)sπ(i),· so that one cannot hope to recover the
order of the rows ofS and columns ofA.

• scales: if ∆ ∈ R
r×r is diagonal with strictly positive

diagonal coefficients,AS = (A∆)(∆−1
S) so that if

(A,S) is a solution of (4),(A∆,∆−1
S) is also solution.

However, unlike problem (3) for which a solution can
be conveniently obtained through SVD decomposition for
instance, NMF is NP-Hard [8] and can present numerous
local minima. For this reason, additional constraints or priors
information can be helpful to recover the sought sources. In
the next sections, we impose a sparse prior on the sources,
together with their non-negativity.

Contributions

This article details and extends the preliminary work in [9]
with more complete experimental study and a more advanced
understanding of the algorithms. Specifically, noise is accu-
rately accounted for. It illustrates the proposed approachon
realistic data as well. In Section II, we first give a review of
the state-of-the-art NMF methods and sparse NMF techniques
proposed so far. Our approach aims at obtaining a better
management of the noise through an ad hoc regularization
strategy. For that purpose, we introduce in Section III an
extension of the sparse BSS algorithm GMCA (Generalized
Morphological Component Analysis) to tackle the problem of
sparse and non-negative BSS from noisy data. This extension
is motivated by the robustness of GMCA to additive noise
contamination.

We further show that a special care has to be taken to con-
strain both the sparsity and the non-negativity of the signals.
More specifically, improperly constrained methods can lead
to unstable and sub-optimal solutions. We therefore introduce
the non-negative GMCA (nGMCA) which has the ability to
provide exact solutions of the constrained and penalized sub-
problems, thanks to proximal calculus methods. Last but not
least, the proposed algorithm is a simple to use technique since
it barely requires any parameter tuning.

In Section IV the proposed approach is compared with
standard NMF and sparse NMF algorithms. Exhaustive experi-
ments show that nGMCA allows for better robustness to noise,
large numbers of sources and the conditioning of the mixing
matrix, and therefore outperforms most algorithms for a broad
variety of settings. Finally, in section V, we illustrate how
nGMCA performs also well to separate out synthetic NMR
spectra.

II. STATE-OF-THE-ART NMF METHODS

A. Standard NMF algorithms

The minimization of the cost function from Problem (4)
is generally solved by alternately updatingA andS. Indeed,

while this problem is not convex, the sub-problem inA writes:

argmin
A≥0

¯

D(Y||AS) (5)

and the equivalent sub-problem inS are often convex and
their minimization is therefore much easier. These alternating
updates are then repeated for a large number of iterations.

The first converging NMF algorithm, designed by Lee &
Seung [5], [10], updatesA andS with a weighted gradient
descent. The weights insure that the gradient steps do not
increase the cost function in (4) and keepA and S non-
negative, since the update can be recast as a pointwise product
of non-negative matrices. With⊙ the element-wise matrix
multiplication and⊘ the element-wise matrix division, the
update rule forA and S in the case of a least square cost
function can be written as follows:

Ak+1 ← Ak ⊙ (YS
T
k )⊘ (AkSkS

T
k ),

Sk+1 ← Sk ⊙ (AT
k+1Y) ⊘ (AT

k+1Ak+1Sk). (6)

The multiplicative update rule is usually considered as a
standard because of its convenience, with no parameter to
set. As well, it was the first convergent algorithm proposed
to solve the NMF problem. However, it has been shown to be
slow and that the monotone decrease of the algorithm does not
insure convergence to a local minimum [11], [12]. First-order
methods are also used in projected/proximal gradient descent
algorithms [13], interior point gradient [14], and quasi-Newton
algorithms [15].

Another standard approach is the Alternating Least Square
(ALS) algorithm explained in [7], which solves exactly the
unconstrained cost function with a pseudo-inverse and projects
the result on the non-negativity constraint:

Ak+1 ←
[

YS
T
k (SkS

T
k )

−1
]

+
,

Sk+1 ←
[

(AT
k+1Ak+1)

−1
A

T
k+1Y

]

+
, (7)

with the operator[x]+ = max(x, 0). This algorithm is also
widely used due to its easy implementation and its efficiency
in decreasing the cost function. However, it does not neces-
sarily converge. In Hierarchical ALS (HALS, [16], [17]), the
columns ofA and rows ofS are processed one by one. This
yields a simple and fast optimization process to solve the
constrained sub-problems.

It is however possible to solve exactly the constrained sub-
problems of type (5) at each iteration as follows:

Ak+1 ← argmin
A≥0

¯

D(Y||ASk),

Sk+1 ← argmin
S≥0

¯

D(Y||Ak+1S). (8)

In [18] for instance, Lin uses a projected gradient descent sub-
routine to solve the sub-problems. Guan et al. later provided
a faster first-order method [19].

It has to be mentioned that other approaches based on
geometrical methods have also been investigated to solve
NMF problems[20], [21], [22]; these approaches are however
generally very sensitive to noise.
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As was previously stated, non-negativity is not always
sufficient to recover the actual sources and mixing matrix.
In non-negative ICA [23], one additionally enforces the in-
dependence of the sources. However, this approach is also
sensitive to noise. Sparsity, on the other hand, has been shown
to provide robustness to noise. We give a short introduction
about this prior in the next section, before presenting sparse
NMF algorithms.

B. Sparsity & NMF

1) An Introduction to Sparsity:

Sparsity constraints have already proved their efficiency to
solve a very wide range of inverse problems (see [24] and
references therein). In the context of BSS, sparsity has been
shown to increase the diversity between the sources which
greatly helps their separation [25], [26], [27]. In the wide
sense, a sparse signal is such that its information content is
concentrated into only a few large non-zero coefficients, or
can be well approximated in such a way. The sparsity of a
signal however depends on the basis or dictionary in which it
is expressed. For instance, a sine wave will be sparse in the
Fourier domain since it can be encoded with one coefficient in
this domain, while in the direct domain most of its coefficients
are non-zero: the more a basis captures the structures of a
signal, the sparser will be in such a basis. In this article we
will however only focus on sparsity in the direct domain.

2) Sparse NMF Algorithms:
In many applications the non-negativity and sparsity of

the sources arise naturally as for instance in MS or NMR
spectroscopy. Recent works have emphasized the fact that this
knowledge can indeed help perform more relevant factoriza-
tions [2], [28], [29].

In [2], Kim & Park have proposed to formulate the NMF
problem as:

argmin
A≥0

¯
,S≥0

¯

‖Y −AS‖22 + η‖A‖22 + β

n
∑

t=1

‖s·,t‖21. (9)

In this equation, the sparsity-enforcing regularizer
∑n

t=1 ‖s·,t‖21 favors solutions where a single source
dominates at each sample. However, it does not enforce the
intrinsic sparsity of each of the sources. The authors made
use of an active-set method to solve this problem. This
technique can solve exactly each constrained sub-problem in
a similar way than in Problem (8). However, it is not clear
how the parametersη andβ must be set. The authors provide
an implementation on their website1.

In [15], Zdunek & Cichocki used a similar regularization
term for S but with β decreasing during the algorithms in
order to be more robust to local minima, and without exactly
solving the sub-problems.

In [29], Hoyer used a sparse regularization of the form
λ‖S‖1 that uniformly enforce the sparsity ofS. The author

1http://www.cc.gatech.edu/∼hpark/nmfsoftware.php

later used a different type of sparse prior in [30] defined for
some vectorx ∈ R

n as follows:

sparseness(x) =

√
n− ‖x‖1

‖x‖2√
n− 1

. (10)

This sparseness function goes from 1 whenx is perfectly
sparse —only 1 active coefficient— to 0 when it is not at
all —all coefficients active, with the same value. The idea is
therefore to optionally impose a chosen level of sparsity for
the sources and/or the mixtures:















argmin
A≥0

¯
,S≥0

¯

‖Y −AS‖22,

sparseness(a·,i) = λA, ∀i (optional),

sparseness(si,·) = λS , ∀i (optional).

(11)

This problem is solved by using projected gradient descent
steps followed by a projection on the sparseness constraint
if the constraint is active and with a multiplicative update
otherwise. However, the constraint is directly related to the
expected sparseness level of the sources which is not neces-
sarily known beforehand. Furthermore, hard-constrainingthe
sparseness level may make the solution very dependent on the
sparseness parametersλA andλS . An implementation of this
algorithm is available online2.

Sparse HALS [16], [17] aims at solving Problem (4) with
a sparsity penalization of the formλ‖S‖1. In the case of an
ℓ2 data fidelity term, this problem can be rewritten as:

argmin
a·,i≥0, si,·≥0

‖Y −
r

∑

i=1

a·,i si,·‖22 + λ

r
∑

i=1

(

n
∑

j=1

si,j
)

. (12)

In this algorithm, the columns ofA and lines ofS are updated
one by one. As each sub-problem admits a straightforward
analytic solution and no matrix inversion is required, the
HALS algorithm turns to be a simple and fast NMF solver. In a
recent implementation of the HALS [31], [32]3, the parameter
λ of is automatically managed in order to obtain a required
sparsity rate (defined as the ratio of coefficients smaller than
10−6 times the largest coefficient).

It is important to note that none of these algorithms makes
use of the sparse prior explicitly to deal with additive noise;
therefore they may not be robust in case of noise contamina-
tion.

III. N ON-NEGATIVE GENERALIZED MORPHOLOGICAL

COMPONENT ANALYSIS

A. A first naive extension

In the last decade the use of sparsity in the field of BSS
has been widely explored. In [27], [33], the authors have intro-
duced a sparsity-enforcing BSS technique coined Generalized
Morphological Component Analysis (GMCA) which has been
shown to be effective at separating out sparse signals from
noisy data. Morphological diversity has been defined in [33]
as a mean to characterize separable sources based on their

2http://www.cs.helsinki.fi/u/phoyer/software.html
3https://sites.google.com/site/nicolasgillis/code
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geometrical structures or morphologies : separable sources
with different morphologies do not share the same significant
coefficients in a given sparse representation. When sparsity
holds in the direct domain this means that the entries of
each source with the most significant amplitudes should be
different. This does not mean that their supports are disjoint
but rather their most significant elements should be disjoint.

The objective of this paper is to extend this sparsity-
enforcing BSS algorithm to deal with non-negative mixtures.
Following [27], the GMCA with an additional non-negative
constraint estimates the mixing matrix and the sources by
minimizing the following optimization problem:

argmin
A≥0

¯
, S≥0

¯

1

2
‖Y −AS‖22 + λ‖S‖0. (13)

The ℓ0 pseudo-norm counts non-null coefficients inS and
therefore limits their number, thus enforcing the sparsityof
S. In the vein of Alternating Least Squares, GMCA alter-
nately and iteratively estimates the unconstrained least square
solution and projects on the non-negativity constraint, with
an additional thresholding step for the sources in order to
keep only the most significant coefficients. These updates are
provided in lines 6 and 7 ofAlgorithm 1 where the hard-
thresholding operator Hardλ is defined as follows:

Hardλ : x 7→
{

0 if |x| < λ,

x otherwise.
(14)

It has been emphasized in [27] that one crucial feature
of GMCA is the use of a decreasing thresholdλ. At the
beginning, this parameter is first set to a high value and then
decreases throughout the iterative down to a final value that
depends on the noise level. Simulated annealing has already
inspired decreasingℓ2 and ℓ1,2 regularizations in NMF [15],
[34]. The motivation behind a decreasing threshold is however
different:

1) first estimating the mixing matrix from the entries of the
sources that have the highest amplitude and thus likely
to belong to only one source.

2) help removing the smallest coefficients which are more
sensitive to noise contamination.

In the same way as in the original GMCA, for a source with
index i, the thresholdλi is set toτσσsource

i whereσsource
i is

an empirical estimator (the median absolute deviation) of the
source noise variation.τσ is chosen at each iteration in order
to obtain a linear increase of the number of active coefficients
in S, so as to refine the estimation while maintaining some
continuity. The finalτσ, τ∞σ , is usually taken in the range
[1, 3] as a trade-off between sufficient denoising and correct
separation. Indeed, for a sparse signal contaminated by i.i.d.
Gaussian noise with standard deviationσ, thresholding at 3σ
rejects noise samples with probability 0.99. Still, in BSS,too
large a final threshold could leave some leakage between the
sources. This nGMCA will be considered as anaiveextension
of GMCA and used as a reference algorithm. It will be coined
naive non-negative GMCA (nGMCAnaive).

Algorithm 1 : nGMCAnaive

Require: Y, K
1: initialize A andS
2: for k ← 1,K do
3: Normalize the columns ofAk−1

4: Sall = (AT
k−1Ak−1)

−1
A

T
k−1Y

5: Select the thresholdsλk consideringSall

6: Sk ←
[

Hardλk
(Sall)

]

+

7: Ak ←
[

YS
T
k (SkS

T
k )

−1
]

+
8: end for
9: return AK , SK

Limitations: It is very important to notice that this
algorithm, as based on alternating projected least-squares, is
only a proxy which generally does not converge to a stable
couple (A,S), hence the “naive” denomination. This means
that the solution given by this type of algorithm may not be
stable and be sub-optimal. The solution may not provide the
sparsest non-negative sources. This is due to the fact that
it deals with the data fidelity term and the constraints in a
completely independent way, thus not exactly solving the sub-
problems such as in Problem (8).

Next, we therefore propose an alternative algorithm which
exactly solves the non-negatively constrained andℓ1 penalized
sub-problems and should allow for more robust and stable
solutions.

B. nGMCA

We first propose to tackle the sparse non-negative BSS
problem using anℓp sparse regularization withp ∈ {0, 1}
such as in (13). This then amounts to solving the following
optimization problem:

argmin
A, S

1

2
‖Y −AS‖22 + λ‖S‖p + i+(S) + i+(A), (15)

where i+ is the characteristic function of the non-negative
orthant, which enforces the non-negative constraints. The
characteristic function of the non-negative orthant is defined
as:

i+ : x 7→
{

0 if x ≥ 0,

+∞ otherwise.
(16)

In the previous section, we emphasized that a naive approach
based on projected least-square does not necessarily provide
a stable and thus optimal solution to the problem. To go
beyond the aforementioned naive extension of GMCA, one
has to alternatively and exactly minimize the constrained sub-
problems inA andS so as to obtain stable solutions with the
sought structure. Let’s first have a look at the sub-problem in
S; assumingA is fixed, the sources are estimated as follows:

argmin
S

1

2
‖Y −AS‖22 + λ‖S‖p + i+(S). (17)

This problem minimizes a function which can be split into
the sum of a differentiable quadratic term and two non-smooth
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and non-differentiable terms: theℓp norm and the characteristic
function of the non-negative orthanti+. The choicep = 1
provides the closest convex surrogate to the sparseℓ0 norm
and in this case, the problem admits a unique solution which,
however, cannot be formulated explicitly. Fortunately, thanks
to recent advances in proximal calculus and splitting tech-
niques, efficient algorithms can be designed to solve this type
of problems.

1) Proximal calculus and splitting methods:Proximal split-
ting methods [35] aim at minimizing convex functions which
may not be differentiable. The idea of these methods is to
split the cost function into the sum of several convex functions
which are alternately locally minimized. Many problems can
be decomposed into the general form:

argmin
S

f(S) + g(S), (18)

wheref(S) is a smooth and convex data fidelity term; and
g(S) a convex regularization term which may not be differen-
tiable.

Sincef is differentiable, it can be locally minimized with
a gradient descent step. Wheng is not, but if it is convex,
proper and lower semi-continuous, one can define the proximal
operator ofg:

proxg : x 7→ argmin
y

1

2
‖y − x‖22 + g(y). (19)

In this case, the following process called forward-backward
splitting algorithm (FBS, see [35]):

xk+1 = prox1
L
g(xk −

1

L
∇f(xk)) (20)

has been shown to converge to the solution of Problem (18)
if ∇f is L-Lipschitz.

The update ofA is made by solving the following problem:

argmin
A

1

2
‖Y −AS‖22 + i+(A), (21)

which can be recast in the general form (18) by defining
f(A) = 1

2‖Y −AS‖22 andg(A) = i+(A). In this case, the
gradient off is trivially equal to:∇f(A) = (AS−Y)ST , it
is L-Lipschitz with L = ‖SST ‖s where‖ . ‖s is the matrix
spectral norm. The proximal operator ofg is the projector
onto the non-negative orthant[ . ]+. The FBS then reduces to
a projected gradient algorithm similar to the updates in [18].

Similarly, the update ofS in Problem (17) withp = 1 can be
solved with FBS, withg(S) = λ‖S‖1 + i+(S). The proximal
operator of this function also takes an explicit form usually
termed skewed-position soft-thresholding operator:

proxλ‖ . ‖1+i+( . ) : x 7→
[

Softλ(x)
]

+
, (22)

where the soft-thresholding operator is defined as:

Softλ : x 7→ sign(x)[|x| − λ]+. (23)

This soft-thresholding, induced by theℓ1 norm, is well-
known to introduce a bias. It is therefore customary to use

p = 0. In the FBS this is made by replacing the soft-
thresholding operator with the hard-thresholding. Rigorously,
it is not a proximal operator since‖ . ‖0 is not convex
nor semi-continuous; this means that there is no convergence
guarantee of the forward-backward splitting algorithm when
hard-thresholding is used.

2) Description of nGMCA:In the same vein as the naive
nGMCA introduced in the previous section,A and S are
alternately updated with the exception that, now, each sub-
problem is solved exactly, which guarantees that the solution
(A,S) is stable and has the sought structure. The main steps of
the algorithm are given inAlgorithm 2 . One must notice that
exactly solving each sub-problem is costly since it requires
sub-iterations at each step. Fortunately, it has been recently
showed that the speed of convergence of the FBS algorithm
can be greatly improved by using the multi-step techniques
introduced by Nesterov [36]. Both steps have the algorithm
make use of an accelerated version of the FBS algorithm [37].
A detailed description of how this accelerated algorithm is
used to updateS is given in appendix A.

A special care has to be given to renormalizations since
the ℓ1 regularization tends to reduce the norm ofS. More
specifically, since the norm ofA can keep increasing to
compensate the reduction of the norm ofS, the algorithm can
converge to the degenerate solutionS = 0

¯
andA =∞. In the

algorithm, the columns ofA are therefore renormalized toℓ2
unity before updatingS. This also assigns to the coefficients
of S their overall importance in the estimation ofY.

Following the general thresholding strategy used in GMCA
and its extensions, the thresholdλ decreases from step to step.
However, the strategy used in this version nGMCA differs
from the one used in the naive approach. In the former, the
threshold is applied to the sources as defined by their least-
square estimate. On the contrary the threshold in nGMCAS

applies at each gradient descent step. The update rule ofS in
the sub-iterations of nGMCAS (without the acceleration) can
be written as follows:

Sk+1 ←
[

Sk −
1

L

(

A
T (ASk −Y)− λ1rn

)]

+
, (24)

with 1rn ∈ R
r×n containing only ones. Iterative soft-

thresholding therefore operates on the gradient and not directly
on the source values like in the naive nGMCA. Also, unlike
with hard-thresholding, a variation ofλ affects all active coef-
ficients. Our strategy consists in starting with a large parameter
λ0 = ‖AT

0 (A0S0 −Y)‖∞ which forces the coefficients ofS
to be non-increasing in the first iteration. The threshold is
then linearly decreased in order to refine the solution while
preserving continuity, down toτ∞σ σ

grad
i whereσgrad

i is this time
an estimate of the noise level in theith row of the gradient.

We also implemented a version of nGMCA using hard-
thresholding aiming at solving Problem (15) with anℓ0
pseudo-norm instead of theℓ1 norm for the regularization.
The superscriptH andS are specified to differentiate between
respectively the hard- and the soft-thresholding versions.
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Algorithm 2 : nGMCAS

Require: Y, K
1: initialize A0, S0 andλ1

2: for k ← 1,K do
3: Normalize the columns ofAk−1

4: Sk ← argmin
S≥0

¯

1
2‖Y −Ak−1S‖22 + λk‖S‖1

5: Ak ← argmin
A≥0

¯

1
2‖Y −ASk‖22

6: Selectλk+1 ≤ λk

7: end for
8: return AK , SK

IV. N UMERICAL EXPERIMENTS

In this section we first compare the introduced algorithms
and classical algorithms on noiseless data, in order to bet-
ter understand their behaviors, and then we benchmark the
GMCA-based algorithms with state-of-the-art sparse algo-
rithms on noisy data. The settings of the simulations and
the evaluation methodology are described in the following
sections.

A. Settings

Reference matricesAref andSref coefficients are uniformly
generated respectively from the distribution of|BpA

GαA
| and

|BpS
GαS
|, where:

• Bp is a Bernoulli random variable with activation parame-
ter p, i.e. it equals 1 with probabilityp and 0 otherwise.

• Gα is a centered and reduced Generalized Gaussian
random variable with shape parameterα.

In practicep andα control 2 kinds of sparsity. The Bernoulli
parameter affects the number of actual zeros inA and S

and therefore exact sparsity. On the other hand,α selects the
sharpness of the distribution ofGα, which pdf is proportional

to e
−|x−µ|α

β (with µ = 0 and β dependent on the standard
deviation which is fixed to 1 here). As special cases, forα = 2,
Gα is a Gaussian random variable, and withα = 1 it is a
Laplacian random variable. Withα ≤ 1, Gα is considered as
approximately sparse —the generated signals become sparser
whenα decreases.

In the experiments and unless stated otherwise, the standard
settings will bepA = 1, αA = 2, αS = 1 with m = 200
measurements ofn = 200 samples.

B. Evaluation of the Results

In order to evaluate and compare the algorithms, a scale and
permutation invariant criterion is needed. This criterionhas to
be well adapted to measure the reconstruction performance.
In many applications, the signal of interests are the sources.
More precisely, it has to be noticed that noise-reducing priors
are applied on the sources only. This implies that a good
estimate of the sources should be the least contaminated by
noise and interferences from the other sources. Moreover, in
a noisy setting, a perfectly estimated mixing matrixA do
not necessarily yield a good estimate of the sources: indeeda

slightly degraded mixing matrix may be preferred if it leads
to less noisy sources. These points make criteria based on this
variable not adequate to measure a good separation. In the
next, we will focus on estimating the separation performance
using a criterion on the sourcesS.

In [38], Vincent et al. have proposed different criteria to
evaluate the performance of blind source separation tech-
niques. In the noisy setting, they propose separating each
estimated sourcesest into the sum of several components:

sest= starget+ sinterf + snoise+ sartifacts,

with starget the projection ofsest on the reference source it
estimates; andsinterf + snoise+ sartifacts, in its orthogonal space,
respectively standing for interferences with other sources,
contamination with noise and contamination with algorithm
artifacts. They design an SNR-type energy ratio criterion
named Source Distortion Ratio (SDR):

SDR(sest) = 10 log10

( ‖starget‖22
‖sinterf + snoise+ sartifacts‖22

)

. (25)

As stated in [38], this criterion is a global performance mea-
sure taking into account all the elements of the reconstruction,
i.e. a correct separation (lowsinterf), efficient denoising (low
snoise) and little artifacts left by the algorithm (lowsartifacts).
Also, this criterion has the advantage of being scale-invariant.
In the next, the SDR will be used to evaluate the separation
performance of the proposed technique with respect to state-
of-the-art methods.

Because of the permutation invariance, one cannot know
a priori which estimated source stands for which reference
source. Reference and estimated sources are therefore paired
one-to-one in order to obtain the best mean SDR. The SDR
on S (coined SDRS) has be used in the experiments below
in order to assess the performances of the algorithms. In the
following, the SDR has been evaluated from several Monte-
Carlo simulations; the number of simulations will be given in
each figure’s caption.

C. Behavioral Study: Noiseless Data

In this first experimental section, nGMCAnaive, nGMCAH

and nGMCAS are tested on data with a large activation rate
for S (pS = 80%) and therefore not the very sparse sources
for which they are designed. These settings are not favorable
for the nGMCA algorithms, which allows to emphasize the
differences of behavior between them. Since the problem
reduces to an exact factorization when there is no noise,
τ∞σ is set to 0, hence the final threshold in this case is
identical for all the algorithms. ALS [7], the Multiplicative
Update [10] and (non-sparse) accelerated HALS [31] are
also performed as standard algorithms to play the role of
references. The maximum number of iterations were set to
large enough numbers in order to assure the convergence of
all the algorithms. Precisely, the number of iterations is set to
5000 for HALS, 40,000 for the Multiplicative Update, 500 for
ALS and the GMCA-based algorithms, with a maximum of
80 sub-iterations in nGMCAS and nGMCAH).
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Fig. 1. Reconstruction SDR (SDRS ) with respect to the number of sources
r (pS = 80%, noiseless, average of 48 simulations)

1) Summary of the experiments:

• Figure 1: this benchmark shows the influence of the
number of sources on the estimation ofS. This parameter
is of course important since the more numerous they
are, the more difficult they are to separate. nGMCAnaive

outperforms ALS, while withτ∞σ = 0, the final iterations
are identical for both algorithms. The thresholding stra-
tegy of the first stage of the iterations therefore proves
its efficiency for the separation. Though nGMCAS is
not performing as well as nGMCAH and nGMCAnaive

with few sources, it is much more robust than all the
algorithms with large numbers of sources. This is further
detailed in paragraph IV-C3.

• Figure 2: this figure exhibits the evolution of the cost
function ‖Y − AS‖22 throughout the iterations, for 40
sources and a large activation rate (pS = 80%). In the
refinement phase, the sparsity parameterλ is left constant
at its final valueλ∞ = τ∞σ σ = 0 in order to observe
the convergence of the algorithms and the possibility
to enhance the reconstruction. nGMCAS converges to a
lower value than nGMCAH while nGMCAnaive does not
converge at all. An explanation is provided in paragraph
IV-C2.

• Figure 3: this benchmark shows the influence ofA
ref

coefficients distribution on the reconstruction. Modifying
the parameterαA is a way to make its distribution
more or less sparse. A sparserA

ref yields less correlated
columns and hence a better conditioning of the problem
(table IV-C1) which simplifies the separation. nGMCAS

tends to be more robust than the other algorithms to ill-
conditioned mixtures.

2) Properly accounting for the constraints:
The differences of performance between nGMCAnaive and

nGMCAS for large numbers of sources and large activation
rates in figure 1 can be understood by observing the evolution
of the cost function during the iterations (figure 2). Properly
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Fig. 4. Conditioning ofAref with respect toαA

(r = 35, average of 48 simulations)

applied non-negativity and sparsity constraints can help re-
fining the reconstruction ofA andS once the sources have
been sufficiently disambiguated. Indeed, since nGMCAnaive

does not exactly solve the constrained cost function, it does
not necessarily neither converge to a minimum nor lead to a
stable solution, while nGMCAS does.

3) ℓ1 Vs ℓ0:
The explanation of the differences between nGMCAS and

nGMCAH lies in the properties of hard- and soft-thresholding.
This is summarized in figure 5 which shows thresholding
applied to three two-dimensional pointsx = (x1, x2). When
a point —a column ofS— has two large coefficients,
i.e. when the point is in the quadrant, it suffers a bias
with soft-thresholding while it remains untouched with hard-
thresholding. On the other hand, the shift induced by soft-
thresholding increases the ratio of its larger coefficient over
its smaller one, which helps reinforce the affectation of a
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Fig. 5. Difference between soft- and hard-thresholding (thresholding atτ )

point to the direction of its larger coefficient (in this case: x2).
With y = (y1, y2) the thresholded point, this means here that
y2

y1
> x2

x1
. While the lesser bias created by hard-thresholding

can lead to better accuracy, reinforcing the affectation of
each point to a direction with soft-thresholding leads to better
separation of the sources.

With few sources, both nGMCAS and nGMCAH separate
correctly as displays figure 1. The bias is therefore costly
for nGMCAS since it leads to some compensation behaviors:
with 80% activation rate, nearly every coefficient suffers the
bias and one source tends to compensate for all the others’
with a positive offset. This can be seen on source 5 in figure
7. The offset correlates with all the ground truth sources
as can be observed from the correlation matrix in figure 6:
estimated source5 gathers all the thresholded coefficients of
the other estimated sources and is therefore affected by the
interferences.

On the other hand, the effect of soft-thresholding on the
coefficients amplitude helps giving more weight to larger
coefficients which is essential for the separation of sources
from ill-conditioned mixtures as shown in figure 1 with a
large number of sourcesr; and in figure 3 with a largeαA for
instance.

D. Noisy Data

In this section, noise is added to the data and the input of the
algorithms is thereforeY = A

ref
S

ref + Z, with Z a Gaussian
matrix with independent and uniformly distributed coefficients.
In the experiments, the amount of noise is given in term
of SNR on the dataY, SNRY = 10 log10

(

‖Aref
S

ref‖2
2

‖Y−ArefSref‖2
2

)

.

nGMCAnaive, nGMCAS and nGMCAH are compared with
Hoyer’s [30], Kim & Park’s algorithms [2] and sparse acce-
lerated HALS [32], which are competitive, publicly available
algorithms and take sparsity into account in different ways
(paragraph II-B2). There is no straightforward way to set
Kim & Park’s algorithm parameters and we therefore used
the default parameters of the implementation. It is then left
running until convergence. For Hoyer’s algorithm, no prioris
applied onA and the sparsity ratio ofS is optimally tuned
using the ground truth sources, since there is no automatic
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Fig. 6. Correlation matrix between the estimated and reference sources, in
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(SestSrefT after normalization, nGMCAS, r = 15, pS = 80%, noiseless)
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Fig. 7. Reference and estimated sources number 5 and 6
(nGMCAS, r = 15, pS = 80%, noiseless, samples 1 to 80)

way to set the parameters. The sparsity level for the sparse
accelerated HALS is also provided from the ground truth
sources and both algorithms are left running for 5000 iterations
in order to assure convergence. In all this section,τ∞σ = 1
in the nGMCA algorithms, as an effective trade-off between
noise removal and good separation of the sources.

The comparisons also include an oracle which solves the
non-negatively constrained inversion problem inS using the
ground-truth sourcesAref:

argmin
S≥0

¯

1

2
‖Y −A

ref
S‖22 + λ‖S‖1. (26)

The sparsity parameter is set toλ = τ∞σ σgrad such as in
nGMCAS. This oracle stands for the optimalS which could
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the data SNR (SNRY ) (pS = 10%, r = 15, average of 192 simulations)

be recovered by nGMCAS if the uncontaminated mixturesAref

were known. Of course, since the mixture are not known in
practice in BSS, the oracle yields unachievable results, but it
provides a reference line for the comparisons and a limit for
the progression margin of the reconstructions.

1) Summary of the experiments:
• Figures 8, 9 and 10: these benchmarks show the recons-

truction results for 15 sources with activation rate of 10%
(figures 8 and 9) and 30% (figure 10) —the lower the
activation rate, the better the sparse prior— with a varying
level of noise contamination in the data. Figure 9 and 10
display the loss in SDR compared to the oracle in order to
facilitate the visualization. In both cases, nGMCAS is less
sensitive to noise and outperforms the other algorithms.

• Figures 11: this benchmark shows the same experience
than the previous ones but with a larger activation rate
(50%) which is less favorable to the GMCA-based algo-
rithms. nGMCAS remains better in most settings. Hoyer’s
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Fig. 10. Reconstruction SDR (SDRS ) minus the oracle SNR, with respect
to the data SNR (SNRY ) (pS = 30%, r = 15, average of 192 simulations)
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Fig. 11. Reconstruction SDR (SDRS ) minus the oracle SNR, with respect
to the data SNR (SNRY ) (pS = 50%, r = 15, average of 192 simulations)

algorithm performs similarly to nGMCAS for very noisy
data but it is important to remember that in our expe-
riment, Hoyer’s algorithm and sparse accelerated HALS
are provided with the ground truth sparsity ratios, which
would not be available with such precision in practice.
For cleaner data, nGMCAH and nGMCAnaive begin to
overtake nGMCAS, which corroborates the results of the
previous section for noiseless data with large activation
rates and few sources (figure 1).

• Figure 12: This benchmarks provides the reconstruction
results for noisy data (15dB), 15 sources, a low activation
rate (30%) and a varying number of measurementsm.
The lower the number of measurements, the more difficult
the reconstruction is, since the redundancy can help
denoising and discriminating between the sources. While
we have exhibited results for a large number of measure-
ments so far, this shows that nGMCAS also compares
favorably with other algorithms when the number of
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measurements is more restrained.

• Figure 13: This benchmarks provides the reconstruction
results for sparse (30% activation rate) and noisy (15dB)
data, and a varying number of sourcesr. The complexity
of the separation rises with the number of sources hence
the reconstruction results decrease with it for all algo-
rithms, but in any case, nGMCAS performs best for all
the values.

2) About the initialization and the separation:
Figure 14 provides the same results as figure 10 but compares
nGMCAnaive and nGMCAS with version of them which are
initialized withA

ref andSref and hence, with a perfect separa-
tion from the start. The initialized nGMCAS is also provided
with the exact noise standard deviation. The difference in
term of reconstruction quality between the regular algorithms
and their optimally initialized version is extremely small.
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Fig. 14. Reconstruction SDR (SDRS ) with respect to the data SNR (SNRY )
(pS = 30%, r = 15, average of 192 simulations)

This shows that the automatic estimation of the noise level
within nGMCAS is appropriate, and that the initialization of
nGMCAS and nGMCAnaive is robust.

E. Conclusion of the Experiments - the Compromise

Remember that the estimated sources (see [38]) can be
decomposed as follows:

sest= starget+ sinterf + snoise+ sartifacts, (27)

Any BSS algorithm must minimize at the same time inter-
ferences, noise and artifacts in order to achieve good perfor-
mance. These three terms are strongly affected by the sparsity
prior:

• Interferences: They intervene when the sources are not
correctly, or not completely, separated. The termsinterf

is computed as the projection on all the sources but the
target. Sparsity, as a measure of diversity, can greatly
help getting a correct separation of the sources, hence
keeping this term relatively small. However, it can
still create interferences when the sparse model for the
sources departs from their actual structure, such as in
figure 7. Interferences then originate from an imperfect
source prior and/or badly separated sources.

• Noise: snoise is the part of the reconstruction that projects
on the noise but not the sources. Since the Gaussian
noise studied in this article spreads uniformly on all
the coefficients, while sparse sources concentrate their
energy on few coefficients, the thresholding effect
implied by ℓ0 and ℓ1 regularizations significantly
denoises the estimates. This reduces the importance
of the noise term and therefore helps obtaining better
reconstructions.

• Artifacts: for a given source, the artifactssartifacts

gathers the residues which are neither explained by
the other sources nor the noise. We observed that the
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soft-thresholding operator introduces a bias which is the
main contributor to the artifacts. Again, this term will
increase when the sparsity level of the sources decreases:
in such a case, the sparsity prior is not as well suited
to constrain the morphology of the sources. It is also
important to notice that even when the sources are very
sparse, improperly constrained solutions are more akin
to be contaminated with a higher level of artifacts.

All these aspects interact with each other. As shown in
this section, nGMCAS provides an effective trade-off between
noise, interferences and bias. Indeed, through the experiments,
we show that nGMCAS outperforms other algorithms in most
scenarios, according to the SDR criterion which takes into
account these three origins of reconstruction deterioration.
For low activation rate (high sparsity), nGMCAS performs
definitely better than the other algorithms for a large range
of noise levels (figures 8 and 10) while in the extreme
noiseless case it performs quite reasonably. In this setting,
the sparsity-enforcingℓ1 prior plays its role at: i) getting a
good separation process with respect to other priors (such as
the ℓ0 pseudo-norm); this helps reducing the interferences, ii)
correctly denoising the sources; this tends to lower the noise
contribution and artifacts.

nGMCAS is noticeably quite robust to departures from the
sparsity assumptions: it performs reasonably well with large
activation rates (figures 1 and 11) but at the cost of a slight
bias of the estimated sources (figures 6 and 7) which tends to
increase the contribution of the artifacts.

Additionally, the nGMCAS algorithm provides good sepa-
ration performance for a large range of numbers of sources
(figure 13) as well as for ill-conditioned problems arising from
a lack of observations in figure 12, or from correlated mixing
directions in figure 3. These results can be explained by the
good separation power of theℓ1 regularizer with an appropriate
tuning of the regularization parameter, in order to disentangle
sparse sources, together with the appropriate implementation
of the non-negativity constraints.

V. A PPLICATION

In physical applications, molecules can be identified by
their specific Nuclear Magnetic Resonance (NMR) spectra.
In this section, we simulate more realistic data, using NMR
spectra of real molecules. These spectra are well adapted to
the current settings since they are very sparse. The information
about the peaks can be found in the Spectral Database for
Organic Compounds, SDBS4. The spectra were convoluted
with a Laplacian with width at half maximum of 3 samples, in
order to account for the acquisition imperfections. The number
of samples is set ton = 1200. S

ref is made ofr = 15
real spectra such as the ones displayed in figure 15. Some
sources can exhibit strong normalized scalar product, such
as cholesterol and menthone spectra for instance (0.67). The
mixing coefficients ofAref are simulated in the same way as in
the previous section (pA = 1, αA = 2). The observed data is
Y = A

ref
S

ref +Z whereZ is an i.i.d. Gaussian noise matrix.

4http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/creindex.cgi
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Fig. 15. NMR spectra of 4 chemical compounds.
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An example of measurement where the lactose spectrum is
particularly strong is provided in figure 16.

http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/cre_index.cgi
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In figure 17, the number of measurements is limited to
the number of sources, i.e.m = 15, which occurs in some
applications; and the curves show the influence of noise in
the data. With so few measurements, denoising becomes more
important, while at the same time the noise is underestimated
by the algorithm since the problem is less constrained. To
compensate this behavior,τ∞σ is this time set to 2.

nGMCAnaive fails to obtain suitable results. Indeed, in this
setting the conditioning of the problem is extremely poor:
cond(AT

A) ≈ 104 and nGMCAnaive is not able to converge.
On the other hand, nGMCAS performs from 3 to 5dB better
than all the other algorithms. This shows once again that
nGMCAS is particularly robust for a large variety of settings.
An example of reconstruction is given in figure 18, where
nGMCAS is able to identify more peaks that sparse accelerated
HALS. Its reconstruction is however not completely noiseless,
since there is always a trade-off to find between denoising,
separation and bias.

In figure 19, the number of measurements varies from 15 to
90. Since the conditioning greatly improves for larger numbers
of measurements, nGMCAnaive results increase very quickly.
But in any case, although nGMCAnaive and sparse accelerated
HALS obtain similar results to nGMCAS when there are
enough measurements, nGMCAS still performs better than all
the other tested algorithms in most of the settings.

VI. SOFTWARE

Following the philosophy of reproducible research [39],
the algorithms introduced in this article will be availableat
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Fig. 19. Reconstruction SDR (SDRS ) with respect to the number of
measurementsm (SNRY = 15dB, τ∞σ = 2, average of 36 synthetic NMR
data simulations)

http://www.cosmostat.org/GMCALab.

VII. C ONCLUSION

In this paper we have introduced a new algorithm, nGMCA,
to tackle the problem of sparse non-negative BSS from noisy
mixtures. Inspired by a recent sparse BSS algorithm coined
GMCA, several extensions have been explored which imply
that a rigorous handling of both sparse and non-negative
constraints are essential to avoid instabilities and sub-optimal
solutions. In particular, one extension estimates both a mixing
and a source matrix by exactly solving the non-negatively
constrained andℓ1 penalized sub-problems, using proximal
techniques. Extensive comparisons have been carried out with
state-of-the-art algorithms on synthetic data; these experiments
show that this nGMCA extension is robust to noise contamina-
tion thanks to a dedicated thresholding strategy, with negligible
parameter tuning. The experiments also show that it performs
well for a wide variety of settings, including problems with
highly correlated mixture directions, few observations ora
large number of sources. Finally, the nGMCA algorithm yields
highly competitive results on synthetic mixtures of real NMR
spectra.

In this article however, the sparsity of the sources only held
in the direct or sample domain. Future work will focus on
extending nGMCA to deal with the more general setting where
the sources are still non-negative in the direct domain, butare
sparse in a different signal representation.

APPENDIX A
RESOLUTION OF THE SUB-PROBLEMS

Algorithm 3 solves the sub-problem inS (17) with p = 1
using FISTA [37].
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Algorithm 3 FISTA for the sub-problem inS
1: procedure UPDATES(Y,A, λ,S0)

Require: Y,A, λ

2: initialize R0 = S0, L = ‖AT
A‖s, t1 = 1, k = 1

3: while not convergeddo

4: Sk =
[

Softλ
L

(

Rk−1 −
1

L
A

T (ARk−1 −Y)
)]

+

5: tk+1 =
1 +

√

1 + 4t2k
2

6: Rk = Sk +
tk − 1

tk+1
(Sk − Sk−1)

7: k = k + 1
8: end while
9: return Sk

10: end procedure

improving the clarity and quality of the paper. We also thank
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