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Abstract. Hough-like methods like Implicit Shape Model (ISM) and
Hough forest have been successfully applied in multiple computer vi-
sion fields like object detection, tracking, skeleton extraction or human
action detection. However, these methods are known to generate false
positives. To handle this issue, several works like Max-Margin Hough
Transform (MMHT ) or Implicit Shape Kernel (ISK ) have reported sig-
nificant performance improvements by adding discriminative parameters
to the generative ones introduced by ISM. In this paper, we offer to use
only discriminative parameters that are globally optimized according to
all the variables of the Hough transform. To this end, we abstract the
common vote process of all Hough methods into linear equations, leading
to a training formulation that can be solved using linear programming
solvers. Our new Hough Transform significantly outperforms the previ-
ous ones on HoneyBee and TUM datasets, two public databases of action
and behaviour segmentation.
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1 Introduction

The Hough Transform [9] has first been introduced to detect lines in picture. The
main idea of this method is to perform the detection not directly in the picture
space but in the line parameter space (Hough space) where each line in the image
is mapped into a single point. This method has subsequently been extended
to parametric objects [1], and non-parametric objects [11] (e.g. car, pedestrian,
sport activities, ...). For non parametric objects, the Hough Transform first learns
a probabilistic-like parametrization of the objects on a training database, and,
then performs the detections as a local problem in the corresponding Hough
space.

Due to this property of local detection, Hough Transform is a very fast process
both in theory (time complexity theory) and practice. For this reason, it has been
applied in context of real-time systems like [7] for skeleton extraction and more
generally in multiple computer vision fields like tracking [6], object detection
[5], human action detection [19]. Actually, this method can be used to perform
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multi-class segmentation in multi-dimensional data e.g. pixel segmentation in
image [12], temporal human action segmentation [20].

In this paper, we focus on temporal action segmentation in video: for each
frame, the goal is to determine automatically which action is performed by an
actor among a set of actions. The Hough Transform, used in this context, is
composed of three main steps:

1: feature extraction and quantization to form codewords.
2: each of these codewords ω extracted at frame t votes for the action l at frame

t+Δt with a specific weight θ (ω, l,Δt). During this step, the same codeword
ω votes for all actions l and all relative time displacements Δt. The weights
have been learned previously, during a learning step.

3: All votes, for all codewords and all frames, are agglomerated to build the
Hough score which is the basis for segmentation decisions.

More formally, the Hough Transform (step 2-3) is based on the function θ()
(traditionally positive) that links codewords, time displacements and actions
to vote weights. Thus, a codeword w extracted at time t votes with a weight
θ (w, l,Δt) for the hypothesis that an action l is present at time t + Δt (this
weight does not depend on the time t but only on l, Δt and w). Hence, given
a set of localized codewords W = {w, t} (w for codewords, t for the extraction
time), the Hough score H for the action l at the time t is:

H (t, l) =
∑

(w,t)∈W

θ
(
w, l, t− t

)
(1)

and, the decision about the action at time t is given by:

l̂
(
t
)
= argmax

l

(H (t, l)) (2)

Thus an action is decided for each frame of the video.
Hence, all the purpose of the training is to select values for θ (w, l,Δt) that will

provide correct decisions with respect to the equations (1) (2) at testing time.
Several works, recalled in section 2, offer to improve the generative votes intro-
duced by the ISM method by introducing a partial discriminative optimization
process during the vote estimation step. In section 3, we offer to extend these
methods by optimizing globally all the votes in a discriminative way. With this
new learning process, our Hough method significantly outperforms previous ones
on two public datasets of action segmentation (the Honeybee dataset [14] and the
TUM dataset [16]) as reported in section 4, before the conclusion in section 5.

2 State of the Art

In this section, we present the different published methods to select the vote
weight during the training step of Hough Transform.
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2.1 Implicit Shape Model

In the ISM [11], the Hough Transform (the values of θ ()) is based on generative
weights. Let P (l, Δt|w) be the probability that the action at time t + Δt is l,
knowing that a codeword w has been extracted at time t. This probability is esti-
mated with statistics on the training dataset and is supposed to be independent
of t (it just depends on l, Δt and w). Then, the weights are given by:

θISM (w, l,Δt) = P (l, Δt|w) (3)

In practice, the probability P (l, Δt|w) is estimated by:

P (l, Δt|w) ≈ N (l, Δt, w)

N (w)
(4)

where N (l, Δt, w) is the number of occurrences of an action l observed with a
displacement Δt from a codeword w and N (w) is the number of occurrences of
the codeword w.

These ISM -based weights have several advantages (e.g. parameter-free train-
ing, robustness to over-training), but they suffer from several drawbacks. In
particular, all codewords and training examples have the same importance and
are considered independently from each other. Two methods, MMHT [13] and
ISK [21] have been introduced to address these drawbacks.

2.2 Max-Margin Hough Transform

In MMHT [13], a coefficient is introduced for each codeword to ponderate the
ISM values, resulting in:

θMMHT (w, l,Δt) = λw × θISM (w, l,Δt) = λw × P (l, Δt|w) (5)

The weights λw give more or less importance to the different codewords w accord-
ing to their discriminative power. They are learnt simultaneously in a discrim-
inative way through an optimisation process similar to support vector machine
(SVM ) training [4].

2.3 Implicit Shape Kernel

In ISK [21], the votes are also based on the ISM generative ones, but some
coefficients are introduced to weight the different training examples. Hence, ISK
training leads to:

θISK (w, l,Δt) =
∑

i

λi × Pi (l, Δt|w) (6)

where Pi (l, Δt|w) is an estimation of the probability P (l, Δt|w) based only on
the training example i. The weights λi are learnt simultaneously in a discrimi-
native way using a specific kernel-SVM training [21].

MMHT and ISK report experimental improvements over ISM by adding
discriminative parameters. This trend is also supported by [18].
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2.4 ISM + SVM

In [18], it is highlighted that learning directly the Hough map H (t, l) with a
SVM is equivalent to the ISM with the introduction of a weighting coefficient
for each displacement. This results in:

θISM+SV M (w, l,Δt) = λΔt × P (l, Δt|w) = λΔt × θISM (w, l,Δt) (7)

2.5 Hough Forest

To our knowledge ISM [11] and the presented extensions [13,18,21] are the only
published methods to estimate the weights of Hough Transform. More precisely,
these methods define links between codewords and votes. There are, of course,
various ways to select the features and the codewords, like, the Hough forest
[5] methods which are major methods of the state of the art. Hough forests
use ISM votes, but the mapping between features (usually data patches) and
codewords (a leaf in a weak binary classifier tree) is constructed such that all
training features associated with the same codeword are expected to come from
training examples with a same label. Several works, like [5,20], report that this
automatic feature mapping process associated with ISM votes leads to significant
experimental improvements against codewords obtained without learning, by K-
means algorithm for example.

However, in this paper, we focus on the optimisation of the weights used
during the vote process and so to the link between codewords and votes which is
generic whatever the features and codewords used. Thus, the offered method can
be employed in the Hough forest context by substituting the weights estimated
by ISM by the weights optimized by our offered method.

The common point between MMHT, ISK and ISM+SVM is that they add
discriminative parameters to the generative ones introduced by the ISM. In this
paper, we offer to use only discriminative votes strongly optimized. We call this
method Deeply Optimized Hough Transform (DOHT ).

3 Deeply Optimized Hough Transform

The goal of the training process is to establish a mapping between codewords
and weights. While ISM method only uses generative weights, MMHT, ISK and
ISM+SVM introduce discriminative parameters optimized according to code-
words, training examples or displacements. We offer in this paper to optimize
all these weights in a global way, according to all parameters of θ (w, l,Δt) in
multi-class context. Hence, our set of variables is indexed by codewords w (as
in HHMT ), displacements Δt (as in ISM+SVM ) and also by actions l. These
differences are summarized in table 1. In this way, we do not use ISM values
and the method becomes deeply discriminative.

The goal is to define a function θ() such that for all training examples W and

all times t, the predicted action l̂ is the right one l∗ (known on training data).
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Considering the definition of the predicted action l̂ (eq. (2)), our problem
formulation is equivalent to: ∀W, t, l �= l∗

(
t
)

H (t, l) < H (t, l∗ (t)) (8)

By dividing θ() by the minimal gap in eq. (8), this is equivalent to

H (t, l)+ 1 ≤ H (t, l∗ (t)) (9)

and, using equation (1), to ∀W, t, l �= l∗
(
t
)

⎛

⎝
∑

(w,t)∈W

θ
(
w, l, t− t

)
⎞

⎠+ 1 ≤
⎛

⎝
∑

(w,t)∈W

θ
(
w, l∗

(
t
)
, t− t

)
⎞

⎠ (10)

In addition, as a codeword extracted at time t should not provide more in-
formation about the time t ± 1 than about the time t, we constraint θ to be
decreasing with the absolute value of Δt.

However, it is not sure that a function can satisfy these constraints. Hence,
we introduce a soft margin as in [4]: some variables ξ are introduced in eq. (10)
leading to: ∀t, l �= l∗

(
t
)
,W

∑

(w,t)∈W

θ
(
w, l, t− t

)
+ 1− ξ

(
t
) ≤

∑

(w,t)∈W

θ
(
w, l∗

(
t
)
, t− t

)
(11)

and these variables are minimized to reduce the number of not-satisfied con-

straints, leading to the objective function: min
θ≥0,ξ≥0

(
∑

t

ξ
(
t
)
)

.

To prevent over-fitting, a regularity term in added to the objective function
as in [2]. A coefficient Υ regulates the trade-off between the attachment to data
and the regularity as in [4,2].

Finally, the training problem is formulated as:

min
θ≥0,ξ≥0

(
∑

(w,l,Δt)

θ(w, l,Δt) + Υ
∑

t

ξ
(
t
)
)

under constraints: ∀W, t, l �= l∗
(
t
)
,∑

(w,t)∈W

(
θ
(
w, l∗

(
t
)
, t− t

)− θ
(
w, l, t− t

))
+ ξ

(
t
) ≥ 1

and: ∀w, l,Δt, θ (w, a,Δt + sign (Δt)) ≤ θ (w, a,Δt)

(12)

where sign is the sign function.
These formulation is a linear program which which is a well studied problem

in literature (e.g. [10]), and, which can be solved efficiency (for example using
the solver CPLEX1, freely available for academic purposes).

In the next section, we evaluate ISM, HHMT, ISM+SVM and DOHT in
action segmentation or behavior segmentation contexts. As ISK is only intended

1 www-01.ibm.com/software/websphere/products/

optimization/academic-initiative/
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Table 1. The different learning methods of the Hough Transform

methods θ variables

ISM [11] θISM (w, l,Δt) = P (l,Δt|w) -

MMHT [13] θMMHT (w, l,Δt) = λw × P (l,Δt|w) λw

ISK [21] θISK (w, l, Δt) =
∑

i

(λi × Pi (l,Δt|w)) λi

ISM+SVM [18] θISM+SVM (w, l,Δt) = λΔt × P (l, Δt|w) λΔt

DOHT (our) θDOHT (w, l, Δt) = λw,l,Δt λw,l,Δt

P (l,Δt|w) is the probability that the action at time t+Δt is l knowing that a
codeword w has been extracted at time t. Pi (l,Δt|w) is the same probability

estimated using only the training example i.

for detection and can not be straightforwardly extended to segmentation, we can
not compare it to the others methods.

4 Experimental Results

Experiments have been conducted on the TUM [16] and Honeybee [14] datasets.
These datasets are well designed for segmentation as each frame is associated to
an action.

4.1 Application to Human Action Segmentation

TUM is a multi-sensor dataset and in particular it contains skeleton streams
(fig. 1). It is composed of 19 sequences about 2 minutes each, containing 9 kinds
of actions like Lowering an object, Opening a drawer, performed by 5 subjects.
To provide results comparable to [20], the dataset is separated in training and
testing sequences, all algorithms decide an action for each frame of each testing
sequence and the performance is measured by the ratio of correctly decided
actions.

example of action: Lowering an object Provided skeleton

Fig. 1. TUM dataset [16]
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As [20] reports better performances using skeleton features (than visual or
visual plus skeleton ones), we decide to consider only skeleton based features.
Hence, the input signal of our algorithm is the 3D positions of each articulation
at each time.

We use the same preprocessing (features and codewords) than the bag-of-
gestures from [3] which achieves the best published performance on this dataset
(with a manual segmentation). First, the positions are normalized (positions are
expressed in a system of coordinates linked to the subject in order to be invariant
to camera point of view, global body position, rotation and size). Then, we con-
sider short temporal series of 3D positions of each articulation as features: let the
vector (p1, ..., pT ) be the normalized trajectory of one articulation, then, we con-
sider the vector (pt−τ , ..., pt+τ ) as a feature extracted at time t. Similar features
are also considered in [15,20,17] which emphasize the efficiency of interest points
trajectories for human action recognition. Finally, all these features are clustered
by K-means. The cluster centers define the codebook and features are mapped
to their nearest codeword. We consider the 8 main articulations: feet, hands,
knees, elbows. The quantization with K-means is performed independently for
each articulation.

The parameters of this set of experiments are τ , K, Υ (for the learning pro-
cess). On this dataset, the maximal performances achieved by ISM, MMHT and
ISM+SVM when empirically varying the parameters values are less than the
mean performances of DOHT. A typical run is obtained with τ = 6, K = 10,
and C = 1. Results of this experiment are presented in table 2.

In this set of experiments, DOHT significantly outperforms ISM, MMHT
and ISM+SVM and achieves equivalent performance than a SVM based on
the same features and codeword applied on the optimal segmentation (obtained
from the ground truth) from [3]. Hence, for this dataset, we achieve equivalent
performance than the best published (82.6% against 84.3%) without using any
manual segmentation.

4.2 Application to Behaviour Segmentation

Experiments have also been conducted on the Honeybee dataset [14]. The Honey-
bee dataset provides tracking output of honey bees having 3 kinds of behaviour
correlated with their trajectories (figure 2). It composed of 6 large sequences.
To provide results comparable to [14], all algorithms decided an action for each
frame in a leave-one-out cross validation setting and the performance is measured
by the ratio of correctly decided actions.

The input signals in this dataset are the sequences of bee 2D positions and
orientations (xt, yt, αt). As in the previous experiment, normalized short tempo-
ral series of (2D here) positions are considered as features. Let us call R (β) the
matrix of the 2D rotation of angle β and p (t) = (xt, yt), then we consider the
vector (R (−αt) (pt−τ − pt) , ..., R (−αt) (pt+τ − pt)) as the feature extracted at
time t. All these features are clustered using K-means. The cluster centers define
the codebook and features are mapped to their nearest codeword. K-means is
performed independently for each τ .
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(a) theoretic behaviour (b) tracking output
Green correspond to waggle, magenta to right turn and blue to left turn.

Fig. 2. Honeybee dataset [14]

The parameters of this set of experiments are τ , K, Υ . On this dataset, the
maximal performances achieved by ISM, MMHT and ISM+SVM when empir-
ically varying the parameters values are less than the mean performances of
DOHT. A typical run is obtained with τ ∈ {1, 3, 6}, K = 10, and C = 1. Results
of this experiment are presented in table 2.

In this set of experiment, DOHT significantly outperforms ISM, MMHT and
ISM+SVM. In addition, DOHT achieves equivalent performances than the latter
best published results [8]. In [8], a multi-class SVM is applied on each temporal
window (with similar kind of features and codewords). Then, segmentation is
computed using dynamic programming. As scores are computed on each tem-
poral window, this method is quadratic with respect to the maximal length of
an activity while our is linear. This quadratic property is a common drawback
caused by performing scoring as a global problem. Hence, for this dataset, we
achieve equivalent performances (86.5% against 89.3%) than the best published
results while being significantly faster.

Table 2. Global results on TUM [16] and Honeybee [14]

Method Accuracy on TUM Accuracy mean on Honeybee

ISM [11] 58.4 71.9

MMHT [13] 69.6 78.8

ISM+SVM [18] 68.5 77.5

DOHT (our) 82.6 86.5

5 Conclusion

In this paper, we offer to use Hough transform to segment temporal series. In
a non parametric context, the training of Hough transform consists in prop-
erly selecting the weights used in the voting process. The simple way (Implicit
Shape Model) consists in computing some probabilities on the training database,
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leading to a generative model. Some methods (Max-Margin Hough Transform,
Implicit Shape Kernel) offer to add some parameters optimized on a training
database in a discriminative way. In this article, we offer to skip the first step
based on a generative model, and, to globally learn all the parameters of the
Hough transform on the training database, resulting a deeply discriminative
model. This required to reformulate the voting process to express it in a linear
form in order to use linear programming solvers.

We performed several experiments on public datasets where the Hough trans-
form trained with our method significantly outperforms other Hough transform
methods and provides equivalent results than best published results for these
datasets while avoiding some limitations of the corresponding algorithms (e.g.
manual segmentation).

In future works, we will adapt and apply our method on other contexts e.g.
object segmentation in image, video spatio-temporal segmentation, automatic
speech segmentation, sign language segmentation.
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