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Hough-like methods like Implicit Shape Model (ISM) and Hough forest have been successfully applied in multiple computer vision fields like object detection, tracking, skeleton extraction or human action detection. However, these methods are known to generate false positives. To handle this issue, several works like Max-Margin Hough Transform (MMHT ) or Implicit Shape Kernel (ISK ) have reported significant performance improvements by adding discriminative parameters to the generative ones introduced by ISM. In this paper, we offer to use only discriminative parameters that are globally optimized according to all the variables of the Hough transform. To this end, we abstract the common vote process of all Hough methods into linear equations, leading to a training formulation that can be solved using linear programming solvers. Our new Hough Transform significantly outperforms the previous ones on HoneyBee and TUM datasets, two public databases of action and behaviour segmentation.

Introduction

The Hough Transform [START_REF] Hough | Method and means for recognizing complex patterns[END_REF] has first been introduced to detect lines in picture. The main idea of this method is to perform the detection not directly in the picture space but in the line parameter space (Hough space) where each line in the image is mapped into a single point. This method has subsequently been extended to parametric objects [START_REF] Ballard | Generalizing the Hough transform to detect arbitrary shapes[END_REF], and non-parametric objects [START_REF] Leibe | Combined object categorization and segmentation with an implicit shape model[END_REF] (e.g. car, pedestrian, sport activities, ...). For non parametric objects, the Hough Transform first learns a probabilistic-like parametrization of the objects on a training database, and, then performs the detections as a local problem in the corresponding Hough space.

Due to this property of local detection, Hough Transform is a very fast process both in theory (time complexity theory) and practice. For this reason, it has been applied in context of real-time systems like [START_REF] Girshick | Efficient regression of general-activity human poses from depth images[END_REF] for skeleton extraction and more generally in multiple computer vision fields like tracking [START_REF] Gall | Hough forests for object detection, tracking, and action recognition[END_REF], object detection [START_REF] Gall | Class-specific Hough forests for object detection[END_REF], human action detection [START_REF] Yao | A Hough transform-based voting framework for action recognition[END_REF]. Actually, this method can be used to perform multi-class segmentation in multi-dimensional data e.g. pixel segmentation in image [START_REF] Sreedevi | An efficient image segmentation using Hough transformation[END_REF], temporal human action segmentation [START_REF] Yao | Does human action recognition benefit from pose estimation?[END_REF].

In this paper, we focus on temporal action segmentation in video: for each frame, the goal is to determine automatically which action is performed by an actor among a set of actions. The Hough Transform, used in this context, is composed of three main steps:

1: feature extraction and quantization to form codewords. 2: each of these codewords ω extracted at frame t votes for the action l at frame t+Δ t with a specific weight θ (ω, l, Δ t ). During this step, the same codeword ω votes for all actions l and all relative time displacements Δ t . The weights have been learned previously, during a learning step. 3: All votes, for all codewords and all frames, are agglomerated to build the Hough score which is the basis for segmentation decisions.

More formally, the Hough Transform (step 2-3) is based on the function θ() (traditionally positive) that links codewords, time displacements and actions to vote weights. Thus, a codeword w extracted at time t votes with a weight θ (w, l, Δ t ) for the hypothesis that an action l is present at time t + Δ t (this weight does not depend on the time t but only on l, Δ t and w). Hence, given a set of localized codewords W = {w, t} (w for codewords, t for the extraction time), the Hough score H for the action l at the time t is:

H t, l = (w,t)∈W θ w, l, t -t (1)
and, the decision about the action at time t is given by:

l t = arg max l H t, l (2) 
Thus an action is decided for each frame of the video. Hence, all the purpose of the training is to select values for θ (w, l, Δ t ) that will provide correct decisions with respect to the equations (1) (2) at testing time. Several works, recalled in section 2, offer to improve the generative votes introduced by the ISM method by introducing a partial discriminative optimization process during the vote estimation step. In section 3, we offer to extend these methods by optimizing globally all the votes in a discriminative way. With this new learning process, our Hough method significantly outperforms previous ones on two public datasets of action segmentation (the Honeybee dataset [START_REF] Oh | Learning and inferring motion patterns using parametric segmental switching linear dynamic systems[END_REF] and the TUM dataset [START_REF] Tenorth | The tum kitchen data set of everyday manipulation activities for motion tracking and action recognition[END_REF]) as reported in section 4, before the conclusion in section 5.

State of the Art

In this section, we present the different published methods to select the vote weight during the training step of Hough Transform.

Implicit Shape Model

In the ISM [START_REF] Leibe | Combined object categorization and segmentation with an implicit shape model[END_REF], the Hough Transform (the values of θ ()) is based on generative weights. Let P (l, Δ t |w) be the probability that the action at time t + Δ t is l, knowing that a codeword w has been extracted at time t. This probability is estimated with statistics on the training dataset and is supposed to be independent of t (it just depends on l, Δ t and w). Then, the weights are given by:

θ ISM (w, l, Δ t ) = P (l, Δ t |w) ( 3 ) 
In practice, the probability P (l, Δ t |w) is estimated by:

P (l, Δ t |w) ≈ N (l, Δ t , w) N (w) (4) 
where N (l, Δ t , w) is the number of occurrences of an action l observed with a displacement Δ t from a codeword w and N (w) is the number of occurrences of the codeword w. These ISM -based weights have several advantages (e.g. parameter-free training, robustness to over-training), but they suffer from several drawbacks. In particular, all codewords and training examples have the same importance and are considered independently from each other. Two methods, MMHT [START_REF] Maji | Object detection using a max-margin Hough transform[END_REF] and ISK [START_REF] Zhang | Implicit shape kernel for discriminative learning of the Hough transform detector[END_REF] have been introduced to address these drawbacks.

Max-Margin Hough Transform

In MMHT [START_REF] Maji | Object detection using a max-margin Hough transform[END_REF], a coefficient is introduced for each codeword to ponderate the ISM values, resulting in:

θ MMHT (w, l, Δ t ) = λ w × θ ISM (w, l, Δ t ) = λ w × P (l, Δ t |w) ( 5)
The weights λ w give more or less importance to the different codewords w according to their discriminative power. They are learnt simultaneously in a discriminative way through an optimisation process similar to support vector machine (SVM ) training [START_REF] Cortes | Support-vector networks[END_REF].

Implicit Shape Kernel

In ISK [START_REF] Zhang | Implicit shape kernel for discriminative learning of the Hough transform detector[END_REF], the votes are also based on the ISM generative ones, but some coefficients are introduced to weight the different training examples. Hence, ISK training leads to:

θ ISK (w, l, Δ t ) = i λ i × P i (l, Δ t |w) ( 6 
)
where P i (l, Δ t |w) is an estimation of the probability P (l, Δ t |w) based only on the training example i. The weights λ i are learnt simultaneously in a discriminative way using a specific kernel-SVM training [START_REF] Zhang | Implicit shape kernel for discriminative learning of the Hough transform detector[END_REF].

MMHT and ISK report experimental improvements over ISM by adding discriminative parameters. This trend is also supported by [START_REF] Wohlhart | Discriminative Hough forests for object detection[END_REF].

ISM + SVM

In [START_REF] Wohlhart | Discriminative Hough forests for object detection[END_REF], it is highlighted that learning directly the Hough map H t, l with a SVM is equivalent to the ISM with the introduction of a weighting coefficient for each displacement. This results in:

θ ISM+SV M (w, l, Δ t ) = λ Δt × P (l, Δ t |w) = λ Δt × θ ISM (w, l, Δ t ) (7)

Hough Forest

To our knowledge ISM [START_REF] Leibe | Combined object categorization and segmentation with an implicit shape model[END_REF] and the presented extensions [START_REF] Maji | Object detection using a max-margin Hough transform[END_REF][START_REF] Wohlhart | Discriminative Hough forests for object detection[END_REF][START_REF] Zhang | Implicit shape kernel for discriminative learning of the Hough transform detector[END_REF] are the only published methods to estimate the weights of Hough Transform. More precisely, these methods define links between codewords and votes. There are, of course, various ways to select the features and the codewords, like, the Hough forest [START_REF] Gall | Class-specific Hough forests for object detection[END_REF] methods which are major methods of the state of the art. Hough forests use ISM votes, but the mapping between features (usually data patches) and codewords (a leaf in a weak binary classifier tree) is constructed such that all training features associated with the same codeword are expected to come from training examples with a same label. Several works, like [START_REF] Gall | Class-specific Hough forests for object detection[END_REF][START_REF] Yao | Does human action recognition benefit from pose estimation?[END_REF], report that this automatic feature mapping process associated with ISM votes leads to significant experimental improvements against codewords obtained without learning, by Kmeans algorithm for example. However, in this paper, we focus on the optimisation of the weights used during the vote process and so to the link between codewords and votes which is generic whatever the features and codewords used. Thus, the offered method can be employed in the Hough forest context by substituting the weights estimated by ISM by the weights optimized by our offered method.

The common point between MMHT, ISK and ISM+SVM is that they add discriminative parameters to the generative ones introduced by the ISM. In this paper, we offer to use only discriminative votes strongly optimized. We call this method Deeply Optimized Hough Transform (DOHT ).

Deeply Optimized Hough Transform

The goal of the training process is to establish a mapping between codewords and weights. While ISM method only uses generative weights, MMHT, ISK and ISM+SVM introduce discriminative parameters optimized according to codewords, training examples or displacements. We offer in this paper to optimize all these weights in a global way, according to all parameters of θ (w, l, Δ t ) in multi-class context. Hence, our set of variables is indexed by codewords w (as in HHMT ), displacements Δ t (as in ISM+SVM ) and also by actions l. These differences are summarized in table 1. In this way, we do not use ISM values and the method becomes deeply discriminative.

The goal is to define a function θ() such that for all training examples W and all times t, the predicted action l is the right one l * (known on training data).

Considering the definition of the predicted action l (eq. ( 2)), our problem formulation is equivalent to:

∀W, t, l = l * t H t, l < H t, l * t (8)
By dividing θ() by the minimal gap in eq. ( 8), this is equivalent to

H t, l + 1 ≤ H t, l * t (9)
and, using equation ( 1), to ∀W,

t, l = l * t ⎛ ⎝ (w,t)∈W θ w, l, t -t ⎞ ⎠ + 1 ≤ ⎛ ⎝ (w,t)∈W θ w, l * t , t -t ⎞ ⎠ (10) 
In addition, as a codeword extracted at time t should not provide more information about the time t ± 1 than about the time t, we constraint θ to be decreasing with the absolute value of Δ t .

However, it is not sure that a function can satisfy these constraints. Hence, we introduce a soft margin as in [START_REF] Cortes | Support-vector networks[END_REF]: some variables ξ are introduced in eq. ( 10) leading to:

∀t, l = l * t , W (w,t)∈W θ w, l, t -t + 1 -ξ t ≤ (w,t)∈W θ w, l * t , t -t (11) 
and these variables are minimized to reduce the number of not-satisfied constraints, leading to the objective function: min θ≥0,ξ≥0 t ξ t .

To prevent over-fitting, a regularity term in added to the objective function as in [START_REF] Chakrabartty | Gini support vector machine: Quadratic entropy based robust multi-class probability regression[END_REF]. A coefficient Υ regulates the trade-off between the attachment to data and the regularity as in [START_REF] Cortes | Support-vector networks[END_REF][START_REF] Chakrabartty | Gini support vector machine: Quadratic entropy based robust multi-class probability regression[END_REF].

Finally, the training problem is formulated as:

min θ≥0,ξ≥0 (w,l,Δt) θ(w, l, Δ t ) + Υ t ξ t under constraints: ∀W, t, l = l * t , (w,t)∈W θ w, l * t , t -t -θ w, l, t -t + ξ t ≥ 1 and: ∀w, l, Δ t , θ (w, a, Δ t + sign (Δ t )) ≤ θ (w, a, Δ t ) ( 12 
)
where sign is the sign function. These formulation is a linear program which which is a well studied problem in literature (e.g. [START_REF] Karmarkar | A new polynomial-time algorithm for linear programming[END_REF]), and, which can be solved efficiency (for example using the solver CPLEX1 , freely available for academic purposes).

In the next section, we evaluate ISM, HHMT, ISM+SVM and DOHT in action segmentation or behavior segmentation contexts. As ISK is only intended [START_REF] Leibe | Combined object categorization and segmentation with an implicit shape model[END_REF] θISM (w, l, Δt) = P (l, Δt|w) -MMHT [START_REF] Maji | Object detection using a max-margin Hough transform[END_REF] θMMHT (w, l, Δt) = λw × P (l, Δt|w) λw ISK [START_REF] Zhang | Implicit shape kernel for discriminative learning of the Hough transform detector[END_REF] θISK (w, l, Δt) = i (λi × Pi (l, Δt|w)) λi ISM+SVM [START_REF] Wohlhart | Discriminative Hough forests for object detection[END_REF] θISM+SV M (w, l, Δt) = λΔ t × P (l, Δt|w) λΔ t DOHT (our) θDOHT (w, l, Δt) = λ w,l,Δt λ w,l,Δt P (l, Δt|w) is the probability that the action at time t + Δt is l knowing that a codeword w has been extracted at time t. Pi (l, Δt|w) is the same probability estimated using only the training example i.

for detection and can not be straightforwardly extended to segmentation, we can not compare it to the others methods.

Experimental Results

Experiments have been conducted on the TUM [START_REF] Tenorth | The tum kitchen data set of everyday manipulation activities for motion tracking and action recognition[END_REF] and Honeybee [START_REF] Oh | Learning and inferring motion patterns using parametric segmental switching linear dynamic systems[END_REF] datasets. These datasets are well designed for segmentation as each frame is associated to an action.

Application to Human Action Segmentation

TUM is a multi-sensor dataset and in particular it contains skeleton streams (fig. 1). It is composed of 19 sequences about 2 minutes each, containing 9 kinds of actions like Lowering an object, Opening a drawer, performed by 5 subjects.

To provide results comparable to [START_REF] Yao | Does human action recognition benefit from pose estimation?[END_REF], the dataset is separated in training and testing sequences, all algorithms decide an action for each frame of each testing sequence and the performance is measured by the ratio of correctly decided actions.

example of action: Lowering an object Provided skeleton Fig. 1. TUM dataset [START_REF] Tenorth | The tum kitchen data set of everyday manipulation activities for motion tracking and action recognition[END_REF] As [START_REF] Yao | Does human action recognition benefit from pose estimation?[END_REF] reports better performances using skeleton features (than visual or visual plus skeleton ones), we decide to consider only skeleton based features. Hence, the input signal of our algorithm is the 3D positions of each articulation at each time.

We use the same preprocessing (features and codewords) than the bag-ofgestures from [START_REF] Chan-Hon-Tong | Skeleton point trajectories for human daily activity recognition[END_REF] which achieves the best published performance on this dataset (with a manual segmentation). First, the positions are normalized (positions are expressed in a system of coordinates linked to the subject in order to be invariant to camera point of view, global body position, rotation and size). Then, we consider short temporal series of 3D positions of each articulation as features: let the vector (p 1 , ..., p T ) be the normalized trajectory of one articulation, then, we consider the vector (p t-τ , ..., p t+τ ) as a feature extracted at time t. Similar features are also considered in [START_REF] Sun | Hierarchical spatio-temporal context modeling for action recognition[END_REF][START_REF] Yao | Does human action recognition benefit from pose estimation?[END_REF][START_REF] Wang | Action Recognition by Dense Trajectories[END_REF] which emphasize the efficiency of interest points trajectories for human action recognition. Finally, all these features are clustered by K-means. The cluster centers define the codebook and features are mapped to their nearest codeword. We consider the 8 main articulations: feet, hands, knees, elbows. The quantization with K-means is performed independently for each articulation.

The parameters of this set of experiments are τ , K, Υ (for the learning process). On this dataset, the maximal performances achieved by ISM, MMHT and ISM+SVM when empirically varying the parameters values are less than the mean performances of DOHT. A typical run is obtained with τ = 6, K = 10, and C = 1. Results of this experiment are presented in table 2. In this set of experiments, DOHT significantly outperforms ISM, MMHT and ISM+SVM and achieves equivalent performance than a SVM based on the same features and codeword applied on the optimal segmentation (obtained from the ground truth) from [START_REF] Chan-Hon-Tong | Skeleton point trajectories for human daily activity recognition[END_REF]. Hence, for this dataset, we achieve equivalent performance than the best published (82.6% against 84.3%) without using any manual segmentation.

Application to Behaviour Segmentation

Experiments have also been conducted on the Honeybee dataset [START_REF] Oh | Learning and inferring motion patterns using parametric segmental switching linear dynamic systems[END_REF]. The Honeybee dataset provides tracking output of honey bees having 3 kinds of behaviour correlated with their trajectories (figure 2). It composed of 6 large sequences. To provide results comparable to [START_REF] Oh | Learning and inferring motion patterns using parametric segmental switching linear dynamic systems[END_REF], all algorithms decided an action for each frame in a leave-one-out cross validation setting and the performance is measured by the ratio of correctly decided actions.

The input signals in this dataset are the sequences of bee 2D positions and orientations (x t , y t , α t ). As in the previous experiment, normalized short temporal series of (2D here) positions are considered as features. Let us call R (β) the matrix of the 2D rotation of angle β and p (t) = (x t , y t ), then we consider the vector (R (-α t ) (p t-τ -p t ) , ..., R (-α t ) (p t+τ -p t )) as the feature extracted at time t. All these features are clustered using K-means. The cluster centers define the codebook and features are mapped to their nearest codeword. K-means is performed independently for each τ . The parameters of this set of experiments are τ , K, Υ . On this dataset, the maximal performances achieved by ISM, MMHT and ISM+SVM when empirically varying the parameters values are less than the mean performances of DOHT. A typical run is obtained with τ ∈ {1, 3, 6}, K = 10, and C = 1. Results of this experiment are presented in table 2.

In this set of experiment, DOHT significantly outperforms ISM, MMHT and ISM+SVM. In addition, DOHT achieves equivalent performances than the latter best published results [START_REF] Hoai | Joint segmentation and classification of human actions in video[END_REF]. In [START_REF] Hoai | Joint segmentation and classification of human actions in video[END_REF], a multi-class SVM is applied on each temporal window (with similar kind of features and codewords). Then, segmentation is computed using dynamic programming. As scores are computed on each temporal window, this method is quadratic with respect to the maximal length of an activity while our is linear. This quadratic property is a common drawback caused by performing scoring as a global problem. Hence, for this dataset, we achieve equivalent performances (86.5% against 89.3%) than the best published results while being significantly faster.

Table 2. Global results on TUM [START_REF] Tenorth | The tum kitchen data set of everyday manipulation activities for motion tracking and action recognition[END_REF] and Honeybee [START_REF] Oh | Learning and inferring motion patterns using parametric segmental switching linear dynamic systems[END_REF] 

Method

Accuracy on TUM Accuracy mean on Honeybee ISM [START_REF] Leibe | Combined object categorization and segmentation with an implicit shape model[END_REF] 58.4 71.9 MMHT [START_REF] Maji | Object detection using a max-margin Hough transform[END_REF] 69.6 78.8 ISM+SVM [START_REF] Wohlhart | Discriminative Hough forests for object detection[END_REF] 68.5 77.5 DOHT (our) 82.6 86.5

Conclusion

In this paper, we offer to use Hough transform to segment temporal series. In a non parametric context, the training of Hough transform consists in properly selecting the weights used in the voting process. The simple way (Implicit Shape Model) consists in computing some probabilities on the training database, leading to a generative model. Some methods (Max-Margin Hough Transform, Implicit Shape Kernel) offer to add some parameters optimized on a training database in a discriminative way. In this article, we offer to skip the first step based on a generative model, and, to globally learn all the parameters of the Hough transform on the training database, resulting a deeply discriminative model. This required to reformulate the voting process to express it in a linear form in order to use linear programming solvers. We performed several experiments on public datasets where the Hough transform trained with our method significantly outperforms other Hough transform methods and provides equivalent results than best published results for these datasets while avoiding some limitations of the corresponding algorithms (e.g. manual segmentation).

In future works, we will adapt and apply our method on other contexts e.g. object segmentation in image, video spatio-temporal segmentation, automatic speech segmentation, sign language segmentation.
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