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Abstract. Elastic guided waves (GW) are used in various non-destructive testing (NDT) 
methods to inspect plate-like structures, generated by finite-sized transducers. Thanks to GW 
long range propagation, using a few transducers at permanent positions can provide a full 
coverage of the plate. Transducer diffraction effects take place, leading to complex radiated 
fields. Optimizing transducers positioning makes it necessary to accurately predict the GW 
field radiated by a transducer. Fraunhofer-like approximations applied to GW in isotropic 
homogeneous plates lead to fast and accurate field computation but can fail when applied to 
multi-layered anisotropic composite plates, as shown by some examples given. 
Here, a model is proposed for composite plates, based on the computation of the approximate 
Green’s tensor describing modal propagation from a source point, with account of caustics 
typically seen when strong anisotropy is concerned. Modal solutions are otherwise obtained 
by the Semi-Analytic Finite Element method. Transducer diffraction effects are accounted for 
by means of an angular integration over the transducer surface as seen from the calculation 
point, that is, over energy paths involved, which are mode-dependent. The model is validated 
by comparing its predictions with those computed by means of a full convolution integration of 
the Green’s tensor with the source over transducer surface. Examples given concern disk and 
rectangular shaped transducers commonly used in NDT. 

 

 

 

1. Introduction 
In most non-destructive testing (NDT) methods used to inspect plate-like structures by means 
of elastic guided waves (GW), transducers of finite size are used to generate these waves in 
the structure. GW propagate at long range, so that inspecting a large structure may be 
made by using a few permanently attached transducers, avoiding any scan to cover the whole 
structure. However, transducer diffraction effects take place, leading to complex field radiation 
characteristics. The optimization of transducer positioning for insuring the expected coverage 
must be carefully addressed and makes it necessary to accurately predict the guided wave 
field radiated by a transducer. In the literature, Fraunhofer-like approximations [1] have been 
developed for elastic guided waves in the case of isotropic and homogeneous plates, leading to 
fast computation of typical diffraction effects. In the case of multi-layered anisotropic plates such 
as those used in the aircraft industry, this approach fails at predicting the field radiated; some 
examples are given herein to illustrate this point. To solve the problem of efficient computing of 
transducer diffraction effect in GW radiation into multilayered anisotropic plates, a new model 
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is proposed. It is based on the computation of the approximate Green’s tensor describing modal 
propagation from a source point, with account of caustics which arise in anisotropic plates. The 
modal solution itself is obtained thanks to well-established Semi-Analytic Finite Element method 
[2]. The overall principle of the method is to proceed to an angular integration over the transducer 
surface as seen from the calculation point, based upon the energy paths involved, which are mode- 
dependent. The first part of the paper is dedicated to a description of the proposed model. In the 
second part, the model is validated thanks to comparisons of its predictions to those computed by 
means of a full convolution integral of the Green’s tensor with the source description. Examples 
given concern disk and rectangular shaped transducers which are the most commonly used sources 
in the NDT practice. 

 
2. Formulation of the 3D Green’s function 
2.1. Geometry of the system 

We consider an infinite plate as shown in Fig. 1, of thickness 2d, which upper plane is at z = d 
and lower plane at z = d. The plate is assumed to be made of an arbitrary composite material 
described as multiple parallel layers of arbitrary anisotropy. 

 

 

 

 
Figure 1. System geometry. 

 
 

 
2.2. Far field expression 

The field radiated by a finite-sized source can be expressed as a convolution integral of the 
Green’s function g(3)(x, y, z) with a source term q(3)(x, y): 

u(3)(x, y, z, q(3)) = 

∫∫

 

S 

 

g(3)(x − xr, y − yr, z)q(3)(xr, yr)dxrdyr. (1) 

This Green’s function can be written as a sum over the propagating modes [3] 

g(3)(x, y, z) = 
Σ Σ 

g(3) (x, y, z). (2) 
m n(ϕ) 

These modal contributions are calculated thanks to the Semi Analytic Finite Element (SAFE) 
method [2]. With this time harmonic method, arbitrary sequences of multi-layered composite 
plates can be accounted for, results being given as propagative and evanescent modes described 
by their wavenumber and modal amplitude of components of the displacement along the plate 
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thickness, for one given phase direction. The calculation is made once for all possible phase 
directions and results can be easily reused. The n subscript is never necessary when using 
isotropic plates. But, in some anisotropic cases it appears in several observation directions ϕ 
that for certain modes there are more than one phase contribution. Caustics can also appear for 
these modes. 

To illustrate this, Fig. 2 presents the group velocity in mm.µs−1 of the SH0 mode at a 

frequency of 300 kHz in a plate whose characteristics are given on the section 3.2. For this 
mode at this frequency we must deal with caustics. On the left, in the considered direction of 
observation, there are three phase contributions. On the right, in the considered direction of 
observation, two phase contributions coalesce, leading to a caustic. 

 

 

 
Figure 2. Three phase contributions far from caustics (left) and near a caustic (right). 

 
 

To calculate the Green’s function, one must distinguish propagation directions close to a 
caustic from the others. Far from caustic the phase term can be developed at the second order 
approximation whereas near a caustic, a third order developed must be used. The expressions 
of these Green’s functions can be found in literature [3, 4] and are the following: 

g(3) (x, y, z) = d(x, y, z)am,n(x, y, z)pm,n(x, y, z), (3) 
 

with, 

d (x, y) =
  √

x2 + y2
 −1/2 

, (4) 
 

 

afm,n (x, y, z) = res[G] 

 

k=km,n(γm,n) q 
|km,n(γm,n)| 

∂2φm,n(γm,n,ϕ) , (5) 
2π| ∂γ2 | 

where f index stands for "far from caustics" and with G being 2D spatial Fourier transform of 
g, 
φm,n(γm,n, ϕ) = km,n(γm,n)cos(γm,n ϕ), 
km,n is the wave number of the mode, 
and γm,n is the phase direction for a given direction of observation ϕ, and where p denotes the 
following phase term 

√  π 
 

∂2φm,n(γm,n,ϕ) π 

pfm,n (x, y, z) = ei x2+y2φm,n(γm,n,ϕ)e
i 4 sgn( ∂γ2 )

ei 2 , (6) 
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far from caustics as presented on Fig. 2 and 

d (x, y, z) =
  √

x2 + y2
 —1/3 

(7) 

 
a (x, y, z) = res[G] 

 
|k (γ )|

 
,
u −2

√
S(γm,1, ϕ)  

cm,(1)+(2) k=km,1(γm,1) m,1 m,1 ∂2φm,1(γm,1,ϕ) 
∂γ2 

 u √ (8) 

+ res[G] |k (γ )| 
u
, 
−2 S(γm,2, ϕ)  

 

 

pcm,(1)+(2) 

 

(x, y, z) = ei 

  π 

x2+y2L(ϕ)Ai(κ) 
e  2

 

2 

 
(9) 

near caustics when the two phase contributions (1) and (2) cannot be distinguished and 
treated separately as interfering contributions, as seen on Fig. 2, with 

L(ϕ) = 1 (φm,1(γm,1, ϕ) + φm,2(γm,2, ϕ)), 

κ = −(
√

x2 

 

+ y2 

 

) 3 S(ϕ), 

 

S(ϕ) =
  

3 (φ 

 

 
m,1 

 

(γm,1 

 

, ϕ) + φ 

 

 
m,2 

 

(γm,2 , ϕ))
 2 

, 

Ai the Airy’s function and where c index stands for "close to caustics". 
Finally, we want to calculate the following integral: 

u(3)(x, y, z, q(3)) = 
Σ Σ ∫∫

 g(3) (x − xr, y − yr, z)q(3)(xr, yr)dxrdyr. (10) 
m n(ϕ) S 

In the isotropic case, such an integral can be accurately and efficently evaluated thanks to the 
Fraunhofer approximation [1]. In the next section, a Fraunhofer-like approximation is proposed 
for the anisotropic case. 

 
3. Fraunhofer-like approximation 
3.1. Theory 

To start with this approximation, modes having only one phase contribution in each direction 
are considered. The source is centred on (xc, yc) and radiates with a uniform amplitude, so that 
for all source points, one has: 

 
q(3)(xr, yr) = q(3)(xc, yc). (11) 

The Fraunhofer approximation consists in approximating the phase term by its first order 
Taylor expansion and the amplitude term by its zero order Taylor expansion. By doing so, Eq. 
(3) can be re-written as: 

 

df (x − xr, y − yr)afm,n(x − xr, y − yr, z)q(3)(xr, yr) 

= df (x − xc, y − yc)afm,n(x − xc, y − yc, z)q(3)(xc, yc) 

 

 
(12) 

= (
√

(x − x )2 + (y − y )2)—1/2 × res[G] q 
|km,n(γm,n)| 

 

 

q(3)(x , y ), 
 

 
2π| | 

√ 

k=km,2(γm,2) m,2 ∂2φm,2(γm,2,ϕ) 
∂γ2 

k=km,n(γm,n) 
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√  π 
 

∂2φm,n(γm,n,ϕc) π 

pfm,n 

2 2  i  sgn( 
(x − xr, y − yr, z) = eiφm,n(γm,n,ϕc)  (x—xc) +(y—yc) e 4 

∂γ2 )
ei 2 (13) 

iφ (γ ,ϕ )( √ (x−xc)(x−x′) + √ (y−yc)(y−y′) ) 
m,n 

× e 
m,n  c 

 

 

(x−xc)2+(y−yc)2 

 

 

(x−xc)2+(y−yc)2  . 

Fields radiated by most commonly used disk or rectangular transducers are now considered. 

 
Disk-shaped transducers 

The transducer is of radius a. To ease the calculation, a polar coordinate system is now used, so 
that the radiation integral is now given by: 

u(3)(x, y, z, q(3)) = 
Σ 

d (x − x , y − y )a (x − x , y − y , z)q(3)(x , y )ei 
π

 

f c c 

m 

fm,n c c 

∫ ∫ 

c c 2  
(14) 

× e 4
 ∂γ2  

—π  0 

 

 

eiφm,n(γm,n,ϕc)R(1—cos(θ—ϕc) R )rrdrrdθ, 

where R = (x xc)2 + (y yc)2. Classical wave diffraction calculations lead to the following 
final expression: 

u(3)(x, y, z, q(3)) = 
Σ 

d (x − x , y − y )a (x − x , y − y , z)q(3)(x , y )ei 
π

 

f c c 

m 

fm,n c c c c 2  
(15) 

iπ  sgn( 
∂2φm,n(γm,n,ϕc) 

) 2J (φ (γ , ϕ )a) 

× e 4
 ∂γ2 πa2   1 m,n m,n c eiφm,n(γm,n,ϕc)R, 

φm,n(γm,n, ϕc)a 

where the amplitude is proportional to the Fourier transform of the circular aperture. 

 
Rectangular-shaped transducers 

A rectangular transducer of aperture l L is considered, so that radiation integral to calculate 
is given by: 

u(3)(x, y, z, q(3)) = 
Σ 

d (x − x , y − y )a (x − x , y − y , z)q(3)(x , y )ei 
π

 
 

 
iπ sgn( 

× e 4
 

 

∂2φm,n(γm,n,ϕc) ) 
∂γ2 eiφm,n(γm,n,ϕ) 

   
(x—xc)2+(y—yc)2 

 
(16) 

∫ xc+l/2 ∫ yc+L/2 
 
iφm,n 

e 

 

(γm,n ,ϕ)( (x−xc)(x−x′) 

(x−xc)2+(y−yc)2 
+  (y−yc)(y−y′) 

(x−xc)2+(y−yc)2 dxrdyr. 
xc—l/2 yc—L/2 

Similarly, classical diffraction calculations lead to the following result: 

u(3)(x, y, z, q(3)) = 
Σ 

d 
 

 

(x − x , y − y )a (x − x , y − y , z)q(3)(x , y )ei 
π

 

iπ  sgn( 
∂2φm,n(γm,n,ϕc) 

) φ (γ , ϕ )(x − x ) l 
× e lLsinc( √

(x − x )2 + (y − y )2 2 
)
 

(17) 

φ (γ , ϕ )(y  y ) L 
× sinc( √

(x − x )2 + (y − y )2 2 
)e

 
iφm,n(γm,n,ϕc)

√
(x—xc)2+(y—yc)2 . 

where the amplitude is now proportional to the Fourier transform of the rectangular aperture. 
If an isotropic plate is considered momentarily, above results simplify and are expressed as given 
by A. Raghavan and C.E.S Cesnik [1]. In this paper, the Fraunhofer approximation is shown to 
give very accurate results. 

m 

√ 

a 

m 

f fm,n 

f fm,n 

× 
) 
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Table 1. Plate characteristics. 

 

C11 C22=C33 C12=C13  C23  C44 C55=C66 Mass density Ply thickness 
(GPa)  (GPa)  (GPa) (GPa) (GPa)  (GPa)  (kg/m3)  (mm) 

123.4 11.5 5.6 6.4 2.6 4.5 1.6x103 0.25 
 

 

 
3.2. Simulations 

Simulations made using above given results are now presented for a composite plate. 

 
Plate characteristics 

The plate is 1mm-thick, made of four parallel layers of fiber-reinforced polymer(CFRP) with 
the following symmetry [0◦/90◦]S(T700GC/M21 cross-ply composite). Material parameters are 
listed in Table 1. 

Figure 3 presents the slowness curves of the three propagating modes which exist at our work 
frequency of 300 kHz, below the first cut-off frequency of the plate. For each of these modes the 
dependency of phase directions on the observation (energy) direction is plotted on Fig. 4. 

 

 

Figure 3. Slowness curves in s.km—1 

in a cross-ply [0◦/90◦]S T700GC/M21 
CFRP at a frequency of 300kHz. 

Figure 4. Phase directions function of 
the observation direction at a frequency 
of 300kHz. 

 

 
Limits of the Fraunhofer like approximation 

Results obtained in the previous section are now applied to the composite plate. In the slowness 
curves of Fig. 3, and considering the variations of phase directions with energy direction shown in 
Fig. 4, it appears that the A0 mode is the less anisotropic one: its slowness curve is quite circular 
and the direction of phase velocity is almost equal to that of the energy velocity. Therefore, 
the Fraunhofer approximation is expected to lead to accurate field prediction as it does in the 
isotropic case. In the computation, a 5-mm-diam disk transducer producing a uniform normal 
stress at the plate upper surface is considered. The computation is made for observation points 
located at 100mm of the source centre. Results computed using the approximate formula are 
compared to results obtained by computing the full surface convolution integral over the source 
active area. 
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√ 
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Figure 5. Out of plane displacement of the A0 mode at a distance of 100mm in the case of 
an excitation by a circular source at the frequency of 300 kHz obtained by computing the full 
integration (red line) and the approximate formula (blue line). 

 

 
The two kinds of results superimpose quite well but there are angular regions where 

approximate results are clearly wrong. Discrepencies appear in directions where small variation 

of the energy direction (e.g 5○) leads to large variation of phase direction (15○). The sole phase 
direction used in the approximation does not permit to accurately account for phase variations 
over the source surface. As the mode considered is the less anisotropic, such a failure is of course 
even worse when more anisotropic modes are considered. It is therefore obvious that Fraunhofer 
approximation cannot be reliably used for anisotropic plates. To overcome this difficulty, still 
aiming at deriving computationally efficient formulae, a new model is now proposed. 

 
4. Integration along energy directions 
4.1. Theory 

We will use a new coordinate system in this part, as shown by Fig. 6. The system is centred on 
the calculation point and rotated so that e→x is along the direction linking the calculation point 
to the source centre. 

In the new coordinate system, the source centre is at (R, 0) with R =  (x  xc)2 + (y  yc)2. 
The radiated field is now expressed as: 

u(3)(ex = 0, ey = 0, z, q(3)) = 
Σ Σ ∫∫

 d(−er
x, −er

y, z)am,n(−er
x, −er

y, z) 
m n(ϕ) S (18) 

×pm,n(−er
x, −er

y, z)q(3)(er
x, e

r
y)der

xder
y, 

The field expression is reformulated to explicit the angular dependence on θ, angle formed by 
the line linking the calculation point to the source centre and that linking the calculation point 
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2 

 

 
 

 

to the sourcepoint:  

θ = ϕr − ϕc, (19) 

with ϕr the direction between the source point and the observation point and ϕc direction between 
the centre of the source and the observation point in the former coordinate system. 

 

𝑒𝑦 𝑦  

 
(𝑥𝑐, 𝑦𝑐) 

 

 

𝑒𝑥 

 
 

𝑥 

(𝑥, 𝑦) 

 
Figure 6. New coordinate system. 

 
 

In our integral r is the distance between the source and calculation points. In this new 
formulation d(x, y) = d(r): 

 

 

u(3) 
 

(ex = 0, ey = 0, z,q 

 
(3)) = Σ Σ ∫ θmax 

d

  
r1(θ) + r2(θ)

 
 

m 

∫ r2(θ) 

n(ϕ) θmin 

 
r 

 

 
(3)  r r r 

(20) 

× 
r1(θ) 

am,n(θ, z)pm,n(r , θ, z)q (r , θ)r dr dθ, 

[θmin, θmax] and [r1(θ), r2(θ)] denote the integration intervals as shown on the Fig. 7. 
 
 
 

 

𝑒𝑦 

 
 
 
 
 
 
 
 
 

Figure 7. Integration limits. 

 
Calculation points must be outside the source. Moreover, we still consider a uniform source 

distribution. 

 
 
 

 
 

𝑟1 𝜃 

𝜃 

𝑟2 𝜃 
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Σ 

×

  

— 

  

3 

t=1 

max min d 1 t 2 t 

1 t 2 t 
2 

Ai(κ(θ ))a (θ , z) 
2 2 

with, κ(θt) = − 1 t 2 t S(θt). 

 

 
 
 

 

∫ θmax 

 
r1(θ) + r2(θ)

  ∫ r2(θ)
  

r r r 

Im,n(ex = 0, ey = 0) = d 
θmin 

2 
am,n(θ, z)pm,n(r , θ, z)r dr dθ 

r1(θ) 
nθ 

θ − θ  
 

 

 
r (θ ) + r (θ )

 
 

 
 

∫ r2(θt)  r r r 
× 

r1(θt) 
am,n(θt, z)pm,n(r , θt, z)r dr , 

 

with θt = θmin + (t − 1 ) θmax—θmin
 and nθ the number of discrete directions in angular 

integration. 
2 nθ 

For directions far from a caustic, we have: 
 

r1(θt) + r2(θt)
  ∫ r2(θt) 

 
 

 
r r r 

d 
2 r1(θt) 

am,n(θt, z)pm,n(r , θt, z)r dr 
 

r (θ ) + r (θ )
 
 iπ  sgn( 

∂2φm,n(γm,n,θt) 
) π 

=df 
1  t 2  t e 4 

2 
∂γ2 ei 2 afm,n(θt, z)  

(22) 

eir2(θt)φm,n(γm,n,θt) ir2(θt)φm,n(γm,n, θt) − 1 

(iφm,n(γm,n, θt))2 

eir1(θt)φm,n(γm,n,θt) ir1(θt)φm,n(γm,n, θt) − 1 
.
 

(iφm,n(γm,n, θt))2 
 

For directions close to a caustic, we have: 
 

r1(θt) + r2(θt)
  ∫ r2(θt) 

 
 

 
r r r 

d 
2 r1(θt) 

am,n(θt, z)pm,n(r , θt, z)r dr 

 
r (θ ) + r (θ )

  
ei 

π

 

 
 

   

×

  

eir2(θt)L(θt) ir2(θt)L(θt) − 1 
− eir1(θt)L(θt) ir1(θt)L(θt) − 1

  

,
 

 

 
 

r (θ )+r (θ )
 2

 

 

(iL(θt))2 

 

(iL(θt))2 

This general formulation involving integration along energy directions to express the field is 
now used for circular or rectangular sources. Integration intervals in calculation point coordinate 
system are easily found for both of them. 

 
4.2. Results 

To validate the proposed model of integration, results predicted by means of this model are 
compared to equivalent results computed by means of the full convolution surface integral. The 
cases of a disk transducer and of a rectangular one are considered. The plate considered is the 
same as that used in previous computations. 

 
Disk-shaped transducers 

A disk transducer of radius 5 mm is considered. Calculation points are located at a distance of 
100mm from the source centre. The amplitude displayed is the absolute value of the out-of-plane 
component of the displacement. 

nθ 2 

c t cm,n t 

2 

= (21) 

= d (23) 
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(a) (b) 
 

(c) 

Figure 8. Out of plane displacement of the A0 mode (a), S0 mode (b), SH0 mode (c) at a 
distance of 100mm in the case of an excitation by a circular source at the frequency of 300 kHz 
obtained by computing the full integration (solid line) and the approximate formula (+ points). 

 

 
Figure 8 (a) displays the same results as those shown on Fig. 5. In the previous results, the 

Fraunhofer approximation was shown to fail in some angular regions, despite the fact that the 
mode considered (A0) is the less anisotropic one among the three propagative modes existing 
below the first cut-off frequency. Here, the proposed model leads to predictions in excellent 
agreement with those computed using the full integration scheme. The two other comparisons 
shown on Fig. 8 (b, c) now concern the two other modes of higher anisotropy S0 and SH0. Even 
for the highest anisotropy (SH0), results predicted by the proposed model perfectly agree with 
those computed without approximation. 
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Rectangular-shaped transducers 

Similar results are shown on Fig. 9 for a rectangular transducer (actually as square source of 
9-mm-side). Directivities of the various modes are different from those radiated by the disk 
transducer. Again, results computed using the proposed model or using the full integration 
superimpose. 

 

(a) (b) 
 

(c) 

Figure 9. Out of plane displacement of the A0 mode (a), S0 mode (b), SH0 mode (c) at a 
distance of 100mm in the case of an excitation by a square source at the frequency of 300 kHz 
obtained by computing the full integration (solid line) and the approximate formula (+ points). 

 
We can see on the Fig. 9 that the results, as for the circular shaped transducer are similar 

between the convolution and the integration along energy directions. 
Note that in Fig. 8 and Fig. 9, results computed by means of the approximate formulation 

perfectly superimpose with those computed by means of the full integration, so much so that 
results shown as solid lines could not be distinguished. This is the reason for presenting the 
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former results with “+” signs and to limit the number of angles for which they are shown. 

 
5. Discussion 
The proposed approximate model leads to very accurate prediction of results obtained by means 
of the full integral over the source aperture. The approximation is quite limited as it only 
concerns the amplitude term along the intersection of a ray with the source surface, the phase 
term being exactly taken into account and analytically integrated along this intersection. The 
angular integration over ray directions covers the full surface seen from the computation point. 
With the present model, a 1D numerical integration is involved, this leading of course to faster 
computation than that required for the full 2D one. Moreover, the farther the computation 
point, the smaller the angular range of integration and the faster the numerical evaluation of the 
integral. 

 
6. Conclusion 
Fields of guided waves radiated by finite-sized sources must be evaluated to optimize testing 
configurations of plate-like structures. Fraunhofer approximation is known to lead to very 
accurate predictions of transducer diffraction effect for a minimum computational effort, but 
this is only true if the plate is isotropic. As soon as the plate structure is anisotropic, all the 
guided modes generated by a source behave anisotropically. For a given multi-layered composite 
plate, the anisotropy varies a lot from one mode to another. Some results have been shown in the 
first part of the paper proving that, even for the less anisotropic mode, Fraunhofer approximation 
fails at predicting accurately the field radiated. This makes it necessary to account for all the 
possible energy direction. The existence of caustics is an issue that was recently solved in the 
literature in the form of an approximate Green’s function. The model proposed in the paper uses 
the modal description computed by the SAFE method and expressions of the Green’s function 
which differ if the energy direction is close to or far from a caustic [4]. A change of variables 
in the convolution surface integral expressing the field was proposed to optimally compute this 
integral (at low cost), leading to expressions easy to implement and fast computed. The model 
has been shown to predict very accurately the radiated field associated to various modes, even 
for the most anisotropic ones. 
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