
HAL Id: cea-01810844
https://cea.hal.science/cea-01810844

Submitted on 8 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Timed symbolic testing framework for executable
models using high-level scenarios

Mathilde Arnaud, Boutheina Bannour, Arnaud Cuccuru, Christophe Gaston,
Sébastien Gerard, Arnault Lapitre

To cite this version:
Mathilde Arnaud, Boutheina Bannour, Arnaud Cuccuru, Christophe Gaston, Sébastien Gerard, et
al.. Timed symbolic testing framework for executable models using high-level scenarios. Conference
on Complex Systems Design & Management, Nov 2014, Paris, France. �cea-01810844�

https://cea.hal.science/cea-01810844
https://hal.archives-ouvertes.fr

Timed symbolic testing framework for
executable models using high-level scenarios?

Mathilde Arnaud, Boutheina Bannour, Arnaud Cuccuru
Christophe Gaston, Sebastien Gerard and Arnault Lapitre

CEA, LIST, LISE Laboratory
Point Courrier 174, 91191, Gif-sur-Yvette, France

{firstname.lastname}@cea.fr

Abstract. Refining high-level system scenarios into executable models
is often not automatic and subject to implementation choices. We develop
techniques and tools combining different modes of simulation in order to
assess automatically the correctness of executable fUML activities with
respect to system scenarios specified as UML MARTE sequence dia-
grams. In this paper, we show how test data are extracted from sequence
diagrams using symbolic execution and how they are used as inputs to
test system activities in the standardized fUML virtual machine.

1 Introduction

Over time, software systems tend to be used in highly critical scenarios in a va-
riety of areas. Examples include advanced driver assistance systems, autopilots
in aircraft or railway systems, etc. Such systems are often made of multiple com-
ponents which are highly concurrent, and are all tied together in complex ways.
Hence, standards under which large-scale software systems have to be developed
are increasingly stringent and demanding regarding confidence in their quality.
Formal methods are essential to achieve higher confidence levels since they allow
replacing validation operations done manually by automatic or semi-automatic
techniques with mathematical foundations justifying their use. Unfortunately,
the reference models used in validation are often large and therefore it is un-
clear how much confidence to award them. A top-down process which relies on
refinement techniques should be used in order to shift the burden of formal
analysis from detailed reference models to the correctness of refinement steps.
In this paper, we do not define refinement mechanisms for transforming high
level models into low level executable models. We rather consider the refinement
as maintaining a correctness relation which states sufficient conditions on con-
forming executable models with respect to high level scenarios. The objective
of the paper is to investigate a refinement approach integrated with the Unified
Modeling Language (UML) which is a graphical language that can be used to
design complex software systems at different levels of abstraction. A complex
system can be first specified as a UML sequence diagram with timing properties

? Work partially supported by the European openES project.

2 Arnaud, Bannour, Cuccuru, Gaston, Gerard, Lapitre

using the constraint language MARTE::VSL [9]. In sequence diagrams, one may
describe execution scenarios in terms of partially-ordered sequences of messages
exchanged between basic interaction points (called ports) owned by components
to communicate with their environment. Message descriptions may include con-
straints on the type of value transmitted and the time at which the message is
processed. Conceptually, sequence diagrams characterize requirements on sys-
tem behaviors while abstracting as much as possible internal computation flows
inside components. Later in the design cycle, a more detailed model of each
component behavior may be designed with UML activity diagrams. Activities in
UML are flow charts built with communication and computation actions. Sys-
tem activities are deterministic and directly executable according to the fUML
execution semantics [11]. In our approach, we develop a tooled testing process
to assess automatically the conformance of the system activities with respect to
sequence diagrams. We also pay particular attention to evaluating compliance
with timing constraints since the system depends on those constraints being
satisfied to operate correctly. Test data are generated from sequence diagrams
by symbolic execution [13] which improves behavioral coverage and hence fault-
detection capability of the testing process.

This paper is organized as follows. The section 2 gives an overview of our
approach and tools. It also introduces an automotive system used as a running
example in this paper. Section 3 describes how sequence diagrams are used in our
approach to specify high-level scenarios and their symbolic treatment. Section 4
shows how activities of components in the system are designed and presents their
execution semantics in the fUML virtual machine. Section 5 defines the testing
process. Section 6 presents the experimental results and discusses practical issues
in test coverage within the context of our models. Section 7 reviews some related
works. Finally, Section 8 draws the conclusions.

2 Approach overview

The goal of this section is twofold. First, we briefly discuss the tools involved
in the approach, and then we present the approach itself which is illustrated
step-by-step in Figure 1.
• Papyrus is the tool used for modeling UML diagrams1. Papyrus is a graphical
editing tool for UML2 integrated with Eclipse.
•Moka is an eclipse plug-in which aims at providing support for model execution
in the context of Papyrus [20]. Moka provides basic execution, debugging and
logging facilities for foundational UML (fUML) [11], an executable subset of
UML with precise operational semantics. We use activity diagrams that are part
of fUML to model the internal behavior of components.
• sdToTIOSTS is an eclipse plug-in for Papyrus. It is used to translate se-
quence diagram models into Timed Input Output Symbolic Transition Sys-
tems (TIOSTS) [3]. TIOSTS are symbolic automata with time guards. Resulting
TIOSTS can be analyzed by means of the symbolic execution tool Diversity.

1 www.eclipse.org/papyrus

Timed symbolic testing framework for executable models 3

• Diversity is a symbolic automatic analysis and testing tool [4]. Diversity uses
symbolic execution techniques to compute a symbolic tree representing all the
possible executions of a TIOSTS. A symbolic path represents all the timed traces
that can be computed by satisfying path conditions on data and time. Diversity
offers coverage criteria such as transition coverage. Finally, Diversity is coupled
with sat-solvers in order to generate timed traces associated to symbolic paths
and to test whether a timed trace reveals non-conformance relatively to a trace-
based conformance relation called tioco [19].

loop
{ t2[i] – t1[i] < 0.5s }m1

m2

Step (1) High level UMLsequence diagrams

With MARTE time annotations

m3(y)

m4

C1

@t1

@t2

C1 C2

Accept

<<Wait >>
Send y

m5

Step (2) Detailed fUML activity

diagrams with discrete event simulation

Abtract UML composite structure diagram

based on tioco relation

Conform to?

(delay2) C2?m2

(delay1) C1?m1

(delay3) C2?(m3,y1)

delay3 < 0.5s

8 ≤ y1

{ 8 ≤ y }

Step (3) compute the symbolic tree

containing the paths covering all/some

messages at least once

Step (4) generate test input sequence

((delay) stimulus)*

(1s) C1?m1 (2s) C2?m2

Step (6) collect input/output execution sequence

((delay) stimulus | response)*

(1s) C1?m1 (2s) C2?m2 (0.3s) C2!(m3,9)

Testing

algorithm

Step (7) verdict computation

fUML virtual

machine

Test execution

environment

Simulated

time
logging

Step (5) set up the test environment

and run the simulation

PASS End

Go to Step(2) revise

the activity models

FAIL

sdToTIOSTS plug-in C1 C2

C2

Moka plug-in

Diversity

tool

Fig. 1: Validation Process.
Let us overview the different steps of the approach in Figure 1. The first step (1)
consists in specifying system scenarios which describe the intended interactions
between all components of the system. The second step (2) consists in refining
the scenarios into an executable model which specifies with an activity diagram
the internal behavior of each component. System scenarios as sequence diagrams
are analyzed with Diversity in step (3). For each sequence diagram, Diversity
computes a symbolic tree, where each path denotes a possible (symbolic) execu-
tion in the sequence diagram. Then a path is selected in step (4) relating to a
specific behavior and a sequence of stimuli (as a timed trace) is extracted from
it. Next in step (5), the fUML virtual machine of the tool Moka, being supplied
with the test stimuli, is used to set up a test environment and execute the system
activities. In Step (6) the system responses are collected by Moka. The latters
are taken as inputs by the testing algorithm in Diversity which computes in step
(7) a verdict concerning the tioco-conformance of execution and the coverage of
the requirement. Naturally, in case of fault-detection the system activities need
to be revised by the designer.
Automotive example. For the rest of the paper, we will use a running example
whose structure is depicted in Figure 2. It specifies a rain-sensing wiper system

4 Arnaud, Bannour, Cuccuru, Gaston, Gerard, Lapitre

in a car, denoted RSW. Three components are involved in the RSW system: a
controller, a calculator and a wiper motor. These are some of the requirements
that must hold for the actual implementation of the system: (R1) RSW adjusts
the wiping speed according to the amount of rain detected; (R2) RSW controls
automatically the adjustment of the wiper activity; and (R3) RSW response
time is less than 0.5 seconds after detection.

RSW

ctrl:Controller calc:Calculator

motor:Motor

intensity: Intensity
intensity_env: Intensity

speed_calc: Speed speed: Speed

speed: Speed

intensity: Intensity

speed_motor: Speed

Fig. 2: RSW composite structure diagram.

3 Interaction scenarios and symbolic simulation

We develop next high level system scenarios and explain how we analyze them.

 sd handleRainIntensity
ctrl:Controller calc:Calculator

 intensity_env intensityintensity_calc

<<TimedConstraint >>

{ t1 [i] - t1 [i-1] = (0.5, s) }

@t1
@t2

m2

m1

strict

sd RSW
ctrl:Controller calc:Calculator motor:Motor

ref sd initialization

strict

loop

ref sd handleRainIntensity

ref sd newSpeed

ref sd updateSpeed

Fig. 3: RSW sequence diagram–Subdiagram representing the handling of the
received rain intensity.

3.1 Sequence diagrams

The sequence diagrams given in Figures 3–5 describe the global behavior ex-
pected from the RSW components. Each of the ports is represented by a lifeline.
The behavior described in the diagram is repetitive and the number of iterations
is not known beforehand, which is captured by the loop operator. The controller
receives inputs from the environment in message m1 and sends periodical up-
dates to the calculator about the rain intensity on channel m2. Note that the
messages are asynchronous and may thus be received at a later date than their
emission. The periodicity of the updates is given by a time constraint of the
form t1[i]− t1[i− 1] = (0.5, s), where i represents how many times the behavior
has looped and t1 is an array containing at index i the time value associated.
The calculator then computes what speed the wiper should adopt given such
intensity: this is represented in the sequence diagram by the computation of a
new value for the speed variable : new(speed). The calculator sends the result
of this computation back to the controller over message m3. Then there are two

Timed symbolic testing framework for executable models 5

alternatives as captured by the alt operator: either the new computed value for
the speed of the wiper is the same value as the previously computed speed, and
in that case nothing need be done, or the new value is different. In that case the
value of the stored previous speed is updated and a signal is sent to the motor
with the new speed value (message m4). In a sequence diagram, the lifelines
are running asynchronously. In order to synchronize some executions, we use the
strict operator which ensures that the behavior in the first part is finished before
the behavior in the second part begins.

sd newSpeed

ctrl:Controller calc:Calculator

intensity speedintensity speed_motor

m3

 new(calc.speed)

@t3

<<TimedConstraint >>

{ t3 [i] - t1 [i] < (0.5, s) } if drizzle intensity then low speed

if medium intensity then medium speed

if high intensity then high speed

 sd newSpeed

Fig. 4: Controller computing new speed.

sd RainSensingWiper

ctrl:Controller motor: Motor

speedspeed_calc intensity speed_motor

 sd updateSpeed

m4

alt
 { ctrl.speed <> ctrl.prevSpeed }

{ ctrl.speed = ctrl.prevSpeed }

ctrl.prevSpeed = ctrl.speed

Fig. 5: Updating speed.

3.2 Symbolic execution

In order to formally reason about sequence diagrams, we provide them with
formal semantics given by TIOSTS automata [3]. Symbolic execution may be
carried out on such automata and thus we obtain timed traces representing
possible behaviors characterized by the sequence diagram.

 a a’

m3

 a : calc.speed!(m3,42) | a’ : ctrl.speed_calc?(m3,v)

 a a’

m3

42

a

m3

 a’

 v = 42

Fig. 6: Example of transitions representing an asynchronous communication.

Translation into communicating TIOSTS. Let V be a set of variables and C be
a set of channels. A TIOSTS over (V,C) is a triple (Q, q0, T) where Q is a set of
states, q0 is the initial state and T is the set of transitions. Transitions are of the

form q
t,φt,φd,act,ρ−→ q′ where q, q′ are states, t is an array of time instants, φt and

φd are guards resp. over the time and the data constraints, ρ is a substitution
over variables of V and act is one of the possible actions that can be triggered.
Possible actions are: receiving a value x on channel c ∈ C denoted by c?x;
sending value u on channel c ∈ C denoted by c!u; assigning a new value to
variable x denoted by new(x); and the empty action τ . We translate a sequence
diagram into a set of TIOSTS: each lifeline is translated into a TIOSTS, by
translating successive events into transitions with the appropriate constraints.
We only detail the translation of the asynchronous communications which was
not considered in [3]. An unbounded FIFO variable is associated to each channel
in order to emulate the communication actions. Each time a message m is sent

6 Arnaud, Bannour, Cuccuru, Gaston, Gerard, Lapitre

on a channel c by a lifeline l, it writes m on the FIFO associated to channel c.
Each time a lifeline receives on channel c, it reads on the FIFO associated with
c the message. This process is illustrated in Figure 6.
Symbolic tree. Reasoning with concrete input values can result in a very large,
possibly infinite, number of executions of the system. We use symbolic execution
techniques instead. The underlying idea is to abstract some of the values, be
they data values or time values, as variables, and thus characterize classes of
executions. Besides data, we define symbolic handling of TIOSTS time variables.
Symbolic states allow storing information about the execution of the system
that may constrain the values of the variables in path conditions. A symbolic

 new(calc.speed)

Time:=T0+d0

calc.speed:=calc.speed1

 calc.speed!(m3,calc.speed1)

Time:=T0+d0+d1

 calc.speed1 <> ctrl.prevSpeed0

 ctrl.prevSpeed := calc.speed1
ctrl.speed_motor!(m4,calc.speed1)

 ctrl.speed_calc?(m3,calc.speed1)

 d0+d1+d2 < 0.5s

 Time:=T0+d0+d1+d2

 t3[1] = T0+d0+d1+d2

Time:=T0 , t1[1] = T0

calc.speed:=calc.speed0

ctrl.prevSpeed := ctrl.prevSpeed0

 calc.speed1 = ctrl.prevSpeed0

Fig. 7: Part of the symbolic tree of the RSW sequence diagram.
execution corresponds to a concrete one if and only if the collection of path
conditions is satisfiable. For example, the path condition collected in one path of
Figure 7 is made of two parts, the time path condition PCt = d0+d1+d2 < 0.5s
and the data path condition PCd = calc.speed1 <> ctrl.prevSpeed0. Using
solving techniques on this path condition, we can deduce concrete traces.
Timed traces of sequence diagrams. We use a set D of durations and a data model
M which includes most common types. A sequence diagram SD is defined over a
signature (P,Msg) where P is a set of ports andMsg is a set of messages. The
set of communication actions on port p ∈ P is Act(p) of the form I(p) ∪ O(p),
where I(p) = {p?(m, v)|m ∈ Msg, v ∈ M} and O(p) = {p!(m, v)|m ∈ Msg, v ∈
M}∪{p!(m, v)|m ∈Msg, v ∈M}: an action of the form p!(m, v) corresponds to
an emission of a message by p; p!(m, v) corresponds to a reception of a message
sent by an internal component of the system, and p?(m, v) corresponds to a
reception of a message coming from the environment of SD. We define the set
I(SD) of all inputs (resp. outputs) in SD as

⋃
p∈P I(p) (

⋃
p∈P O(p)). The set of

all communication actions in SD is I(SD)∪O(SD), denoted Act(SD). A timed
trace of a sequence diagram SD is a word from (Act(SD) ∪D)∗ which respects
the causal order inferred from the sequence diagram together with the timing
constraints and the performed computations on inputs. The define TTraces(SD)
as the set of all timed traces of SD.

4 Activity diagrams and numeric simulation

The objective of this section is to introduce a subset of activities that we use
and discuss their underline execution semantics in the fUML virtual machine.

4.1 Activity diagrams

Components involved in the system are refined by designing an activity diagram
for each individual component. Each activity diagram specifies the communica-

Timed symbolic testing framework for executable models 7

tion and the computation logic. Figure 8 illustrates activities associated with
the controller and the calculator of the RSW system.

Not Equal to prevSpeed

prevSpeed

Start This

Accept IntensitySignal

 Send IntensitySignal

Accept SpeedSignal

Send SpeedSignal initial value of prevSpeed is 0

Contoller Activity

<<Wait >>
{ duration= (0.5, s) } Call ComputeSpeed

This

Accept IntensitySignal

Send SpeedSignal

Calculator Activity

<<Wait >>
{ duration= (0.1, s) }

if drizzle intensity then low speed

if medium intensity then medium speed

if high intensity then high speed

Fig. 8: RSW activity diagrams.

Both activities specify a cyclic behavior. Let us discuss actions of the controller:
• AcceptEventActions (nodes Start, Accept SpeedSignal, and Accept IntensitySig-
nal) specify synchronization points, where the controller waits for inputs from
its environment;
• SendSignalActions (nodes Send IntensitySignal, and Send SpeedSignal) specify
asynchronous communications between the Controller and its environment;
• Other actions specify computations or access to context information of the
component object: Not Equal to prevSpeed determines if the received speed value
is equal to the previous one for example.
Nodes may be annotated (using the stereotype <<Wait>>) with durations
which must elapse before they are executed. E.g. Send IntensitySignal corre-
sponds to sending a rain intensity value to the calculator immediately after a
0.5s delay.

4.2 fUML virtual machine and Discrete-Event simulation

The fUML virtual machine (VM) is implemented in the Moka tool. It allows the
execution of fUML activities of components structured with UML composite di-
agrams. A specific simulation library defining a Model of Execution (MoC) is
responsible for controlling the execution and simulating extra-functional aspects
such as timing features. In this paper, we use a particular MoC, discrete-event
MoC which introduces a discrete model of time. During the traversal of the
control flow of the activity, an event is triggered by the fUML VM each time
a communication action is interpreted and is stored in the event queue of a
scheduler. Events correspond to fUML signals, carrying a delay. This value in-
dicates the time when this communication node will be woken up. During the
execution, the event with the smallest delay is then selected, firing the commu-
nication action referenced by this event and removing it from the event queue.

8 Arnaud, Bannour, Cuccuru, Gaston, Gerard, Lapitre

Once communication actions are fired, the fUML VM is in charge of propagat-
ing the values through the connector architecture conforming to [10]. Finally as
glimpsed in Section 2, we need to collect executions traces in order to analyze
their conformance: to that end we integrate in the fUML VM run-time logging
capabilities.Thanks to discrete-event MoC, the execution trace is enriched with
durations that have elapsed between exchanged data.

5 Conformance testing

We present in this section the tioco conformance relation and then, we describe
in practice the conformance testing process.

5.1 Conformance relation

In our settings, an Activity model A defined over a set of ports P = qi≤nPi,
is a finite set A1, . . . , Al of activities defined respectively over P1 . . .Pn where
n is the number of components in the system. The Activity model is directly
executable in the fUML virtual machine as explained in Section 4. The simulation
history of an activity model can be mathematically characterized as a set of
traces defined over the set of ports denoted TTraces(A). We also define an
Interaction model S defined over (P,Msg) as the set of k sequence diagrams
SD1, . . . , SDk defined respectively over (P1,Msg1) . . . (Pk,Msgk) such that:
for all i ≤ k,Pi ⊆ 2P ; and Msg = qi≤kMsgi. That is, a sequence diagram in
S may include only a subset of all system ports and the sets of messages are
disjoint. Timed traces of an interaction model S, denoted TTraces(S), is the
union of timed traces of all sequence diagrams in S,

⋃
i≤k TTraces(SDk) (we

define similarly the set of all input and output sets of S resp. O(S) and I(S)).
Let σ ∈ TTraces(S), we define the auxiliary function h(Msg, σ) as follows: if σ
is of the form p1♦(m1, v1) . . . pn♦(mn, vn), where ♦ ∈ {?, !} then h(Msg, σ) =
p1♦v1 . . . pn♦vn; otherwise h(Msg, ε) = ε. Let us consider further the following
definition: Let σ1, σ2 be two traces respectively in TTraces(S), TTraces(A). σ2
is not distinguishable from σ1 w.r.t Msg, denoted σ2∼Msgσ1, if and only if
σ2 = h(Msg, σ1). We adapt in the following definition the conformance relation
tioco [19] in order to define the correctness of an activity model A w.r.t an
interaction model S.

Definition 1 (tioco). Let S be an interaction model over (P,Msg) and A be
an activity model over P. A conforms to S, denoted A tioco S, if and only if for
every σ ∈ TTraces(S) and r ∈ O(S) ∪D,

∀σ′ ∈ TTraces(A) : σ′∼Msgσ.r =⇒ σ.r ∈ TTraces(S)

Example. Let us consider the requirement (R1). Applying the previous defini-
tion, the following trace of the activity model violates this requirement:
(6ms).ctrl.intensity env?HIGH.(2ms).ctrl.intensity!HIGH.(1ms)

.calc.intensity!HIGH.(3ms).calc.speed!FAST.(1ms).ctrl.speed calc!FAST

.(6ms).ctrl.speed motor!FAST.(2ms).motor.speed!FAST.(3ms)

Timed symbolic testing framework for executable models 9

.ctrl.intensity env?DRIZZLE.(484ms).ctrl.intensity!DRIZZLE.(1ms)

.calc.intensity!DRIZZLE.(4ms).calc.speed!FAST

The violation is due to the inappropriate calculated wiper speed. In fact, for the
first detected amount of rain, high intensity, the fast speed is correct. At drizzle,
the calculator computed again a fast speed, however the speed must be low.

5.2 Testing process

We use the so-called off-line testing presented in [3] to test the conformance of
the activity model, in the sense of tioco. The process starts with choosing a path
in the symbolic tree as a test purpose which covers a specific requirement. Then
using constraint solving techniques, the idea is to derive a sequence of concrete
inputs and durations which would allow the execution of the activity model to
potentially cover the test purpose. In order to submit the input sequence, a tester
is connected to the system. The behavior of the tester is specified with an fUML
activity in a textual form, ALF (Action Language for Foundational UML)2.
This allows for automatic generation of tester behavior from input sequences.
Repeatedly, the tester sends an input value on the targeted port of the system
and then waits for the subsequent duration. See Figure 9 for illustration on
the RSW system. Note that classically tioco assumes that the system under

TestConfiguration

:RSW :RSWTester

activity.RSWTester _Behavior 0].:
.......accept 0Start]
.......index. =.1
.......bound. =.ListSize 0this .inputSequence]
.......while. 0index.<=.bound].:
..............input. =.ListGet0this .inputSequence ,.index][0]
..............d. =.ListGet0this .inputSequence ,.index][1]
..............index ++
 << Wait >>{ duration=d } this.Send0input]

 intensity_env intensity_env

Fig. 9: RSW test configuration – tester activity in ALF syntax.

test is input enabled, i.e. that an SUT cannot refuse an input from the tester.
This hypothesis is satisfied by running the tester behavior in the fUML virtual
machine which is also used as the test harness in our framework. The other
hypothesis of tioco is called time elapsing and expresses that the absence of
an output amounts to observing no reaction from the system during a delay.
As a discrete time simulator, the fUML virtual machine grants this hypothesis
for consistent executions. Indeed after the initialization at the beginning of the
execution, the simulated time elapses to reach the earliest waiting time specified
either in the tester or in any component of the system.

As required by off-line testing, outputs and durations between them are logged
during the test execution. This output sequence is merged with the input se-
quence to form a timed trace. In the final phase, the trace is analyzed w.r.t.
the interaction model to emit a verdict: PASS, if we observe exactly the desired
behavior; INCONC, if we observe a behavior that is not compatible with the
test purpose; and FAIL, if we observe an output or a delay that is not specified.

2 http://www.omg.org/spec/ALF/

10 Arnaud, Bannour, Cuccuru, Gaston, Gerard, Lapitre

6 Experiments

Coverage and path explosion problem. We consider message coverage which is one
of the criteria defined in the literature for scenario models [2]. It states that any
message must be covered at least once. In order to achieve coverage, Diversity
allows to define exploration strategies. Classical search algorithms like Breadth
First Search (BFS) are implemented. However, using BFS results in exploring a
large number of paths in the symbolic tree which are irrelevant to the coverage
criteria. We suggest using the heuristic search called Hit-or-Jump [5] which com-
putes a symbolic tree covering a declared set of transitions. In our case, its is a set
of transitions matching emissions/receptions of the messages in the sequence di-
agram. first we define a maximal depth N for which a symbolic tree is computed
in BFS manner. Once computed, an analysis is realized to study whether or not
a part of the tree satisfies the coverage: (Hit) If some non empty prefixes of the
sequence has been covered, Diversity identifies the set of paths that covered the
greatest prefix, and chooses one among them at random else Diversity chooses at
random one path; (Jump) Once a path is chosen the whole process starts again
from the last symbolic state of the path (i.e. the target state of the last symbolic
transition of the path) until the sequence is fully covered. Another version of
the Hit-or-Jump (and more accurate as in [5]) tries to cover a set of transitions
rather than an enforced sequence which is useful in some cases when it is not
easy to predict an appropriate sequence of messages as illustrated in figure 10.
Note that introducing timing constraints may constrain the FIFO size. Recall

alt

m1@t1

<<TimedConstraint >>

{ t1[i] – t1[i-1] ≥ (0.5, s) }

@t2

<<TimedConstraint >>

{ t2[i] – t1[i] < (0.5, s) }

A

m2

m3

loop

B (SET1)
{A!m1, B?m1, B!m2, B!m3, A?m3}
(SEQ1) A!m1.B?m1.B!m3

.A?m3.A!m1.B?m1.B!m2

(SEQ2) A!m1.A!m1.B?m1.B!m3

.A?m3.B?m1.B!m2

Input (N = 2) Hit-or-Jump #Jumps

(SET1) covered 5N
(SEQ1) covered > 5N
(SEQ2) timeout >> 5N

Fig. 10: Hit-or-Jump/sample sequence diagram.

that we associate to each message in the sequence diagram an unbounded FIFO
buffer. In the sequence diagram of figure 10, the FIFO is similar to one-place
buffer due to the timing constraints. Hence the sequence (SEQ2) can hardly be
covered within a reasonable number of jumps regarding the size of the diagram
(if the actions in the sequence must be consecutive, the Hit-or-Jump deadlocks).
Let us consider again the sequence diagram of the RSW system. In Table 1, are
given some metrics about the symbolic execution of its set of communicating
TIOSTS using the heuristic Hit-or-Jump. Failing behaviour. While first testing
the fUML activities of the RSW system w.r.t Requirement (R2), Diversity de-
livered FAIL verdicts for some input sequences. The failure was due to intensity
measures being ignored by the controller. Recall the fUML execution semantics

Timed symbolic testing framework for executable models 11

in Section 4. The activity of the controller while waiting for the speed from the
calculator was: checking the event pool, reading intensity measures and ignoring
them. To solve this problem which is caused by the event handling in the fUML
virtual machine, a separate buffering mechanism for measures was successfully
introduced in the activity model.

#TIOSTS #States #Transitions

7 81 192

Input N time #Jumps

(SET2) 7 5s 2N
(SEQ3) 7 22s 7N
(SEQ4) 3 9s 14N

Requirement (R3)/(SET2)
{ctrl.intensity!m2, . . . ,motor.speed?m4}
Requirement (R2)/(SEQ3)
ctrl.intensity?m1 . . . ctrl.intensity?m1

. . . ctrl.intensity?m1

Requirement (R1)/(SEQ4)
calc.intensity?m2.new(calc.speed).calc.speed!m3

Table 1: Hit-or-Jump/symbolic execution of the RSW system.

7 Related works

We can find in recent literature approaches [14,16] which have addressed confor-
mance testing based on sequence diagram in the frame of the ioco relation (the
untimed version of tioco). Authors in [16] use sequence diagrams in testing ac-
tivities. They derive test cases expressed as sequence diagrams from state-based
UML models guided by test objectives, also expressed as sequence diagrams.
Authors in [14] have defined operational semantics for sequence diagrams where
they handle in addition assertion and negative operators (neg and assert) for
forbidden and required behaviors. However, they do not consider timing features
in the test derivation algorithm. Let us discuss the approaches which deal with
symbolic test generation from scenarios. Testing based on symbolic denotation
of scenarios has been considered in [18] where scenarios are graphical MSCs
(Message sequence chart) [12] like sequence diagrams. The test cases are ex-
perimented against the implementation within the frame of ioco. Outside ioco
frame, symbolic techniques are used in [7] to generate test inputs from informa-
tion contained in class diagrams and sequence diagrams. Transformation rules
are defined to obtain a directed graph VGA (Variable Assignment Graph). The
authors define coverage criteria for sequence diagrams in order to select relevant
paths and use solvers to compute test inputs. This work is closely related to
ours since they use likewise generated inputs to test an executable form of the
design models, however they do not consider timing constraints. Our approach is
compliant with the lately standardized fUML virtual machine to execute activ-
ity models and an ongoing standardization of the semantics of UML composite
structures [10]. Formal verification of fUML executable models has been studied
in [1, 17]. We rather focus on testing fUML models as in [6, 15]. In particular,
authors in [15] set up a test environment with an interpreter to run test cases
in the fUML virtual machine. Our work is more complete because we integrate
test generation capabilities from sequence diagrams.

12 Arnaud, Bannour, Cuccuru, Gaston, Gerard, Lapitre

8 Conclusion

In this paper, we have presented an approach which aims at enhancing confidence
in the correctness of wide system models through refinement. The refinement is
based on maintaining a correctness relation which states sufficient conditions on
conforming executable models with respect to high-level timed scenarios. Our
approach is tooled and compliant with UML standards. In the future, we plan to
integrate more refinement techniques as in [8] and extend them to timing issues.

References

1. I. Abdelhalim, S. Schneider, and H. Treharne. Towards a practical approach to
check UML/fUML models consistency using csp. In ICFEM, 2011.

2. A. A. Andrews, R. B. France, S. Ghosh, and G. Craig. Test adequacy criteria for
uml design models. Softw. Test., Verif. Reliab., 2003.

3. B. Bannour, J. P. Escobedo, C. Gaston, and P. L. Gall. Off-line test case generation
for timed symbolic model-based conformance testing. In ICTSS. Springer, 2012.

4. B. Bannour, C. Gaston, A. Lapitre, and J. P. Escobedo. Incremental symbolic
conformance testing from UML MARTE sequence diagrams: railway use case. In
HASE. IEEE, 2012.

5. A. Cavalli, D. Lee, C. Rinderknecht, and F. Zäıdi. Hit-or-jump: An algorithm for
embedded testing with applications to IN services. In FORTE. Springer, 1999.

6. F. Craciun, S. Motogna, and I. Lazar. Towards better testing of fUML models. In
ICST, 2013.

7. T. T. Dinh-Trong, S. Ghosh, and R. B. France. A systematic approach to generate
inputs to test UML design models. In ISSRE. IEEE, 2006.

8. A. Faivre, C. Gaston, P. L. Gall, and A. Touil. Test purpose concretization through
symbolic action refinement. In TestCom/FATES. Springer, 2008.

9. O. M. Group. A UML profile for MARTE: Modeling and Analysis of Real-Time
Embedded systems, VSL, 2009. http://www.omg.org/spec/MARTE/.

10. O. M. Group. Pscs: Precise semantics of uml composite structures, 2013. Second
revised submission. To appear.

11. O. M. Group. Semantics of a foundational subset for executable uml models
(fUML), 2013. http://www.omg.org/spec/FUML/.

12. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). Geneva, 1997.
13. J.-C. King. A new approach to program testing. Proc. of Int. Conf. on Reliable

software, 1975.
14. M. S. Lund and K. Stølen. Deriving tests from uml 2.0 sequence diagrams with

neg and assert. In AST, 2006.
15. S. Mijatov, P. Langer, T. Mayerhofer, and G. Kappel. A framework for testing

UML activities based on fUML. In MoDeVVaMoDELS, 2013.
16. S. Pickin, C. Jard, T. Jéron, J.-M. Jézéquel, and Y. L. Traon. Test synthesis from

UML models of distributed software. IEEE Trans. Software Eng., 2007.
17. E. Planas, J. Cabot, and C. Gómez. Lightweight verification of executable models.

In ER, 2011.
18. A. Roychoudhury, A. Goel, and B. Sengupta. Symbolic message sequence charts.

ACM Trans. Softw. Eng. Methodol., 2012.
19. J. Schmaltz and J. Tretmans. On Conformance Testing for Timed Systems. In

FORMATS. Springer, 2008.
20. J. Tatibouet, A. Cuccuru, S. Gerard, and F. Terrier. Principles for the realization

of an open simulation framework based on fuml (WIP). In DEVS. ACM, 2013.

