
HAL Id: cea-01810746
https://cea.hal.science/cea-01810746

Submitted on 8 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An implementation relation and test framework for
timed distributed systems

Christophe Gaston, Robert M. Hierons, Pascale Le Gall

To cite this version:
Christophe Gaston, Robert M. Hierons, Pascale Le Gall. An implementation relation and test frame-
work for timed distributed systems. International Conference on Testing Software and Systems, Nov
2013, Istanbul, Turkey. �cea-01810746�

https://cea.hal.science/cea-01810746
https://hal.archives-ouvertes.fr

An implementation relation and test framework
for timed distributed systems?

Christophe Gaston1, Robert M. Hierons2 and Pascale Le Gall3

1 CEA LIST, Point Courrier 174, 91191, Gif-sur-Yvette, France
email: christophe.gaston@cea.fr

2 Brunel University, Uxbridge, Middlesex, UK, UB8 3PH
email: rob.hierons@brunel.ac.uk

3 Laboratoire MAS, Grande Voie des Vignes, 92195 Châtenay-Malabry, France
email: pascale.legall@ecp.fr

Abstract. Many systems interact with their environment at physically
distributed interfaces and the distributed nature of any observations
made is known to complicate testing. This paper concerns distributed
testing, where a separate tester is placed at each localised interface and
may only observe what happens at this interface. Most previous work
on distributed model based testing has used models that are either fi-
nite state machines or input output transition systems. In this paper
we define a framework for distributed testing from timed input output
transition systems along with corresponding test hypotheses and a dis-
tributed conformance relation.
Keywords: distributed systems, timed systems, model based testing,
symbolic input output transition systems.

1 Introduction

Most approaches to model based testing (MBT) assume that a single tester in-
teracts with the system under test (SUT) and this tester observes all inputs
and outputs. However, many systems such as web services and wireless sensor
networks interact with the environment at multiple physically distributed inter-
faces. This has led to interest in distributed testing, where there is a separate
local tester at each interface, a tester only observes events at its interface, and
there is no global clock. This approach to distributed testing was formalised
by ISO as the distributed test architecture [15]. It is known that the use of the
distributed test architecture affects software testing [5, 6, 13, 18, 20, 22]. How-
ever, only recently has the effect been formalised as implementation relations for
FSMs [11] and IOTSs4 [10, 14].

? This work was partially supported by the French Program “Investissements
d’Avenir” in the IRT/SystemX/FSF project and the SesamGrid project, and by
the ITEA2 project openETCS.

4 The implementation relation mioco [3] has also been defined for testing systems with
distributed interfaces but this assumes that a single tester makes global observations.

Previous work showed that the distributed test architecture causes additional
controllability and observability problems. A controllability problem is a situa-
tion where a local tester does not know when to apply an input [5]. Consider, for
example, a test case where tester t1 at interface 1 applies input i1?, this should
lead to output o1! at 1, and tester t2 at interface 2 should then send input i2?.
Here t2 cannot know when to send i2? since it does not observe the previous
input and output. Observability problems refer to situations where one cannot
distinguish between the global trace produced by the SUT and that expected
despite these being different [6]. Let us suppose, for example, that the specifica-
tion contains global trace σ where the response to a first i1? at interface 1 leads
to output o1! at 1, and a second i1? leads to output o1! at 1 and output o2! at 2.
Here, the tester at 1 expects to observe i1?o1!i1?o1! and the tester at 2 expects
to observe o2! and this observation is made if the SUT produces global trace
σ′ in which o2! is output in response to the first input rather than the second.
While σ and σ′ are different they have the same projections at the interfaces
and so it is not possible to distinguish between them in distributed testing.

This paper explores distributed testing from systems described by means of
cooperating timed input output transition systems (TIOTS): IOTS extended
with time. We assume that testers have local clocks that are not synchronised
but clocks progress at the same rate; it should be straightforward to adapt
this to the case where the clocks can drift. As far as we are aware only two
previous papers have explored the role of clocks/time in distributed testing and
these consider different problems. One paper uses timestamps and bounds on
clock differences to strengthen implementation relations for IOTSs [12] but did
not consider timed models. A second looked at coordinating distributed testing
from an FSM through the testers exchanging messages when we have bounds
on message latency [16]. While this considered timed models it assumed that
the model is an FSM with time and concentrated on overcoming controllability
problems.

The previously defined implementation relation dioco for distributed testing
against an IOTS compares global traces of the SUT against global traces of
the specification using ∼ where σ ∼ σ′ denotes σ and σ′ having the same local
projections. In order to ensure that the observations at the interfaces are all
projections of the same global trace, it considers either global traces of the SUT
that end in quiescence5 or infinite traces of the SUT [12,14].

This paper uses an alternative approach in which an observation is a tuple
(σ1, . . . , σn) where the tester at p observes σp and we call such an observation a
multitrace. Instead of defining the implementation relation with some projection
mechanisms, we directly use the notion of multitraces to define a new implemen-
tation relation dtioco for distributed testing. We also provide a compositionality
result, which says that dtioco holds if and only if all multitraces of the SUT
are such that exchanged messages respect some communication rules and also
that the local projections of the SUT conform to the local components of the

5 The SUT is quiescent if it cannot produce output without receiving input.

specification under tioco. This allows standard techniques for tioco [1, 8] to be
used in distributed testing.

Having defined a new implementation relation we describe a test architecture
for TIOTSs such that test cases can be denoted as multitraces. In distributed
testing we have to bring together observations made by the local testers in order
to determine whether the SUT has passed a test case. Solving the oracle problem
mainly becomes a multitrace analysis problem and is described as a two step
process, in which a test case is run and then a verdict is produced based on the
set of local (timed) traces observed. We then describe how timed testing can be
carried out and provide an algorithm for checking that communication rules are
verified; the compositionality result tells us that we can derive a verdict using
such an algorithm along with standard methods for tioco.

The paper is structured as follows. Section 2 defines the terminology and no-
tation used in this paper and in Section 3 we describe TIOTSs. In Section 4, we
present specifications of timed distributed systems as a collection of cooperating
TIOTSs. Section 5 gives the test framework, defines the new implementation re-
lation dtioco and provides an example. Section 6 then explains how distributed
timed testing can be carried out. Finally, Section 7 draws conclusions and dis-
cusses possible avenues for future work.

2 Preliminaries

We will use a carrier set D (for Duration) isomorphic to the set of strictly
positive real numbers6. We may use classical operations +,− : D×D → D, <,≤:
D ×D → bool... on durations7, provided by default with their usual meanings.
Variables having their values in D are called clocks.

A Labelled Transition Systems (LTS) G over a set of labels L is a triple
(Q, qin, T) where Q is a set of states, qin ∈ Q is the initial state, and Tr ⊆
Q×L×Q is a set of transitions. For transition tr = (q, a, q′), also denoted q

a→ q′,
source(tr) stands for q, target(tr) stands for q′ and act(t) stands for the action
a. Paths(G) ⊆ T ∗ is8 the set of paths of G which contains the empty sequence ε
and all sequences of transitions tr1 · · · trn with n ≥ 1 such that source(tr1) = qin
and for all i satisfying 1 < i ≤ n, we have source(tri) = target(tri−1). For any
p in path Paths(G), the trace of p, denoted trace(p), is inductively defined as ε
for p = ε, and act(tr).trace(p′) for p = tr.p′ with tr a transition and p′ a path.
Traces(G) stands for the set of traces of all paths of Paths(G).

3 Timed Input Output Transition Systems

In this section we define Timed Input Output Transition Systems (TIOTSs) and
associated notation. We then discuss and formalise as multitraces the observa-
6 In practice, any set of values used in a constraint solver for approaching real numbers.
7 d1 − d2 is defined if and only if d1 > d2.
8 Given a set A, A∗ denotes the set of finite sequences of elements of A, ε denotes the

empty sequence, and ‘.’ is used for concatenation.

tions that may be made in distributed testing. TIOTSs are labelled transition
systems whose labels represent either Outputs, Inputs or durations.

Definition 1 (TIOTS). A TIOTS-signature is a tuple Σ = (C, I,O) with I ∩
O = ∅, where C is a set of channels, I is a set of inputs and O is a set of
outputs. Moreover C can be partitioned as Cin

∐
Cout where Cin and Cout are

a set of input channels and a set of output channels respectively. Accordingly,
I and O can be partitioned as

∐
c∈Cin

Ic and
∐

c∈Cout
Oc respectively, where for

channel c we have that Ic is the set of inputs that can be received on c and Oc

is the set of outputs that can be sent through c. A TIOTS over Σ is an LTS
(Q, qin, T) over I ∪O ∪D.

In the sequel, for any TIOTS A over Σ = (C, I,O), Sig(A) stands for Σ,
C(A) or C(Σ) stand for C, I(A) or I(Σ) stand for I, and O(A) or O(Σ) stands
for O. Moreover, in a slight abuse of notation we use Σ∗ for (I ∪O∪D)∗. Inputs
(respectively Outputs) occuring in Ic (respectively Oc) are sometimes denoted
c?a (respectively c!a) where a is a value received (sent) through channel c. We
also use c? or c! for simple signals received or sent through channel c. Executions
of TIOTS are called Timed Traces, which are defined as follows:

Definition 2 (Timed Traces). The set TTraces(A) of timed traces of the
TIOTS A is the smallest set that satisfies the following:

– for any σ ∈ Traces(A) (with A viewed as a simple LTS), if σ is of the form
∇.σ′ where9 ∇ = d1. . . . dn, n ≥ 0, for all i ≤ n, di ∈ D, and σ′ is either ε
or of the form a.σ′′ with a ∈ I ∪O, then σ′ ∈ TTraces(A).

– for any d1, d2 and d3 in D satisfying d1 + d2 = d3, for any σ, σ′ in Σ∗,
σ.d3.σ

′ ∈ TTraces(A) iff σ.d1.d2.σ
′ ∈ TTraces(A).

Given timed trace σ and action a in I ∪ O, |σ|a will denote the number of
instances of a in σ.

The first point of the definition prevents us from having timed traces begin-
ning with durations. This is because in black box testing we cannot differentiate
between the SUT not being initialised from the SUT being initialised but not
having interacted with its environment. Thus, if d is a duration then we cannot
distinguish between traces d.σ and σ. In a distributed context, this problem is
even more pronounced since we cannot even expect that the tester and SUT are
initially synchronised via a reset. The second point says that durations can be
composed and decomposed provided that cumulative sums of consecutive dura-
tions are maintained. The definition of timed traces makes no assumption on
how durations are sampled in testing (it allows all possible choices).

4 Specifications of timed distributed systems

We specify systems as a collection of localized parts (described as TIOTSs) com-
municating through a network. In particular, each localisation l is identified by its

9 If n = 0, then ∇ = ε.

interface, given as a TIOTS signature Σl. The next definition characterises com-
munications between a collection of interfaces, that is a system signature. They
are given as a set of consistency conditions defining tuples of local executions
(timed traces) corresponding to compatible visions of some global execution:

Definition 3 (System communications). A system signature ΣSys is a tuple
(Σ1, . . . , Σn) of TIOTS signatures. The set of multitraces over ΣSys, denoted
MTraces(ΣSys), is the subset of Σ∗1 × . . .×Σ∗n defined as follows:

Empty Trace: (ε . . . ε) is in MTraces(ΣSys),
Inputs from the environment: for any i ≤ n, c ∈ C(Σi) \ ∪j 6=iC(Σj), a ∈

I(Σi)c, and (σ1 . . . σi, . . . σn) ∈MTraces(ΣSys) we have (σ1 . . . σi.a, . . . σn) ∈
MTraces(ΣSys).

Non Blocking Outputs: for any i ≤ n, a ∈ O(Σi), and (σ1 . . . σi, . . . σn) ∈
MTraces(ΣSys), we have (σ1 . . . , σi.a, . . . σn) ∈MTraces(ΣSys).

Causality of communication: for any i ≤ n, a ∈ I(Σi)c where c is a channel
of at least two TIOTS-signatures of Sys, and (σ1 . . . , σi, . . . σn) ∈MTraces(ΣSys),
let us denote by Oa ⊆ {1, . . . , n} the set of all indexes j such that a ∈ O(Σj)c.
If |σi|a < Σj∈Oa |σj |a, then (σ1 . . . , σi.a, . . . , σn) ∈MTraces(ΣSys).

Consistent Time Elapsing: for any d ∈ D and (σ1, . . . , σn) ∈MTraces(ΣSys),
we have (σ′1, . . . , σ

′
n) ∈ MTraces(ΣSys) where for any i ≤ n, σ′i is equal to

ε if σi = ε and equal to σi.d otherwise.

A multitrace is a tuple, each element being a sequence of inputs, outputs or
durations that is an execution that may be observed on a localised interface.
The multitrace whose sequences are all ε (Item Empty Trace) corresponds to
no interaction having occurred. A multitrace can be extended by adding to any
component either an input from the environment (Item Inputs from the envi-
ronment) or an output (Item Non Blocking Outputs). Outputs are non-blocking,
when sent to the environment and when sent to other parts of the system. In-
ternal communications are on shared channels. A channel may be shared by an
arbitrary number of localised TIOTSs. Internal communication is multicast: a
message sent can be received by several recipients (all those who listen on the
channel of interest). Messages are never lost but the time to reach a recipient is
not quantifiable since it travels between interfaces and there is no global clock
(we cannot measure it). If we focus on a thread of execution (i.e. a sequence in
a multitrace), a message cannot be received more often than the total number
of emissions of this message in the system (Item Causality of communication).
Finally, we require that time elapses in the same way for all interfaces whose
corresponding trace is not empty (Item Consistent Time Elapsing).

In distributed testing there is a separate localised tester at each interface and
there is no global clock. Thus, we cannot make any suppositions on the different
moments at which the different testers stop observing their associated interfaces.
To reflect this, we accept as admissible observations multitraces made of trace
prefixes, which we call observable multitraces.

Definition 4 (Observable Multitraces). The set of observable multitraces
of ΣSys = (Σ1 . . . Σn), denoted OTraces(ΣSys), is the smallest set containing
MTraces(ΣSys) and such that for any a in Σi, we have:

(σ1, . . . , σi.a, . . . , σn) ∈ OTraces(ΣSys)⇒ (σ1, . . . , σi, . . . , σn) ∈ OTraces(ΣSys)

On each localised subsystem, the observer only observes a prefix of the whole
(local) timed trace if it does not wait long enough. Now, system specifications
are defined as tuples (A1, . . . ,An) of TIOTSs whose associated observable mul-
titraces (σ1 . . . , σi, . . . σn) are those such that σi is a timed trace of Ai.

Definition 5 (System). A system Sys over ΣSys = (Σ1, . . . , Σn) is a tuple
(A1, . . . ,An) of TIOTS, Ai being defined on Σi (1 ≤ i ≤ n). OTraces(Sys) is
the set of multitraces:

(TTraces(A1)× . . .× TTraces(An)) ∩OTraces(ΣSys)

Each TIOTS corresponds to a view of the system from one interface. Its timed
traces denote possible observations of system executions from this interface.
Observable traces denote tuples of consistent views of system executions.

5 Testing Framework

5.1 A conformance relation for timed distributed systems

In this section we define our new implementation relation dtioco. In MBT it
is normal to assume that certain test hypotheses hold [9], the most basic hy-
pothesis being that the SUT can be described using the same formalism as the
specification. We assume that the following classical test hypotheses hold.

Definition 6 (LUT and SUT). Let Σ = (C, I,O) be a TIOTS signature and
C ′ ⊆ C. A TIOTS A = (Q, qin, T r) over Σ satisfies the so-called Input Enable-
ness property over C ′ iff ∀q ∈ Q,∀c ∈ C ′,∀a ∈ Ic,∃q′ ∈ Q, (q, a, q′) ∈ Tr.

A Localized System Under Test (LUT) over (Σ,C ′) is a TIOTS over Σ,
satisfying the input enableness property over C ′.

A System Under Test (SUT) over ΣSys = (Σ1, . . . , Σn) is a tuple (LS1, . . . ,LSn)
such that for each 1 ≤ i ≤ n, LSi is an LUT over (Σi, I(Σi)\(∪j∈1..nO(Σj))).

Input-enabledness adapts the traditional hypothesis to distributed testing by
requiring that the system is input-enabled on its public interface made of chan-
nels shared with the environment. We base our new conformance relation on
tioco [2, 8, 17, 21]. In fact, we use a slightly modified version of tioco since, as
stated in Definition 2, our timed traces start with an input or an output (we
remove durations occuring at the beginning of traces).

Definition 7 (tioco). Let LS be an LUT and A a TIOTS both defined on the
same signature (C, I,O). LS conforms to A, denoted LS tioco A, if and only if
for any σ in TTraces(A) and r in O ∪D, we have:

σ.r ∈ TTraces(LS) =⇒ σ.r ∈ TTraces(A)

Our conformance relation for distributed systems is an extension of tioco
to observable multitraces, except that observable multitraces introduce some
constraints (Definition 3), typically on internal receptions that should be pre-
ceded by internal emissions. However, it may happen that an observation of
an SUT S does not satisfy those constraints. For example, the network might
create a spurious message in a channel between localised systems, a localised
system LSi receiving a message (input) on a channel c that connects it to
another localised system LSj without LSj sending this message. Let us note
that there exists no specification to which such systems conform according
to Definition 8 since they do not meet consistency conditions of Definition 3.
Although our implementation relation will consider such behaviours to be er-
roneous, we cannot assume that the possible executions of the SUT are in
OTraces(ΣSys). In fact, we will only suppose that each local execution is a
timed trace of some localised system LSi under test. In the sequel any SUT
S = (LS1, . . . ,LSn) has a set Sem(S) ⊆ TTraces(LS1) × . . . × TTraces(LSn)
that denotes the set of all observations that can be made in testing; this al-
lows the cloud to introduce messages on channels as discussed earlier. We fur-
ther suppose, as in the case of observable traces, that for any a we have that:
((σ1, . . . , σi.a, . . . , σn) ∈ Sem(S))⇒ ((σ1, . . . , σi, . . . , σn) ∈ Sem(S)).

Definition 8 (dtioco). Let S = (LS1, . . . ,LSn) and Sys = (A1, . . . ,An) be
resp. an SUT and a system both on the signature ΣSys = (Σ1, . . . , Σn).
S conforms to Sys, denoted S dtioco Sys, if and only if Sem(S) ⊆ OTrace(ΣSys)
and for any (σ1 . . . , σi, . . . , σn) ∈ OTraces(Sys) and r ∈ (∪i≤nO(Σi)) ∪D, we
have:

(σ1 . . . , σi.r, . . . σn) ∈ Sem(S) =⇒ (σ1 . . . , σi.r, . . . σn) ∈ OTraces(Sys)

The first part of the definition requires that any observation of the SUT is
valid. The second part follows an approach similar to tioco in that it says that for
any observable multitrace (σ1 . . . σi, . . . , σn) of the specification, every possible
next observation of the SUT after (σ1 . . . σi, . . . , σn) is also an observation that
might be made after (σ1 . . . σi, . . . , σn) in the specification.

In the sequel, we introduce a compositionality result that allows us to reuse
testing algorithms dedicated for tioco in a distributed system testing process.
We begin by introducing a definition allowing us to identify which part of an
LUT is stimulated in a distributed SUT.

Definition 9. Let S = (LS1, . . . ,LSn) be an SUT with LSi = (Qi, qi, T ri) for
i in 1..n. The projection of LSi on S, denoted LSi|S is the TIOTS (Qi, qi, T r

′
i)

where Tr′i is the subset of Tri that contains all transitions tr such that there
exists a path of the form p′.t in Paths(LSi), a timed trace σ in TTraces(p′.tr)
and a tuple (σ1, . . . , σn) in Sem(S) such that σ = σi.

The set of timed traces of LSi|S contains all timed traces of LSi that LSi can
produce when interacting with the other LUTs. Thus, if a tester interacts with S
only through the channels of LSi, he/she interacts with a real system that may
be represented by LSi|S (except that the tester does not control inputs received

on channels between LUTs). By construction, LSi|S need not be input enabled
over all internal channels since all configurations over the localised part are not
exercised in the context of S.

Property 1. Let S = (LS1, . . . ,LSn) and Sys = (A1, . . . ,An) be resp. an SUT
and a system with both having signature ΣSys = (Σ1, . . . , Σn).

If for all i in 1..n, Ai is input enabled over C(Σi), the following result holds:
(S dtioco Sys)⇔ ((∀i ≤ n,LSi|S tioco Ai) ∧ Sem(S) ⊆ OTraces(ΣSys))

Proof. First consider the left-to-right implication. The fact that Sem(S) ⊆
OTraces(ΣSys) is part of the definition of dtioco.

Now let us suppose that there exists i in 1, . . . , n such that ¬(LSi|S tioco Ai).
If so, there exists σi ∈ TTraces(Ai) and r ∈ O(Σi) ∪ D such that σi.r ∈
TTraces(LSi|S) and σi.r /∈ TTraces(Ai).

Since σi.r ∈ TTraces(LSi|S), there exists (σ1, . . . , σi.r, . . . , σn) ∈ Sem(S). As
Sem(S) ⊆ OTraces(ΣSys), we have that (σ1, . . . σi.r, . . . , σn) ∈ OTraces(ΣSys).
Assume that i, r and (σ1 . . . , σi, . . . σn) are chosen to be minimal and so σj ∈
TTraces(Aj) for all 1 ≤ j ≤ n. Thus, since (σ1, . . . σi, . . . , σn) ∈ OTraces(ΣSys),
we have that (σ1 . . . , σi, . . . σn) ∈ OTraces(Sys). By Definition 8, since S dtioco Sys
we have that (σ1 . . . , σi.r, . . . σn) ∈ OTraces(Sys). Thus, (σ1, . . . σi.r, . . . , σn) ∈
TTraces(A1)×. . .×TTraces(An), and so we can deduce that σi.r ∈ TTraces(Ai).
This contradicts our hypothesis.

Now consider the right-to-left implication. The first condition of Definition 8
(dtioco) holds immediately from the hypotheses. We assume that we have been
given (σ1 . . . σi, . . . , σn) ∈ OTraces(Sys), r ∈ Σi ∪D and (σ1 . . . , σi.r, . . . σn) ∈
Sem(S) and are required to prove that (σ1 . . . , σi.r, . . . σn) ∈ OTraces(Sys).

Since (σ1 . . . , σi.r, . . . σn) ∈ Sem(S) we have that σi.r ∈ TTraces(LSi|S).
Further, since (σ1 . . . σi, . . . , σn) ∈ OTraces(Sys) we know that σi ∈ TTraces(Ai).
Thus, since LSi|S tioco Ai, we have that σi.r ∈ TTraces(Ai). Since Sem(S) ⊆
OTraces(ΣSys) we have that (σ1 . . . σi.r, . . . , σn) ∈ OTraces(ΣSys). We thus
have that (σ1 . . . σi.r, . . . , σn) ∈ OTraces(ΣSys), σi.r ∈ TTraces(Ai) and σj ∈
TTraces(Aj) for all 1 ≤ j ≤ n with j 6= i. From the definition of OTraces(Sys),
we conclude that (σ1 . . . , σi.r, . . . σn) ∈ OTraces(Sys) as required. �

5.2 TIOSTSs as symbolic denotation of TIOSTs

Now, we briefly present symbolic versions of TIOSTs that will be used to il-
lustrate our test framework with a reasonable example. Indeed, generally, for
expressiveness sake, we do not directly use TIOTSs, which are appropriate to
theoretically reason about conformance, but do not permit real time constraints.
Here, we use TIOSTS (Timed Input Output Symbolic Transition Systems) [1,8]
which are automata that have variables to abstractly denote system states (we
call them data variables) and variables to capture timing constraints (we call
them clocks) on system executions.

TIOSTS introduce transitions of the form (q, T , φ, ψ, act, ρ, q′) where (i) q
and q′ are states, φ and ψ are guards on time and data respectively, (ii) T is

a set of clocks to be reset to 0 when the action act occurs, (iii) act may be
receptions of the form c?x (c?) where c is a channel and x is a data variable or
emissions of the form c!t (c!) where t is a term and (iv) ρ is an assignment of data
variables denoting updates of variable values. Such a transition can be executed
from q if ψ holds and at any moment for which values of the clocks are such that
φ holds (as for timed automata). At this moment, the action occurs (signals
c? or c! or a reception of a value on x if the action is c?x or emission of the
current value of t if the action is c!t). Clocks of T are reset and data variables
are updated according to ρ. Finally, by successively executing all consecutive
transitions, one may form all timed traces of a TIOST.

5.3 Example

acci = 0

trainPos i!pi

q0
i

q1
i

q2
i

{ѡi , ѡ’i }

{ѡi}
ѡ’i <10

pi = pi+ (vi*ѡi) + (1/2)*acci*ѡi
2

{ѡ’i}

ѡi <10

trainPos 3-i?p’i

ѡi ≥ 10
emergencyModei!true q3

i

driveri?acci

ѡ’i <10

pi = initi

With: init1 = 42 and init2 =300 and ρ ≡ p i < p’i ≤ (v i * 20) + 200

acci = -1

┐ρ

trainPos i!pi

{ѡi}
ѡ’i <10

ρ

driveri?acci

ѡi <10

starti?

vi = 0

vi = vi + acci*ѡi

vi = vi + (-1)*ѡi
pi = pi+ (vi*ѡi) - (1/2)*ѡi

2

Fig. 1: Train Control System Example: TLCi for i = 1, 2

Figure 1 gives a simplified model of the functional requirements of Train Local
Controllers (TLCs) that forms part of the European Train Control System10.
Similar specifications can found, e.g. in [19] and in [4]. The overall Train Control
System (TCS) contains two Train Local Controllers (TLCs), one per train (say
train 1 and train 2), going in the same direction on a rolling stock.

The symbol i in Figure 1 should be replaced by two possible values, 1 and
2. The system TCS = (TLC1, TLC2) ensures that the train on the rear side
automatically decreases speed as soon as the one in front of it is too close. The

10 Interested readers can consult http://www.uic.org/spip.php?rubrique850.

relative position of trains is given by their positions, which can be accessed by
consulting the value of variable pi: if p1 < p2, then train 1 is behind train 2.

The TLCi are automata containing 4 states (qi0 the initial state, qi1, qi2 and qi3),
communicating through channels (starti, driveri, emergencyModei for commu-
nicating with the environment, trainPosi for sending internal messages and
trainPos3−i for receiving internal messages) and having 4 data variables (acci
in {−1, 0, 1} for the acceleration of the train, vi for the speed of the train, pi for
the position value of the train, p′i for the estimation of the position of the other
train) and 2 clocks (wi, which is reset at each emission of the position and w′i,
which is reset at each reception of the position of the second train).

TLCi specifies the following behaviour: after an initialisation phase, the train
of interest sends its position to the other train, and in return, the other train
is supposed to send its position. In this loop, two consecutive communication
actions are supposed to be separated by a delay of less than 10 units of time. If
the remote train does not send its position on time, the local train goes into an
emergency mode (not detailed here). At any moment in the loop, the driver may
ask to modify the train acceleration. The new value is taken into account only
if it does not affect the safety of the system (safety is threatened if condition ρ
holds, that is, the distance between trains is less than the distance that can be
covered by the rear train with the current acceleration). If safety is threatened,
than the acceleration of the rear train is set to −1 in order to reduce its speed.
Here are some examples of couples (σ1, σ2) with σi a trace of TLCi for i in 1, 2:

– (σ1
1 = start1?.(2).(1).driver1?1.(1).(2).trainPos1!42.(2).(3).trainPos2?300.(2).(1),

σ1
2 = start2?.(1).(1).trainPos2!300.(2).(2).trainPos1?42.(3).(2).trainPos2!300.(1))

is a multitrace with the convention that numbers between parentheses are
durations, numbers without parentheses are messages and the punctuation
symbol ”.” separates durations and actions. Note that train 1 is the rear
train and train 2 does not move. This multitrace corresponds to a situa-
tion in which all local testers have observed until the end of the behaviour
of TLCi: in particular, all receptions have been preceded by an emission,
and except the first duration (2) occurring in σ1

1 , all following durations
(1).(1).(2).(2).(3).(2).(1) are the same in both traces (time elapsing prop-
erty).

– (σ2
1 = start1?.(2).(1).driver1?1,

σ2
2 = start2?.(1).(1).trainPos2!300.(2).(2).trainPos1?42.(3).(2).trainPos2!300.(1))

is such that σ2
1 is a prefix of σ1

1 and σ2
2 = σ1

2 . (σ2
1 , σ

2
2) is thus an observable

multitrace. The observation of TLC1 is stopped just after the driver asked
to accelerate. Since the tester at TLC2 observes for longer, TLC2 receives
the value 42. So, TLC1 sent its position (42), but the observer associated
with TLC1 did not wait long enough to record this action.

– (σ3
1 = start1?.(2).(1).driver1?1.(1).(2).trainPos1!42.(1).trainPos2?300.(1).

trainPos1!60.(1).T rainPos2?300,

σ3
2 = start2?.(1).(1).trainPos2!300.(2).(2).trainPos1?42.(3).(2).trainPos2!300.(1))

does not constitute an observable multitrace. Indeed, in σ3
1 , trainPos1!42

is emitted and 3 units of time later, trainPos2?300 is received a second

time. This reception corresponds to the second emission trainPos2!300 in σ3
2 .

Now, in σ3
2 , the second emission trainPos2!300 occurs 5 units of time after

the reception trainPos1?42. This contradicts the time elapsing property:
indeed, for TLC1, time elapses of only 3 units of time between emission of
42 and reception of 300, but, meanwhile, for TLC2, it elapses for at least 5
units of time since it comprises the duration separating the reception of 42
and the emission of 300.

6 Implementing Distributed Timed Testing

This section describes how testing for dtioco can be carried out in a manner that
reflects our underlying assumptions and also utilises our compositionality result.

6.1 Architecture

°

LS

LS

LS1 2

3

Fig. 2: Distributed testing Architecture

Figure 2 illustrates the architecture used. The SUT S is composed of LUTs
LS1, LS2 and LS3. Each LUT LSi has channels connected to the environment
(dark connections) and internal channels to exchange values with other LUTs
LSi (light connections). A tester Ti is associated with each LUT LSi and Ti

may control inputs and observe outputs occurring on channels connected to the
environment. The tester may also observe values sent through internal channels
(represented by the magnifying glasses). Each LSi executes in a centralised way,
so that the local tester can observe the order of actions occurring on its channels
and can measure durations between consecutive actions. Therefore, behaviours
observed by each Ti can be viewed as timed traces and may be analysed with

respect to the set of timed traces of the model specifying the LUT. We can-
not directly combine the timed traces observed at different LUTs since there is
no global clock. Internal communications, represented by a cloud, are observed
twice, at the emission and at the reception, by different testers. Recall, however,
that we assume that all testers use clocks progressing at the same rate.

6.2 Process

Consider SUT S = (LS1, . . . ,LSn) with tester Ti at each LSi (i in 1..n), that
we want to test against system Sys = (A1, . . . ,An). Based on Definition 8,
and Property 1, we see that any fault of the whole system can be identified
either at the level of one LUT, or at the level of internal communications:
(S dtioco Sys)⇐⇒ ((∀i ≤ n,LSi|S tioco Ai) ∧ Sem(S) ⊆ OTraces(ΣSys))

So, if a local tester Ti exhibits timed trace σi contradicting LSi|S tioco Ai, or
if (σ1, . . . , σn) (σi observed by tester Ti) does not form an observational trace,
then (S dtioco Sys) does not hold. Moreover, as these conditions are sufficient
to ensure that S dtioco Sys, this suggests a two step testing process:

(1) Timed unitary testing of each LSi w.r.t. Ai. Tester Ti associated with
LSi checks that the timed trace it observes is allowed by Ai under tioco. If
one of the testers reveals an error, then (S dtioco Sys) does not hold;

(2) Testing of internal communications. All the Ti keep track of the lo-
calised timed traces σi observed. Tuple (σ1, . . . , σn) of timed traces is anal-
ysed to check whether or not it constitutes an observational trace. If not,
then (S dtioco Sys) does not hold.

For the first step, the test execution process corresponds to classical unitary
testing since Ti interacts with LSi in the context of the whole system (modeled
as LSi|S). The only slight difference is that inputs on internal channels are not
controlled by the tester but by the remaining part of the system (the LSj with
j 6= i) and the cloud network. This kind of test architecture has already been
addressed, typically in the context of orchestrations, a particular class of web
services compositions. An orchestrator can be seen as a main localised module
that orchestrates exchanges between a user and some web services. In [7], we
proposed an (untimed) algorithm to test an orchestrator in the context of the
system in which they are plugged. In such a test architecture, the orchestrator
receives inputs from a user and web services: typically, the latter are not con-
trolled by the tester. An orchestrator is an LUT and a whole orchestration can
be seen as a special case of systems addressed in this paper. The algorithm in [7]
can be adapted to be used in Step (1) to incorporate timed aspects, for example
by considering the on-line test generation algorithm given in [8], or an off-line
alternative [1] and by adapting them in order to ignore any duration that occurs
before the first action of a timed trace. In fact, in our test framework, the off-line
approach should be preferred, since for the moment, we have not addressed the
question of test case generation, but focus mainly on the oracle problem. So, as
we only need an algorithm for analysing trace conformance, it can be obtained
for free from an off-line testing architecture.

Due to the lack of space, we do not fully present Step (1), and rather focus on
the analysis of the system multitraces to check the observational trace property,
and thus to achieve Step (2).

6.3 Observational Multitrace Checking

The algorithm (Figure 3) checking the observable multitrace property follows the
points of Definitions 3 and 4. In the sequel we assume that any duration observed
in any timed trace consists of sequences of 1 unit (which implies that we can
see all delays between communication actions as integers). This is exactly what
is done in practice in a timed testing process, when using a clock to measure
time between actions in a testing process (the clock itself imposes the basic
delay defining the unity). The main idea is to store a multitrace (σc

1, . . . , σ
c
n)

that is observed at the end of a run, to read it from the beginning and to
store the elements already read in a multitrace ot = (µ1, . . . , µn) while keeping
the elements still to be read in a multitrace mt = (σ1, . . . , σn). The algorithm
check(mt, ot) ends with success (return True) when the current multitrace
mt = (σ1, . . . , σn) to be analysed is the empty multitrace (ε, . . . , ε) (line 5)
and the read multitrace ot = (µ1, . . . , µn) corresponds to the complete initial
multitrace (σc

1, . . . , σ
c
n). There are two ways of reading a multitrace (σ1, . . . , σn):

either there exists a trace σi beginning with an action ai (Case (1)) (line 8), or
a duration d can be read on all admissible traces (Case (2)) (line 13):

Case (1) An action ai can be read by the algorithm from σi (line 12), that is,
removed from the trace still to be read (replace(mt, i, tail(σi)) and added
to the trace already read (replace(ot, i, addEnd(µi, ai))) if one of the fol-
lowing conditions is fulfilled: (1) ai is an emission towards the environment
or other subsystems (isOuptut(ai)), (2) ai is a reception from the envi-
ronment (isInputEnv(ai)), (3) ai is a reception of a message m on the
channel c coming from one of the other subsystems (isInputInt(ai)) and
the number of occurrences of ai in µi (elements already read by the al-
gorithm for the subsystem LSi) is strictly less than the number of emis-
sions already read by the algorithm, i.e. the number of c!m occurring in
(µ1, . . . , µn) (Nb I(µi, ai) < Nb O(ot, ai)), provided that none of the sub-
systems LSj (i 6= j) that can emit on the channel c has a trace fully read,
i.e. ∀j | LSj can emit on c , σj 6= ε, and lastly, (4) ai is a reception of a
message m on the channel c coming from one of the other subsystems and
there exists a subsystem LSj (i 6= j) that can emit on the channel c whose
trace is already fully read, i.e. ∃j | LSj can emit on c , σj = ε.
In the algorithm, the predicate FullR(Chan(ai),mt) is True when for all j
such that LSj can emit on Chan(ai), σj (occurring in mt = (σ1, . . . , σn)) is
equal to ε. The predicate is used both for subcases (3) and (4).

Case (2) A duration d = 1 can be read by the algorithm if one of the non
empty traces σi starts with a duration di > 0 and if for all traces σi starting
with an action, the reading of the trace has not been started, i.e. µi = ε
(TimeElapsing(mt, ot)). In this case, the duration d is subtracted from all

durations di occurring at the beginning of traces σi (di is simply removed if
di = 1) and added to the corresponding µi (time elapse of 1(mt, ot)).

If the reading cannot be continued until reaching the empty multitrace, then
the initial multitrace does not meet the targeted observable multitrace property
(check(mt, ot) returns the value False, initialised at line 7). As the underly-
ing principle consists of considering all possible configurations for interleaving
emissions and receptions of different subsystems, its complexity is clearly high.
However, as the algorithm is applied only once the local traces are completely
stored (off-line algorithm), a good efficiency is not of primary necessity.

Algorithm 1: Checking of the observable multitrace property

1 check(mt, ot): (* initial call : check((σc
1, . . . , σ

c
n), (ε, . . . , ε)) *)

2 (σ1, . . . , σn) = mt
3 (µ1, . . . , µn) = ot
4 if mt = (ε, . . . , ε) then
5 return True

6 else
7 Cond = False
8 for i in [1, .., n] do
9 if notEmpty(σi) then

10 ai = first(σi)
11 if isOutput(ai) or isInputEnv(ai) or

(isInputInt(ai) and Nb I(µi, ai) < Nb O(ot, ai) and not(FullR(Chan(ai),mt)))
or (isInputInt(ai) and FullR(Chan(ai),mt)) then

12 Cond =
Cond or check(replace(mt, i, tail(σi)), replace(ot, i, addEnd(µi, ai)))

13 if T imeElapsing(mt, ot) then
14 (mt′, ot′) = time elapse of 1(mt, ot)
15 Cond = Cond or check(mt′, ot′)

16 return Cond;

Fig. 3: Checking Observable Trace property

7 Conclusions

There has been growing interest in distributed testing where the SUT has phys-
ically distributed interfaces, there is a separate tester at each interface and a
tester only observes the interactions at its interface. This paper extends previous
work by investigating distributed testing from specifications based on TIOTSs
that interact through an implicit distributed protocol. We assume that the SUT
and specification are both composed of separate components at the interfaces
and that the sending and receiving of messages between components is observed

during testing. Components themselves are described as TIOTS. We define the
semantics of such systems as a sets of tuples containing a local trace for each in-
terface. Such tuples, called observational multitraces, have to respect consistency
conditions ensuring that all local traces together reflect correct interactions be-
tween components. Having defined observations, we defined an implementation
relation dtioco for distributed testing. This implementation relation is an exten-
sion of tioco (timed version of ioco). It captures two things: tuples resulting from
distributed interactions with the system under test are valid (i.e. are observa-
tional multitraces), and all reactions of the system under test after a specified
multitrace should also be specified.

We also provide a compositionality result, which shows that an SUT conforms
to a specification under dtioco if and only if all of the observations of the SUT
that can be made are valid and the local projections of the SUT conform to the
corresponding components of the specification under tioco. This result allows us
to reuse techniques developed for tioco. We then describe how testing can be
implemented and give an algorithm that checks that an observation is valid.

Since this is the first work to define an implementation relation for distributed
timed testing, there are several lines of future work. First, there is a need to define
and implement suitable test generation algorithms. In particular, it is necessary
to define distributed test purposes, and to find test generation strategies to
drive system executions so that they follow those test purposes. Recent work has
shown that for untimed systems it is undecidable whether there is a distributed
test case guaranteed to force a model M into a given state s or to distinguish
two states and that this holds even if we restrict M to being a deterministic
finite state machine (DFSM) [13]. Thus, general test generation problems are
likely to be undecidable but we will investigate conditions under which they
are decidable. Such test generation problems become tractable if we restrict
attention to controllable test cases and DFSM models [11] and so it would be
interesting to investigate notions of controllability for timed models. Second,
we assume that local clocks progress at the same rate; it should be possible to
generalise the results to the case where the clocks can drift but, for example,
we have upper bounds on the rate of drift. We also intend to consider the case
where the sending and receiving of internal messages are hidden.

References

1. B. Bannour, J.P. Escobedo, C. Gaston, and P. Le Gall. Off-line test case gener-
ation for timed symbolic model-based conformance testing. In Int. Conf. ICTSS.
Springer, 2012.

2. H.C. Bohnenkamp and A. Belinfante. Timed Testing with TorX. In Proc. of Int.
Conf. Formal Methods Europe (FM). Springer, 2005.

3. Ed Brinksma, Lex Heerink, and Jan Tretmans. Factorized test generation for
multi-input/output transition systems. In FIP TC6 11th International Workshop
on Testing Communicating Systems (IWTCS), volume 131 of IFIP Conference
Proceedings, pages 67–82. Kluwer, 1998.

4. A. Cavalli C. Andres, N. Yevtushenko. On modeling and testing the european train
control system. Technical Report TechRca 14-03-2013, Telecom Sudparis, 2013.

5. R. Dssouli and G. von Bochmann. Error detection with multiple observers. In
Protocol Specification, Testing and Verification V, pages 483–494. Elsevier Science
(North Holland), 1985.

6. R. Dssouli and G. von Bochmann. Conformance testing with multiple observers. In
Protocol Specification, Testing and Verification VI, pages 217–229. Elsevier Science
(North Holland), 1986.

7. J.P. Escobedo, C. Gaston, P. Le Gall, and A. R. Cavalli. Testing web service
orchestrators in context: A symbolic approach. In Int. Conf. SEFM. IEEE, 2010.

8. J.P. Escobedo, C. Gaston, and P. Le Gall. Timed Conformance Testing for Or-
chestrated Service Discovery. In Proc. of Int. Conf. Formal Aspects of. Component
Software (FACS). Springer, 2011.

9. M. C. Gaudel. Testing can be formal too. In 6th International Joint Confer-
ence CAAP/FASE Theory and Practice of Software Development (TAPSOFT’95),
volume 915 of Lecture Notes in Computer Science, pages 82–96. Springer, 1995.

10. R. M. Hierons, M. G. Merayo, and M. Núñez. Implementation relations and
test generation for systems with distributed interfaces. Distributed Computing,
25(1):35–62, 2012.

11. R. M. Hierons and H. Ural. The effect of the distributed test architecture on the
power of testing. The Computer Journal, 51(4):497–510, 2008.

12. R.M. Hierons, M. G. Merayo, and M. Núñez. Using time to add order to distributed
testing. In 18th International Symposium on Formal Methods (FM 2012), volume
7436 of Lecture Notes in Computer Science, pages 232–246. Springer, 2012.

13. Robert M. Hierons. Reaching and distinguishing states of distributed systems.
SIAM Journal on Computing, 39(8):3480–3500, 2010.

14. Robert M. Hierons, Mercedes G. Merayo, and Manuel Núñez. Implementation
relations for the distributed test architecture. In 20th IFIP TC 6/WG 6.1 In-
ternational Conference on the Testing of Software and Communicating Systems
(TestCom/FATES 2008), volume 5047 of Lecture Notes in Computer Science, pages
200–215. Springer, 2008.

15. Joint Technical Committee ISO/IEC JTC 1. International Standard ISO/IEC
9646-1. Information Technology - Open Systems Interconnection - Conformance
testing methodology and framework - Part 1: General concepts. ISO/IEC, 1994.

16. Ahmed Khoumsi. A temporal approach for testing distributed systems. IEEE
Transactions on Software Engineering, 28(11):1085–1103, 2002.

17. M. Krichen and S. Tripakis. Black-box time systems. In Proc. of Int. SPIN
Workshop Model Checking of Software. Springer, 2004.

18. G. Luo, R. Dssouli, and G. v. Bochmann. Generating synchronizable test sequences
based on finite state machine with distributed ports. In The 6th IFIP Workshop
on Protocol Test Systems, pages 139–153. Elsevier (North-Holland), 1993.

19. R. Meyer, J. Faber, J. Hoenicke, and A. Rybalchenko. Model checking duration
calculus: a practical approach. Formal Asp. Comput., 20(4-5):481–505, 2008.

20. B. Sarikaya and G. v. Bochmann. Synchronization and specification issues in
protocol testing. IEEE Transactions on Communications, 32:389–395, April 1984.

21. J. Schmaltz and J. Tretmans. On Conformance Testing for Timed Systems. In
Proc. of Int. Conf. FORMATS. Springer, 2008.

22. H. Ural and Z. Wang. Synchronizable test sequence generation using UIO se-
quences. Computer Communications, 16(10):653–661, 1993.

