
HAL Id: cea-01810693
https://cea.hal.science/cea-01810693v1

Submitted on 8 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symbolic execution of transition systems with function
summaries

Imen Boudhiba, Christophe Gaston, Pascale Le Gall, Virgile Prévosto

To cite this version:
Imen Boudhiba, Christophe Gaston, Pascale Le Gall, Virgile Prévosto. Symbolic execution of tran-
sition systems with function summaries. 11th International Conference on Tests & Proofs, Jul 2017,
Marburg, Germany. �cea-01810693�

https://cea.hal.science/cea-01810693v1
https://hal.archives-ouvertes.fr


Symbolic execution of transition systems with
function summaries ?

Imen Boudhiba1, Christophe Gaston2, Pascale Le Gall1

and Virgile Prevosto2

1 Laboratoire MICS, Grande Voie des Vignes, 92195 Châtenay-Malabry, France
email: {imen.boudhiba,pascal.legall}@centralesupelec.fr
2 CEA LIST, Point Courrier 174, 91191, Gif-sur-Yvette, France

email: {christophe.gaston,virgile.prevosto}@cea.fr

Abstract. Reactive systems can be modeled with various kinds of au-
tomata, such as Input Output Symbolic Transition Systems (IOSTS).
Symbolic execution (SE) applied to IOSTS allows computing constraints
associated to IOSTS path executions (path conditions). In this context,
generating test cases amounts to finding numerical input values satisfying
such constraints using solvers. This paper explores the case where IOSTS
models contain functions which are outside of the scope of such solvers.
We propose to use function summaries which are logical formulas built
from concrete values describing some representative input/output data
tuples of the function. We define algorithmic strategies to solve path
conditions including such functions based on techniques using and en-
riching function summaries. Our method has been implemented within
the Diversity tool and has been applied to several examples.

Keywords: Input Output Symbolic Transition Systems, Functions sum-
maries, Symbolic Execution, Transition coverage.

1 Introduction

Many testing theories and algorithms use Symbolic Execution (SE) techniques [10].
In the last decade, it has received much attention and has been incorporated in
several testing tools such as NASA’s Symbolic (Java) PathFinder [29], UIUC’s
CUTE and jCUTE [21], UC Berkeley’s CREST [13], and the CEA’s PathCrawler [28]
and DIVERSITY tools [15]. In particular, for the latter one, SE has been adapted
for models using variants of abstract labeled transition systems, namely Input
Output Symbolic Transition Systems (IOSTS) [17]. Symbolic trees representing
all possible execution paths of the model (up to some coverage goals) are com-
puted by executing the model with variables instead of concrete values. For a
particular path, a constraint on these variables, called path condition, charac-
terizes concrete values ensuring its execution. Sequences of concrete test inputs

? Part of this work has been conducted within the French PIA project SESAM Grids
2012-2016 [12] and the Vessedia project funded from European Union’s Horizon 2020
research and innovation programme under grant agreement No 731453.



2 I. Boudhiba, P. Le Gall, C. Gaston and V. Prevosto

exercising a given path are computed by solving the corresponding path con-
dition. As is the case for programs, one of the main limits of this approach is
that the usage of some particular functions in the model may make the process
inapplicable, either because their symbolic analysis would cause combinatorial
explosion in the number of paths to be considered, or because they contain op-
erations that go beyond the capacity of the solver used, or even simply because
they are black box functions from the model point of view. This latter situation
occurs for example when the modeler makes a reference to an executable function
without accessible source code in its model (or without source code processable
by the SE tool). In this paper, we call such functions external functions and they
are assumed to be functionally correct (i.e. we suppose that we have a reference
implementation for each of the external functions used in the model). In the
frame of Model-based Testing [33], a classical way to deal with this situation is
to fully abstract external functions by considering the results of their calls as
random values. This makes the model behaviors highly non deterministic and
causes the test case generation process to compute test cases with a low level
of controllability: the behavior of the system under test may deviate from the
execution path which it is supposed to exercise without revealing an error in the
system. Those situations are referred to as inconclusive.

In this paper we adapt to models an approach used at the code level, which is
based on a representation of external functions as so-called function summaries.
A function summary is a logical formula that can be computed from a partial
knowledge of the function, represented as a table containing some representative
tuples of inputs/output data. Those tuples are obtained by (concretely) execut-
ing the function on a set of inputs, either produced randomly or given by the
programmer. They may also result from pre-existing unit test campaigns. Path
conditions are then computed based on a joint analysis of the guards occurring in
executed transitions and of the function summaries associated to external func-
tions called in those transitions. A drawback of such an approach is of course
that the tables might be too incomplete to provide input/output data to fol-
low a given model path, meaning that their corresponding summaries are too
restrictive to follow the path. The main contribution of this paper is to define
a heuristic to deal with this situation by completing the function tables. The
heuristic is based on the computation of new inputs by solving formulas built
to avoid duplications in the tables and also to take benefits of the potential
function dependencies. The overall approach can be seen as a reachability anal-
ysis based on symbolic execution techniques and an heuristic search algorithm
used to solve path conditions. The resulting symbolic paths can then be used to
generate test cases, in a classical model-based testing approach, for IOSTS ex-
tended with function calls. Concrete test inputs can thus be given to an existing
system, in order to see if this system reacts according to its IOSTS model. This
contribution has potential applications for industrial software testing practices
especially integration testing, where units of code (i.e. external functions) must
be taken into account while testing the whole system.



SE with function summaries 3

The remainder of the paper is organized as follows. Section 2 gives basic
concepts about IOSTS and SE. In Section 3, we define function summaries. The
main contribution of the paper is given in Section 4: it concerns the resolution
of path conditions involving function calls using function summaries. The imple-
mentation and experiments of our approach are discussed in Section 5. Finally
we conclude the paper with a discussion of related work (Section 6) and some
concluding words (Section 7).

2 IOSTS

2.1 Preliminaries

A data signature is a pair (S, F ) where S is a set of types and F a set of functions
provided with a profile s1 · · · sn → sn+1 on S. For V =

∐
s∈S Vs a set of variables

typed in S, the set TF (V ) =
∐
s∈S TF (V )s of terms over V is defined as usual.

For two sets A and B, BA denotes the set of mappings f : A→ B from A to B
and idA is the identity mapping on A. For a mapping f : A→ B, f [ai 7→ bi]i∈1..n
is the mapping associating bi to ai for all i in 1..n and f(a) to a not belonging
to {ai | i ∈ 1..n}.

The set SenF (V ) of formulas is built over Boolean constants > and ⊥, equal-
ities t = t′ for t and t′ terms in TF (V ) of same type and Boolean connectives
(∧, ∨, ¬). Substitutions over V are applications σ : V → TF (V ) that preserve
types. Substitutions can be canonically extended to TF (V ).

A F -model is a set of typed variables M =
∐
s∈SMs provided with a func-

tion fM : Ms1 × · · · ×Msn → Msn+1
for each f : s1 · · · sn → sn+1 in F . An

interpretation is an application ν in MV that preserves types and is canonically
extended to TF (V ). The satisfaction of a formula ϕ in SenF (V ) by an inter-
pretation ν ∈ MV , denoted M |=ν ϕ, is defined as usual. A formula ϕ is said
satisfiable or feasible if there exists an interpretation ν such that M |=ν ϕ.

In the sequel, a data signature (S, F ) and an F -model M are supposed given.
Moreover, when a formula ϕ is satisfiable and can be handled by a solver, Sat(ϕ)
will denote a solution computed by a solver (whatever are the solution or the
solver).

2.2 IOSTS

Input Output Symbolic Transition Systems (IOSTS) represent behaviors of re-
active systems as sequences of emissions or receptions of values through commu-
nication channels conditioned by guards expressed on some attribute values. An
IOSTS-signature Γ is a couple (A,Ch), where A =

∐
s∈S As is a set of typed

variables, called attribute variables. In the sequel, a variable v of A will be de-
noted either as a simple identifier (id) or as an identifier (id) and an integer (i)
pair, denoted as id[i]. The latter case will be useful for dealing with modeling of
arrays. Ch is a set of communication channel names.

An IOSTS communicates with its environment through actions. The set of
symbolic actions over Γ = (A,Ch), denoted Act(Γ ), is I(Γ )∪O(Γ )∪{τ} where:



4 I. Boudhiba, P. Le Gall, C. Gaston and V. Prevosto

I(Γ ) = {c?(x1, . . . , xn)|∀i ∈ 1..n, xi ∈ A, c ∈ Ch,∀i, j (i 6= j ⇒ xi 6= xj)} is
the set of inputs, O(Γ ) = {c!(t1, . . . , tn)|∀i ∈ 1..n, ti ∈ TF (A), c ∈ Ch} is the set
of outputs and τ is an internal action. If n = 0, (resp n = 1), then c∆() (resp
c∆(t1)) with ∆ ∈ {?, !} is simply denoted c∆ (resp. c∆t1).

Values of attribute variables can be modified either by a reception from the
environment or by an assignment of a value issued from some internal process.

Definition 1 (IOSTS). An IOSTS (Q, q0, T r) over Γ = (A,Ch) is a triple
where Q is a set of states, q0 ∈ Q is the initial state and Tr ⊆ Q× SenF (A)×
Act(Γ )×TF (A)A×Q is a set of transitions tr of the form (q, ψ, act, ρ, q′) where:

– q and q′ are resp. the source (source(tr)) and target state (target(tr)) of tr;
– ψ ∈ SenF (A) is a guard;
– act ∈ Act(Γ ) is a communication action;
– ρ ∈ TF (A)A is a substitution.

Example 1. Let us illustrate an example of IOSTS inspired from the Sesam-Grids
project [12]: Figure 1 describes a simple model of a Microgrid, that is, a system of
interconnected and distributed smart components (smartmeters, controller, ...)
in connection with energy resources and energy consumption devices. Our ex-
ample describes a simplified model of a controller inside a Microgrid. Electricity
measurements are requested by a smart controller (mReq! action) and sent by
a smart meter (getmeas?V alue[cpt]). N measurements are stored in the array
V alue whose data can be accessed through variables of the form V alue[i] with
i integer. Then, they are used by the controller to compute the total electricity
consumption via an integral calculation (I 7→ INTGR(V alue)) where INTGR
is an external function. If the overall consumption is greater than 200, then the
function RISE (which is also an external function) is called to compute, ac-
cording to the returned consumption I, a rate r that is added to the energy
price. The new price ((1 + r) ∗ i) is sent to the actuator via the (out) channel,
together with a message indicating whether the rise is normal (”ok”, if r <= 1)
or should trigger a warning (”alarm”, if r > 1). Otherwise, if the consumption
is lower than 200, an acknowledgment is sent (out!(”ok”, I)). In Figure 1, guards
of the form t1 ≤ t2, t1 < t2, t1 > t2 or t1 ≥ t2 are concise representations of
respectively t1 ≤ t2 = >, t1 < t2 = >, t1 > t2 = > or t1 ≥ t2 = >.

2.3 Symbolic execution of IOSTS

Symbolic execution (SE) consists in executing the IOSTS with symbolic vari-
ables rather than numerical values. SE gathers constraints (path condition) over
such variables that characterize under which circumstances a particular execu-
tion path is taken.

To store information concerning an execution, we use a set Fr of so-called
fresh variables with Fr ∩ A = ∅ and structures called symbolic states. Fr is an
infinite set in which, whenever necessary, it is possible to take a variable not
previously used. A symbolic state η is a tuple (q, π, λ) where: q (or q(η)) denotes
the state in Q reached after an execution leading to η, π ∈ SenF (Fr) (or π(η))



SE with function summaries 5

q0

q2

q1 q3 q4
cpt 7→ 0 I 7→ INTGR(V alue)

cpt > N

cpt ≤ N
mReq!
cpt 7→ cpt+ 1

getmeas?V alue[cpt]

I ≤ 200
out!(”ok”, I)
cpt 7→ 0

I > 200
r 7→ RISE(I)

cpt 7→ 0

r > 1
out!(”alarm”, (1 + r) ∗ I)

r ≤ 1
out!(”ok”, (1 + r) ∗ I)

S = {Bool, Integer, F loat, String}, F = {+, <,>,≤, INTGR,RISE}
A = {cpt, I, V alue[i], r}, Ch = {mReq, getmeas, out}

Fig. 1: Micro Grid Controller IOSTS

is the path condition that should be satisfied for the execution to reach η and
λ : A→ TF (Fr) (or λ(η)) denotes terms over variables in Fr that are assigned
to variables of A.

Definition 2 (SE of transitions). Let G = (Q, q0, T r) be an IOSTS, tr =
(q, ψ, act, ρ, q′) a transition of Tr and η = (q, π, λ) a symbolic state.

Let us define λi as λ[x1 7→ f1, . . . , xn 7→ fn] if act is of the form c?(x1, . . . , xn),
where each fi is a fresh variable in Fr and as λ otherwise. The symbolic ex-
ecution SE(tr, η) of tr from η is the symbolic transition (η, λi(act), η

′) where
η′ = (q′, π′, λ′), with π′ = π ∧ λ(ψ), and λ′ = λi ◦ ρ.

We denote Fr(SE(tr, η)) the set of all fresh variables of Fr occurring in its
definition while not already present in η.

The symbolic execution tree associated with the IOSTS is then defined sim-
ply by executing all transitions from all symbolic states.

Definition 3 (SE of IOSTS). Given an IOSTS G = (Q, q0, T r) over Γ =
(A,Ch), the symbolic execution SE(G) = (SS, Init, ST ) of G is minimally de-
fined by:

– Init = (q0,>, λ0) is the initial state. Init is in SS and we have ∀x ∈ A,
λ0(x) ∈ Fr, and ∀x 6= y ∈ A, λ0(x) 6= λ0(y). We denote Fr0 = {λ0(x) | x ∈
A} the set of variables used in Init.

– ST is a set of symbolic transitions such that for any η = (q, π, λ) in SS
and for any tr ∈ Tr of source state q, there exists one symbolic execution
SE(tr, η) = (η, actF , η

′) of tr from η with SE(tr, η) ∈ ST and η′ ∈ SS.

Moreover Fr(SE(tr, η))∩Fr0 = ∅ and for any two distinct symbolic transitions
SE(tr1, η1) and SE(tr2, η2) in ST , Fr(SE(tr1, η1)) ∩ Fr(SE(tr2, η2)) = ∅. For
st = (η, actF , η

′) in ST , we denote source(st) = η and target(st) = η′.



6 I. Boudhiba, P. Le Gall, C. Gaston and V. Prevosto

Now, we define paths of the symbolic tree resulting from the symbolic exe-
cution of an IOSTS:

Definition 4 (Symbolic Paths). The set Paths(SE(G)) of paths of SE(G) is
the set of all sequences st1 · · · stn with ∀i ∈ 1..n, sti ∈ ST such that source(st1) =
Init and for any j < n, q(target(stj)) = q(source(stj+1)).

For a path δ = st1 · · · stn with 1 ≤ n, we note End(δ) = target(stn) and
Fr(δ) = ∪i∈1..nFr(target(sti)). By convention, End(ε) = Init and Fr(ε) = ∅.

By construction, path conditions accumulate constraints from all the guards
of the IOSTS transitions over a path. Hence, feasibility of path pa is checked
by calling a solver over the path condition of the last state of pa. In the sequel,
such call will be denoted Sat(π(End(pa)).

As already mentioned in section 1, external functions such as INTGR and
RISE have no built-in interpretations in standard constraint solvers. Thus, when
path conditions contain external functions, usual constraint solving techniques
cannot be applied directly. We thus propose an improved resolution method to
guide the symbolic execution by checking paths feasibility up to some function
calls.

3 Function summaries

Instead of either considering external functions as purely abstract by replacing
their output with a fresh variable or inserting their code (inlining) at model level
quickly leading to combinatorial explosion, our approach allows to control this
issue by replacing external functions with summaries that offer a partial and
extendable view of the function within the model.

In the sequel, P will denote a distinguished subset of F , the set of all external
functions.

3.1 Summaries

Values which are used to summarize an external function are taken from its
concrete execution on some inputs. This can be represented and saved as a table
mapping a finite set of tuples associating input and output data of the function.

Notation 31 For p ∈ P an external function of profile s1 . . . sn → sn+1 and
pM ∈M its interpretation, we denote by tabp, a set of tuples (v1, . . . , vn, vn+1) ∈
Ms1 × · · ·×Msn ×Msn+1 verifying pM (v1, . . . , vn) = vn+1, a function table of p.
If tabp covers the entire domain of p then it will fully represent pM .

We associate with each external function a summary built on values in the
function table. More precisely, a function call will be stored in a given symbolic
state under the form

(p, (t1, · · · , tn), x)

indicating that a call has been performed for the external function p with argu-
ments (t1, · · · , tn) and that its result is stored in the fresh variable x.

We note Calls(P ) the set of all function calls.



SE with function summaries 7

Definition 5 (Function call summaries). Let Cls ⊆ Calls(P ) be a set of
function calls and Tab = (tabp)p∈P , where tabp is a function table associated to
p in P .
The summary of Cls up to Tab is:

Sums(Cls, Tab) =
∧

cl=(p,(t1,··· ,tn),x)∈Cls,
tabp∈Tab

Sum(cl, tabp)

where Sum(cl, tabp) computes the disjunction of different inputs/output tuples
of tabp, i.e.:

Sum(cl, tabp) =
∨

(v1,··· ,vn+1)∈tabp

((
∧
i≤n

ti = vi) ∧ x = vn+1)

with the convention Sum(cl, ∅) = ⊥.

Example 2. Let us go back to the Microgrid example (Figure 1) with the hy-
pothesis N = 2. Then, a scenario involves two measurements m1 and m2. For
illustrative purposes, values that will be used in the summaries associated to
the external functions INTGR and RISE are given in Table 1. Based on the
values provided by Table 1, we can then compute the corresponding summaries
for the set of function calls Cls = {cl1, cl2} with cl1 = (INTGR, ([m1,m2]), I)
and cl2 = (RISE, (I), r):

– Sum(cl1, tab(INTGR)) is
(m1 = 123 ∧m2 = 96 ∧ I = 228) ∨ (m1 = 148 ∧m2 = 141 ∧ I = 300)

– Sum(cl2, tab(RISE)) is
(I = 202 ∧ r = 0.7) ∨ (I = 300 ∧ r = 2.42)

Finally, Sums(Cls, Tab) is simply Sum(cl1, tab(INTGR))∧Sum(cl2, tab(RISE))

tab(INTGR)

[123, 96] 228

[148, 141] 300

tab(RISE)

202 0.7

300 2.42

Table 1: INTGR and RISE tables

3.2 Formula transformation

A path condition ϕ is built over terms of TF (V ) that may contain occurrences of
external functions. Since the satisfiability of ϕ requires to find an interpretation
ν ensuring M |=ν ϕ, the idea is to proceed in two steps:

1. ϕ is transformed into a formula with no occurrence of external functions and
a set of function calls.



8 I. Boudhiba, P. Le Gall, C. Gaston and V. Prevosto

2. the satisfiability of ϕ is checked with a constraint solver and based on external
function summaries (built on concrete executions of called functions).

For a formula ϕ containing a term of the form p(t1, · · · , tn) with p ∈ P , we
will eliminate the occurrence of p in ϕ by introducing a new fresh variable x in
charge of storing the result of the application of p to the terms t1, . . . , tn. An
interpretation will be acceptable as a solution only if it evaluates terms t1, . . . , tn
and x so that they correspond to one of the elements of the function table
tabp. Thus, while eliminating all occurrences of external function in formulas,
we also collect all tuples (t1, . . . , tn, x) memorizing all contexts of calls of external
functions.

Let us first define a function χ : TF (V )→ TF (V ∪Fr)×Calls(P ) as follows:

– if t is a variable or a constant3, χ(t) = (t, ∅)
– if t is of form f(t1, . . . , tn) with f 6∈ P , then4

χ(t) = (f(χ(t1)|1, . . . , χ(tn)|1),∪i∈1..nχ(ti)|2)
– if t is of form p(t1, . . . , tn) with p ∈ P , then
χ(t) = (x, {(p, (χ(t1)|1, . . . , χ(tn)|1), x)}∪i∈1..nχ(ti)|2) with x a fresh variable
in Fr.

We assume that all fresh variables introduced by function calls (i.e. the sets
χ(t)|2) are pairwise disjoint. Note that the term substitution is performed itera-
tively by starting with the innermost sub-terms in case of nested function calls.
The function χ is canonically extended to formulas by preserving formula struc-
ture and accumulating all sets of function calls in a unique set. In the sequel, for
a formula ϕ, χ(ϕ)|1, the formula ϕ without external functions, will be denoted
ϕ and χ(ϕ)|2, the set of associated calls, will be denoted κ(ϕ).

Example 3. Let us denote ϕ0 the formula RISE(INTGR([x+1, 0])) > 1 defined
over the external functions INTGR and RISE and the variable x.

Then, ϕ0 is r > 1 while κ(ϕ0) is {(RISE, (I), r), (INTGR, ([x + 1, 0]), I)}
with I and r new fresh variables.

Now that we are able to remove external functions, we will propose an algo-
rithm to check formula satisfiability.

4 Satisfiability of formulas up to function summaries

Given a formula ϕ possibly built over external functions, we aim at defining an
algorithm that analyzes the satisfiability of ϕ up to summaries of called external
functions. Recall that ϕ is transformed into a formula (ϕ) with no occurrence
of external functions, while we keep track of external function calls in κ(ϕ). We
also suppose that we have function tables for these external function calls in
Tab.

3 A constant is a function of profile of the form → s.
4 For a couple c = (e, f) of elements, c|1 is e and c|2 is f .



SE with function summaries 9

Since by construction Sums(κ(ϕ), Tab) is the formula specifying that func-
tion calls of κ match with at least a tuple of Tab, if Sat(ϕ ∧ Sums(κ(ϕ), Tab))
returns a solution, then ϕ is satisfiable (i.e. there exists an interpretation ν such
that M |=ν ϕ). Otherwise, either ϕ is not satisfiable (i.e. ∀ν,M 6|=ν ϕ) or ϕ is
satisfiable but the function tables (used to summarize functions) are not com-
plete enough to exhibit an interpretation ν such that M |=ν ϕ. Therefore, in the
sequel we place ourselves in the hypothesis that function tables can be enriched
during the satisfiability search. Furthermore, some heuristics are proposed to
help the solver finding a solution when current function summaries are not com-
patible with the formula, e.g. to find additional input data for external functions
that could make the formula feasible. We describe these heuristics in more detail
below.

4.1 Resolution strategies

NoCorres strategy: NoCorres computes a formula guaranteeing that the inputs
of called external functions are different from those already present in the current
function tables. This formula will be used later to get new inputs for the concrete
executions of external functions, ensuring the enrichment of the function tables,
which in turn increases chances to find a solution.

Definition 6 (NoCorres). Let Cls ⊆ Calls(P ) be a set of function calls and
Tab = (tabp)p∈P a set of tables where tabp is the table associated to p in P .
NoCorres(Cls, Tab) is defined as follows:

NoCorres(Cls, Tab) =
∨

cl=(p,(t1,··· ,tn),x)∈Cls,
tabp∈Tab

(NoCorres1(cl, tabp))

with NoCorres1((p, (t1, · · · , tn), x), tabp) being defined as follows:∧
(v1,··· ,vn+1)∈tabp

(
∨
i≤n

ti 6= vi)

By considering the conjunction of NoCorres(κ(ϕ), Tab) and ϕ, the solver can-
not compute interpretations of variables for which all function calls in κ(ϕ) are
already present in Tab.

Example 4. By applying the above NoCorres definition on the set of func-
tion calls and tables given in Example 2, NoCorres(Cls, Tab) is the formula
NoCorres1(cl1, Tab(INTGR)) ∨NoCorres1(cl2, Tab(RISE)) where:

– NoCorres1(cl1, tab(INTGR)) is
(m1 6= 123 ∨m2 6= 96) ∧ (m1 6= 148 ∨m2 6= 141)

– NoCorres1(cl2, tab(RISE)) is (I 6= 202) ∧ (I 6= 300)



10 I. Boudhiba, P. Le Gall, C. Gaston and V. Prevosto

Dependency heuristic: Another way to accelerate and help the solver resolution
task to find new inputs, when no solution is found with the current function
tables, is to take advantage of direct dependencies between function calls. Indeed
when the arguments of a call to an external function f depend on the result
of calls to other external functions fi, we can indicate to the solver to search
for solutions in which the inputs of f are compatible with the outputs already
present in the tables of the fi.

Definition 7 (Dep). Let Cls ⊆ Calls(P ) be a set of function calls and Tab =
(tabp)p∈P a set of tables where tabp is the function table associated to p in P .

Dep(Cls, Tab) is defined as follows:

Dep(Cls, Tab) =
∧

cl∈Cls

(Dep1(cl, Cls, Tab))

with Dep1(cl, Cls, Tab) being defined as follows:∧
cli=(q,(t′1,··· ,t′n),x′)∈Depcl

(CorresRes(cli, tabq))

where:

– For cl = (p, (t1, · · · , tn), x), Depcl = {cli = (q, (t′1, · · · , t′n), x′) ∈ Cls \
{cl} | x′ ∈

⋃
i≤nOcc(ti)} is the set of function calls on which the inputs

of cl depend, i.e. the result of these function calls occurs in one or several
input terms of cl.

– For cl′ = (q, (t′1, · · · , t′n), x′), CorresRes(cl′, tabq) is the formula∨
(v1,··· ,vn+1)∈tabq

(x′ = vn+1)

CorresRes(cl′, tabq) extracts values from the tables of function calls on which
cl′ depends.

Example 5. Let us consider again the function calls introduced in Example 2.
We have:

– Depcl2 = {cl1} with cl1 = (INTGR, ([m1,m2]), I), because I (the variable
storing the result of cl1) is an input of cl2 = (RISE, (I), r).

– CorresRes(cl1, tab(INTGR)) is (I = 228 ∨ I = 300)

Therefore, to find new inputs for RISE, we can give to the solver Dep(cl2, Cls),
that is CorresRes(cl1, tab(INTGR)) to exploit the values of I already existing
in Tab(INTGR).

By combining both NoCorres and Dep heuristics, it is possible to generate
new sets of inputs, i.e. new rows in the tables of external functions that are
relevant for the overall path constraint resolution. Indeed, NoCorres ensures
that we will add at least one new row to a function table, while Dep takes care
of avoiding solutions that cannot be satisfied by the current summaries of the
callers, and are thus useless for the current solving process.



SE with function summaries 11

4.2 SolveTab algorithm

Algorithm 1 describes our dynamic solving procedure SolveTab(m,ϕ, κ(ϕ), Tab).
The goal of SolveTab is to analyze the satisfiability up to some function tables
Tab of a formula (ϕ) with no occurrences of external functions, provided with a
set of function calls (κ(ϕ)). The integer parameterm is used to bound the number
of attempts that are made to increase the size of function tables. As explained
in the previous section, we resort to this mechanism when no tuple in a function
table is compatible with ϕ. However, since there is no guarantee that extending
function tables will eventually lead to find a solution for ϕ ∧ Sums(κ(ϕ), Tab),
we cut the search after at most m steps. If no solution is found beyond m or
no possible function inputs are found, then we can deduce that the formula is
unsatisfiable up to function tables. The case m = 0 corresponds to a purely static
version where a solution is searched without modifying function tables (i.e. Tab
is then a static variable).

Algorithm 1: SolveTab(m,ψ, κ, Tab)

Data: m: an integer, ψ: a formula without black-box functions, κ : a set of
function calls, Tab: function tables

Result: satisfiability of ψ up to κ; Tab: updated function tables
1 begin
2 sol← Sat(ψ ∧ Sums(κ, Tab));
3 TabModified← True;
4 while TabModified and sol = NONE and m 6= 0 do
5 In← Sat(ψ ∧NoCorres(κ, Tab) ∧Dep(κ, Tab)) /* Search for new

solutions while considering dependencies between function

calls */ ;
6 if In = NONE then /* no possible inputs for function */

7 In← Sat(ψ ∧NoCorres(κ, Tab)) /* Search for new possible

solutions without considering function dependencies */ ;

8 if In 6= NONE then /* new possible inputs for function */

9 for each call cl = (p, (t1, · · · , tn), x) in κ do
10 V Ins← Ins(In, cl) /* extract inputs for p from In */;
11 r ← Execp(V Ins) /* concrete execution of p */;
12 Tab(p)← (V Ins, r).Tab(p) /* save new tuple in Tab */;

13 sol← Sat(ψ ∧ Sums(κ, Tab));
14 else
15 TabModified← False;

16 m← m− 1;

17 return (sol, Tab);

Let us now give some few comments on Algorithm 1. By hypothesis, argu-
ments (ψ, κ) = χ(ϕ) for some ϕ, so that ψ and κ share external functions and
variables.



12 I. Boudhiba, P. Le Gall, C. Gaston and V. Prevosto

If Sat(ψ∧Sums(κ, Tab)) gives back a result sol, then sol directly provides an
interpretation of variables that satisfies the formula ϕ in which external functions
are interpreted according to values given in their associated tables Tab. In other
words, by construction M |=sol ϕ.

In case no solution is found with Sat(ψ ∧ Sums(κ, Tab)) in Line 2 (ψ is
unsatisfiable up to current function summaries), then we try to find additional
input data for external functions that could enrich Tab (and function summaries)
and make the formula satisfiable. In order to guide the solver to find new inputs,
Dep and NoCorres heuristics can be used. NoCorres is necessary to compute
new inputs distinct from those already present in current tables (that failed to
provide us with a solution). On the other hand, Dep is an alternative option
that can facilitate the search for inputs that are compatible with dependencies
among function calls. However, this might restrict the search space too much, as
we may need to add a new output to the table of function f to find a suitable
input for g that depends on f . Therefore, if adding the Dep condition results in
an unsatisfiable formula (Line 7), we call the solver again with only the formula
and the NoCorres condition. Indeed, the new tuples might give us new outputs
that will in turn make Dep satisfiable at next step, or even give directly a solution
to the original problem.

If an interpretation (variable In) is found, then lines 10, 11 and 12 allow us
to add new tuples in function tables (variable Tab), by successively extracting
input values V Ins ← ins(In, cl) for each function call (line 10), concretely
executing the function (line 11) with V Ins as input data, (Execp being the
reference implementation of p), to obtain the corresponding output (variable
r) and finally storing new tuples in Tabp (line 12). Then, the solver is called
(line 13) to check the satisfiability of ψ, with the new summaries based on the
enriched function tables.

Last, let us point out that a bigger number m of allowed attempts to search
for new tuples enriching function tables gives more chances to find a solution,
but will possibly take longer to compute.

4.3 Discussion: SolveTab for symbolic execution

Since path conditions are formulas built over terms that may contain occurrences
of external functions, we proceed as detailed in the previous section in order to
check symbolic paths feasibility according to function summaries. For that, we
use the SolveTab solving Algorithm 1 based on concrete executions of called
functions to guide the symbolic execution of IOSTS. Therefore, we need to
extend symbolic states by accumulating function calls. An extended symbolic
state is of the form η = (q, π, λ, κ), where κ (or κ(η)) denotes the sequence of
function calls of the form (p, (t1, · · · , tn), x). By construction, the path condition
π does not contain occurrences of external functions.

A symbolic state (q, π, λ, κ) is satisfiable according to function summaries
only if there exists an integer m and function tables Tab such that the result
(sol, Tab) provided by SolveTab(m,π, κ, Tab) defines an interpretation sol of
fresh variables ensuring the interpretation of π as true.



SE with function summaries 13

The symbolic execution in accordance with function tables is based on the
SolveTab resolution algorithm which takes as arguments, in addition to the path
condition and the set of accumulated function calls, the parameter m and the
set of tables Tab. If we note SETab,m(G) the symbolic execution of G using
SolveTab for building satisfiable symbolic states, then SETab,m(G) is highly
dependent on the initial tables (Tab) specifying called functions, the chosen
threshold of resolution attempts m, the choice of the solver and the strategy of
traversal (in depth, in width, . . . ) of the symbolic tree. Thus, the construction
of SETab,m(G) will more or less approach the ideal symbolic tree SE(G). If
elements of Tab are representative enough of the behavior of called functions,
with regard to the solicitations of the IOSTS or if m is large enough to find
a solution for each possible path of the IOSTS (by enriching function tables),
then SETab(G) becomes closer to SE(G) and more states become reachable.

5 Implementation and Experiments

5.1 Implementation

DIVERSITY tool: DIVERSITY [3, 14], is a multi-purpose and customizable
platform for formal analysis based on symbolic execution (test generation, proof,
deadlock search, etc.) that is on its way to becoming an Eclipse open-source
project5. DIVERSITY generates a symbolic tree (for a fixed maximal height)
by simulating the system specification with input symbols rather than concrete
values for data. Test inputs are computed by solving the path conditions. For
that purpose, DIVERSITY integrates solvers such as Z36, and CV C47.

We have implemented the SolveTab algorithm 1 and the heuristics described
in Section 4 as additional Formal Analysis Module (FAM) for checking satisfia-
bility of path conditions within DIVERSITY. By default, constraints involving
external functions are left uninterpreted (i.e. out of the scope of solvers). In
addition, variable assignments within an IOSTS transition contain only basic
operations. Now, all such external functions can be handled with the newly
implemented technique, using values recorded in function tables. The SolveTab
algorithm allows to know whether a new execution context EC (a symbolic state)
can be built in the symbolic execution tree in accordance with called functions,
after the execution of a transition in the IOSTS. In other words, it checks if
a transition of the IOSTS could be fired or not according to called functions,
with a possible enrichment of the function tables. Therefore, thanks to SolveTab
we ensure the symbolic tree’s construction with only feasible paths compatible
with called functions while ensuring a high transition coverage of the IOSTS
transitions.

5 https://projects.eclipse.org/proposals/eclipse-formal-modeling-project
6 https://z3.codeplex.com/
7 http://cvc4.cs.nyu.edu/web/

https://projects.eclipse.org/proposals/eclipse-formal-modeling-project
https://z3.codeplex.com/
http://cvc4.cs.nyu.edu/web/


14 I. Boudhiba, P. Le Gall, C. Gaston and V. Prevosto

Microgrids case study: Here, we discuss the application of our technique to the
Microgrid example 1 that uses external function calls (INTGR and RISE). For
that, we present the resulting symbolic trees (to a depth of 6) by applying the
SolveTab algorithm with the initial function tables 1 and various values of m,
the number of attempts made to increase the function tables. At first, we use the
static version (static tables, m = 0). Result is shown in the left tree of Figure 2.
Then we progressively increase m until 196, function tables are enriched by
concretely executing functions with new inputs found thanks to NoCorres and
Dependency heuristics. As expected, this permits to cover more transitions of
the model, reach more symbolic states and explore more feasible paths. Indeed
the size of the generated tree grows with the value of m. The middle tree of
figure 2 is obtained with m = 1, while the one on the right is the result of
m = 196, where all transitions of the IOSTS are covered.

Fig. 2: Symbolic execution tree in DIVERSITY

5.2 Experiments

A summary of the main outcomes of the application of our technique to the
Microgrid example is provided in Table 2. It should be noted that our results
are based on the initial function tables given in table 1 and that we dispose of
the functions’ implementation in order to be able to execute them with appro-
priate inputs in an unitary setting. For each experiment (i.e. each line), we fix
”m” (maximum number of attempts for the SolveTab algorithm) and the maxi-
mum ”height” allowed for the symbolic tree. Then we record results concerning
the enriched tables (number of tuples) and the symbolic tree computation: the
number of reachable states, the achieved IOSTS transitions coverage and the
execution time. Again, when m = 196 all possible symbolic states are covered,
and there is no need to try to further enrich the function tables.

The resulting coverage rate and execution time depend on the initial function
tables. In fact, the more the elements of called function tables are representative
of the function behaviors and compatible with path conditions, the less attempts
are needed to achieve the same level of coverage. For instance, if we now start
with the initial function tables of table 3 for the Microgrid example, all transi-
tions of the specification are covered (in 2s759ms) without doing any concrete



SE with function summaries 15

Micro-Grid IOSTS: initial Tab (Tables 1)

”m” height Enriched Tab states transition
coverage

time

INTGRRISE

0 15 2 2 16 62.5% 638ms

1 15 8 3 27 75% 2s

196 15 198 3 120 100% 4m15s

Table 2: Experiments with initial Tables 1

tab(INTGR)

[0, 0] 0

[12, 18] 30

[123, 96] 228

[148, 141] 300

tab(RISE)

202 0.7

228 0.97

300 2.42

Table 3: Other initial Tables

execution (m = 0), as all possible outcomes are captured by one row of the
tables.

Micro-Grid IOSTS: other initial Tab (Tables 3)

”m” height Enriched Tab states coverage time
INTGRRISE

0 15 4 3 120 100% 2s759ms

Table 4: Experiments with other initial Tables 3

6 Related Work

IOSTS and symbolic execution have been used in many works [6, 10, 17] for
different purposes. Until now standard solvers were not capable of dealing with
functions occurring in path conditions. The usage of symbolic execution and
path feasibility analysis are studied in [7,35] but this is limited to the analysis of
functions themselves and does not take into consideration the impact of function
calls on the feasibility of the whole system.

Our work borrows the idea of mixing symbolic execution with information
obtained from instrumented concrete executions, from concolic testing, a method
that has been implemented in various settings, such as [9,18,32]. However, these
frameworks are primarily directed at source code level in the objective of unit
testing. Another concolic tool, PathCrawler [36] proposed an approach to en-
compass function calls [25], using pre/post-condition couples as a specification.

Other unit testing frameworks traditionally use stubs [26], which are built
manually in an ad-hoc way, to replace external functions for which no implemen-
tation is available. Also, automatically-generated software stubs [19] are used for



16 I. Boudhiba, P. Le Gall, C. Gaston and V. Prevosto

abstracting (over-approximating) lower-level functions during dynamic test gen-
eration [16] based on code.

[1,4,20,22], propose different techniques to conduct symbolic execution with
simplified summary representations. But these techniques do not include heuris-
tics similar to the ones (NoCorres, Dependency) we introduce in our paper.

Other techniques have been proposed to deal with constraints generated from
symbolic code execution [2,30]. These techniques fall back on concrete values and
use randomization to help simplify complex constraints that cannot be solved
directly. Our approach based on IOSTS models is orthogonal to these code-based
approaches and uses some heuristic search to solve path conditions including
external function calls.

In our previous work [8], like in the work [25], we specify external functions
by means of contracts (instead of tables): we unfolded the symbolic tree of an
IOSTS by replacing each transition including an external function call by as
many transitions as there are behaviors in the contract associated to the consid-
ered external function.

7 Conclusion and future work

In this work, we use the IOSTS framework extended with external functions.
We adapt existing symbolic execution techniques over IOSTS to deal with such
function calls, using function tables to summarize them with a formula. The
construction of a symbolic execution tree is based on an algorithm SolveTab
that permits to check path conditions satisfiability up to function summaries
with the possibility of enriching function tables by concretely executing them,
in order to achieve a high transition coverage of the IOSTS.

The proposed approach has been implemented within the DIVERSITY sym-
bolic execution tool. The results show that symbolic execution coupled with func-
tion summaries is a practical and effective approach to take into consideration
external functions for IOSTS models analysis mainly for model-based testing
which is a significant motivation for our work. Nevertheless, it could probably
be applied to other families of transition systems like those in [31,33,34].

References

1. Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. Demand-driven compo-
sitional symbolic execution. In Proceedings of the Theory and Practice of Software,
14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 367–381, Berlin, Heidelberg, 2008. Springer-Verlag.

2. Saswat Anand, Corina S. Păsăreanu, and Willem Visser. Jpf-se: A symbolic execu-
tion extension to java pathfinder. In Proceedings of the 13th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems, pages
134–138, Berlin, Heidelberg, 2007. Springer-Verlag.

3. Mathilde Arnaud, Boutheina Bannour, and Arnault Lapitre. An illustrative use
case of the diversity platform based on uml interaction scenarios. Electron. Notes
Theor. Comput. Sci., pages 21–34, 2016.



SE with function summaries 17

4. Domagoj Babic and Alan J. Hu. Structural abstraction of software verification
conditions. In Proceedings of the 19th International Conference on Computer Aided
Verification, pages 366–378, Berlin, Heidelberg, 2007. Springer-Verlag.

5. Boutheina Bannour, Jose Pablo Escobedo, Christophe Gaston, and Pascale Le Gall.
Off-line test case generation for timed symbolic model-based conformance testing.
In Testing Software and Systems, pages 119–135. Springer, 2012.

6. Boutheina Bannour, Christophe Gaston, Marc Aiguier, and Arnault Lapitre. Re-
sults for compositional timed testing. In 20th Asia-Pacific Software Engineering
Conference, APSEC, pages 559–564. IEEE Computer Society, 2013.

7. N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility analysis for string-
manipulating programs. In TACAS, volume 5505 of LNCS. Springer, 2009.

8. Imen Boudhiba, Christophe Gaston, Pascale Le Gall, and Virgile Prevosto. Model-
based testing from input output symbolic transition systems enriched by program
calls and contracts. In Testing Software and Systems - 27th IFIP WG 6.1 Inter-
national Conference, ICTSS, volume 9447 of Lecture Notes in Computer Science,
pages 35–51. Springer, 2015.

9. Cristian Cadar and Dawson Engler. Execution generated test cases: How to make
systems code crash itself. Software Model Checking (SPIN), 2005.

10. James C.King. Symbolic execution and program testing. Communication ACM,
19:385–394, 1976.

11. Lori A Clarke. A system to generate test data and symbolically execute programs.
IEEE Trans. Softw. Eng., pages 215–222, 1976.

12. The consortium Sesam-Grids. The Sesam-Grids Project. In http://www.sesam-
grids.org/.

13. CREST. https://code.google.com/archive/p/crest/. Accessed: 2017-03-04.
14. J. Deltour, A. Faivre, E. Gaudin, and A. Lapitre. Model-based testing: An approach

with SDL/RTDS and DIVERSITY. In SAM, volume 8769 of LNCS. Springer, 2014.
15. DIVERSITY. https://projects.eclipse.org/proposals/

eclipse-formal-modeling-project. Accessed: 2017-03-04.
16. Dawson Engler and Daniel Dunbar. Under-constrained execution: Making auto-

matic code destruction easy and scalable. In Proceedings of the 2007 International
Symposium on Software Testing and Analysis, pages 1–4, New York, NY, USA,
2007. ACM.

17. Christophe Gaston, Pascale Le Gall, Nicolas Rapin, and Assia Touil. Symbolic
execution techniques for test purpose definition. In Testing of Communicating
Systems, pages 1–18. Springer, 2006.

18. Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated
random testing. PLDI 05 Programming Language Design and Implementation,
pages 213–223, 2005.

19. Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated
random testing. SIGPLAN Not., pages 213–223, 2005.

20. Denis Gopan and Thomas Reps. Low-level library analysis and summarization. In
Proceedings of the 19th International Conference on Computer Aided Verification,
pages 68–81, Berlin, Heidelberg, 2007. Springer-Verlag.

21. jCUTE. http://osl.cs.illinois.edu/software/jcute/. Accessed: 2017-03-04.
22. Sarfraz Khurshid and Yuk Lai Suen. Generalizing symbolic execution to library

classes. SIGSOFT Softw. Eng. Notes, pages 103–110, 2005.
23. Nicolas Kicillof, Wolfgang Grieskamp, Nikolai Tillmann, and Victor Braberman.

Achieving both model and code coverage with automated gray-box testing. In
Advances in Model-Based Testing (A-MOST). ACM, 2007.

https://code.google.com/archive/p/crest/
https://projects.eclipse.org/proposals/ eclipse-formal-modeling-project
https://projects.eclipse.org/proposals/ eclipse-formal-modeling-project
http://osl.cs.illinois.edu/software/jcute/


18 I. Boudhiba, P. Le Gall, C. Gaston and V. Prevosto

24. MathWorks. The Simulink documentation. In
http://fr.mathworks.com/help/simulink/.

25. Patricia Mouy, Bruno Marre, Nicky Willams, and Pascale Le Gall. Generation
of all-paths unit test with function calls. International Conference On Software
Testing (ICST), pages 32 –41, 2008.

26. Glenford J. Myers, Corey Sandlers, and Tom Badgett. The Art of Software Testing.
John Wiley & Sons, 3 edition, 2011.

27. Object Management Group. The UML standard specification. In
http://www.omg.org/spec/UML/2.4.1/.

28. PathCrawler. http://frama-c.com/pathcrawler.html. Accessed: 2017-03-04.
29. Symbolic PathFinder. http://babelfish.arc.nasa.gov/trac/jpf/wiki/

projects/jpf-symbc. Accessed: 2017-03-04.
30. Corina S. Păsăreanu, Neha Rungta, and Willem Visser. Symbolic execution with

mixed concrete-symbolic solving. In Proceedings of the 2011 International Sympo-
sium on Software Testing and Analysis, pages 34–44, New York, NY, USA, 2011.
ACM.

31. J. J.M.M. Rutten. A calculus of transition systems (towards universal coalgebra).
Technical report, CWI (Centre for Mathematics and Computer Science), Amster-
dam, The Netherlands, The Netherlands, 1995.

32. Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit testing engine
for C. SIGSOFT Softw. Eng. Notes, 30:263–272, 2005.

33. Jan Tretmans. Conformance testing with labelled transition systems: Implementa-
tion relations and test generation. Computer networks and ISDN systems, 29(1):49–
79, 1996.

34. Jan Tretmans. Model based testing with labelled transition systems. In Robert M.
Hierons, Jonathan P. Bowen, and Mark Harman, editors, Formal Methods and
Testing, pages 1–38. Springer-Verlag, Berlin, Heidelberg, 2008.

35. Y. Wang, Y. Xing, and X. Zhang. A method of path feasibility judgment based on
symbolic execution and range analysis. International Journal of Future Generation
Communication and Networking, 2014.

36. Nicky Williams, Bruno Marre, Patricia Mouy, and Muriel Roger. PathCrawler:
automatic generation of path tests by combining static and dynamic analysis. Eu-
ropean Dependable Computing Conference, pages 281–292, 2005.

http://frama-c.com/pathcrawler.html
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc

	Symbolic execution of transition systems with function summaries  

