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Chapter 6
Schedulability Analysis at Early Design Stages
with MARTE

Chokri Mraidha, Sara Tucci-Piergiovanni, Sebastien Gerard

Abstract The construction of a design model is a critical phase in real-time systems
(RTS) development as the choices made have a direct impact on timing aspects. In
traditional model-based approaches, the design relies largely on the designer expe-
rience. Once the design model is constructed, a convenient schedulability test has
to be found in order to ensure that the design allows the respect of the timing con-
straints. This late analysis does not guarantee the existence of a test for the given
design and does not allow early detection of unfeasible designs. In order to over-
come this problem, this chapter proposes the first UML/MARTE methodology for
schedulability-aware real-time software design models construction.

6.1 Introduction

Model-based approaches for real-time systems (RTS) development aim at going
from requirements specification to binary code production with the insurance of
respecting the functional and non-functional requirements of the system. These
model-based approaches (e.g. [61, 108, 229]) introduce a number of intermediate
models between the requirements and the binary code. Requirements are usually
formalized with use case scenarios. Even when modeled with other formalisms,
critical scenarios that represent the system response to external stimuli are speci-
fied along with the system response deadlines. The functional model aims at repre-
senting functional blocks and their interactions and to show how functional blocks
participate in above defined scenarios.

The functional model is then refined in a design model that introduces the mech-
anisms/patterns for the realization of the functional model on the underlying plat-
form. Actually, the design model defines the architecture of the system still being
independent of specific platforms. To this end abstracted resources and services are
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assumed. Threads, which are the unit of execution handled by OS platform services,
have to be structured to determine the threading strategy of the system. By defin-
ing a mapping of functional blocks on threads, it is defined how the system reacts
to external stimuli. Finding a convenient threading strategy is a complex task. The
designer has a set of real-time design patterns [85] that he can use to determine the
adequate number of threads and the good grouping of functions to threads towards
the definition of a of the system. This concurrency model is of primary importance
with respect to the system’s . In order to ensure that the concurrency model satisfies
timing requirements, a timing validation , like schedulability analysis , is necessary
at this point. However, this timing validation can lead to the following problems: (i)
the resulting design model can be too difficult or even impossible to analyze [26],
(ii) the resulting design model is analyzable but the designer would like to explore
other possible design models, to explore several candidates from a schedulability
point of view. From these considerations, it follows that it is necessary to guide
the designer in the construction of an analyzable design model, i.e. a design model
for which a schedulability test there exists and possibly support the cohabitation of
several analyzable design candidates in order to support a comparative analysis.

This chapter focuses on a real-time methodology, called Optimum, offering a
UML front-end for the designer that conforms to a formal model for schedula-
bility analysis and supports the evaluation of different architecture candidates. In
order to offer such a UML front-end, standard UML needs, on one hand, to be ex-
tended to schedulability concepts and, on the other hand, to be restricted in the use
of some elements to express a precise semantics. To this purpose Optimum uses
MARTE [219], a standard specialization of UML for real-time and embedded sys-
tems development. It provides support for specification, design and verification/val-
idation stages. Actually, before MARTE, the UML SPT profile [218] was available.
In [25] authors show how SPT was not sufficient to express some basic concepts for
schedulability and they propose to extend the profile in ad hoc way with those con-
cepts. Optimum, which uses similar concepts used in [25], does not need to extend
MARTE. MARTE proved to be enough rich to express all the concepts needed to
build schedulability models. However, as the MARTE profile is quite rich, a restric-
tion of the language is necessary in order to delimit the usage of MARTE concepts
in the context of the Optimum methodology. Nevertheless, this restriction of the
language has to preserve the compatibility with MARTE standard. In the best of our
knowledge, Optimum is the first methodology for schedulability analysis using a
standard specialization of UML.

The chapter is organized as follows. Section 6.2 presents an overview of the Op-
timum methodology . Section 6.3 presents the formal schedulability analysis model
considered in the Optimum methodology. In section 6.4, a detailed description of
the methodology and its conformance to the formal schedulability model is given.
Section 6.5 illustrates the methodology usage on an automotive example. Related
work is discussed in section 6.6. Section 6.7 concludes the chapter.
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Fig. 6.1: Optimum process overview

6.2 Overview of the Optimum Process

The Optimum process guides the selection and the design of the concurrency model
on the base of hard real-time constraints, expressed at the end of the requirement
specification phase, towards the construction of concurrency models analyzable in
automated way. To this end the methodology defines a process depicted on Fig-
ure 6.1 for the generation of the architecture model specifying a concurrency model
and a deployment model on the execution platform .

The methodology process has as entry point two artifacts: 1) the functional
model, i.e. a description of system end-to-end scenarios and 2) the description of
timing requirements . Both artifacts are assumed to be available at this stage of the
development process. Some basic characteristics of the hardware abstraction layer
are also assumed to be available, as the type of the execution hosts that constitute
the resource platform for the execution of identified scenarios. In fact, the type of
execution host is used to allow the assignment of time budgets to the functions
in the scenarios. This available information is organized in a specific UML model
enriched with the MARTE profile called Workload model . The Workload model
specifies two concerns: a graph of function activations along with execution time
budgets and end-to-end deadlines , and an abstract layer representing the execution
platform . In order to obtain a satisfactory architecture model, the methodology pro-
vides at this point a way of exploring different alternatives by setting a so-called
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analysis context . Each analysis context contains an architecture model subject to
evaluation. The architecture model contains two views. The first view is generated
by transformation of the graph of function activations contained in the Workload
model. This transformation, also called , defines the tasks and the functions allo-
cated on them. The second view represents the software platform resources in terms
of tasks along with their scheduling parameters , and the hardware resources in terms
of processing and communication. More in detail, this architecture model describes
the evaluated concurrency model by schedulability analysis techniques and embeds
also the following information (i) the mapping of functional blocks on tasks, (ii) the
level of threading for each functional block and possible synchronization resources
needed to manage multithreading (if any), (iii) the needed OS support in terms of
the scheduler algorithm and preemption capabilities, (iv) the policy for serving ex-
ternal events, (v) the needed to protect . The evaluation of the dynamics paradigm
can cover different aspects such as resource utilization , response times , jitters , etc.

6.3 The Schedulability Model

In this section we present the formal model to analyze the schedulability of a real-
time system. We introduce the formal notation to later show the conformance of the
UML/MARTE model to the presented formal model.

The presented model captures a distributed system with fixed-priority tasks and
task dependencies. This model is the one assumed by the test of Palencia and Har-
bour [223] and available in the MAST open source tool. The model is quite general,
considering that fixed-priority scheduling is the most common scheduling algorithm
available in practice. Let us also remark that whenever the tasks set under consid-
eration is deployed on a single CPU, the Palencia and Harbour test is anyway ap-
plicable, reducing to the Lehoczky test [174]. Tasks are characterized by an arrival
pattern that can be periodic or aperiodic with minimum inter-arrival time. We con-
sider an event-activation paradigm. Given a set of external events, each external
event triggers one computation, the system response for that event. One single task
may execute the whole response or the response may be ”segmented” by a sequence
of tasks possibly spanning several computation resources. In case of segmentation,
a number of tasks are not directly triggered by the external event. For those tasks,
the event-activation paradigm states that the trigger for activation is execution’s end
of the previous task. In case more than one trigger there exists for the same task,
AND/OR semantics may be specified. The OR semantics implies that the task is
triggered by the execution’s end of any of the previous tasks, while the AND se-
mantics implies that the task is triggered only when all the previous tasks have com-
pleted. In this paper we restrict our attention to the OR semantics. The reason of this
choice is twofold: on one hand this assumption let simplify the model and makes
the presentation clearer, on the other hand the test of Palencia and Harbour does not
fully support the AND semantics (the AND semantics can be specified only among
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events of the same system response, events with the same rate), therefore we could
not use available open source tools to analyze a model containing AND semantics.

The model is characterized by a set of events E = (e1, e2, ..., en), a set of tasks T =
(τ1, τ2, ..., τm), a set of computational/communication resources R = (r1, r1, ...,rl), a
characterization of event occurrences and a characterization of task executions. The
characterization of event occurrences is constituted by a set of tuples, one for each
event ei ∈ E of the form (ei, ti, Ri, Di, WRi), where ei is the event whose occurrence
being characterized, ti is the period of the event, Ri is the response to the event ei. Ri
is a total order of tasks (Ti,→i), where /0⊂ Ti ⊆ T is the set of tasks to be executed in
response to the event ei. For any two tasks τh, τk ∈ T : the task τh has to be executed
before τk, in the response Ri if and only if τh →i τk. Di is the end-to-end deadline
for response Ri. WRi is the worst case response time for response Ri.

Characterization of task executions is constituted by a set of tuples, one for
each task τh ∈ T of the form (τh,Ph,r,CSh,Ch,Bh,WT Rh), where: τh is the task
being characterized, Ph is the assigned priority, r ∈ P, is the computational/com-
munication resource the task is executed on, Ch is the computational cost of the
task (not considering any contention time), CSh: ordered list of critical sections
(csh1,csh2, ...,cshl) the task will pass through. A critical section represents an in-
terval of non-preemption. The scheduler cannot interrupt a task in critical section
even if a higher priority task is ready for execution. Critical section cshi has a dura-
tion chi ≤Ch. Bh is the blocking time, i.e. the time a task is blocked by another task
with lower priority. This happens during concurrent access to critical sections: when
a lower priority task is in critical section as it cannot be preempted until it releases
its lock. A higher priority task has to wait the lock release before acquiring the lock.
WT Rh is the worst-case response time of the task τh.

Note that in our model the same task can appear in more than one response
and that each response establishes a total order in the tasks execution during the
response. For the model to be valid, the following property must hold:

Partial-Order Property: the set of event characterizations induces a cyclic-free
partial order on the set of tasks T . This property means that a unique order between
dependent tasks can be established.

Schedulability condition: The model is schedulable if and only if all responses
Ri have a worst-case response time WRi ≤ Di.

In our model the following additional assumptions hold:
Assumption 1. (Fixed-priority scheduler). We assume that for each computa-

tional/communication resource there exists one scheduler arbitrating the access to
the resource by a fixed-priority policy.

Assumption 2. (Priority-ceiling). We assume that passive resources, accessed in
critical section regions, are protected by a priority ceiling protocol (to avoid priority
inversion).

Assumption 3. (CAN-like channels). We assume that communication channels
are arbitrated by a CAN-like protocol, where messages inherit the priority level of
sending tasks. At destination buffered messages are dequeued on priority basis.
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6.4 Detailed Optimum Methodology

In this section a description of the standard modeling language on which the Op-
timum methodology is based is given. Then the models used and produced by the
Optimum process will be characterized. A third subsection will present the confor-
mance of the produced software architecture model with the formal schedulability
analysis model presented in section 2. At last, the software architecture exploration
phase will be detailed.

6.4.1 Modeling Language Description

The MARTE standard [219] provides all the concepts needed for the analysis and
design of real-time and embedded systems (RTES) in a model-based approach. As
a standard, MARTE proposes 158 concepts in order to cover a large broad of devel-
opment needs for RTES. Furthermore, MARTE gives several concepts with a close
semantics to represent a common global notion. For instance, a schedulable resource
could be a SwSchedulableResource from MARTE::SRM or a SchedulableResource
from MARTE::GRM. Differentiation of these nearby equivalent concepts can be
difficult to make. Thus, a MARTE-based methodology should specify a subset of
MARTE concepts that is sufficient for its purpose.

This section introduces the concepts of MARTE on which the Optimum method-
ology relies. The usage of these concepts in the methodology is then restricted by a
profile, called the MARTE4Optimum profile.

6.4.1.1 The MARTE4Optimum Profile

Table 6.1 enumerates the 14 useful concepts for the Optimum methodology out
of the 158 ones offered by MARTE. The needed concepts deal with platform
re-sources modeling, schedulability analysis modeling and allocation modeling.
MARTE stereotypes extend too general metaclasses of UML. Allowing such a large
applicability may make validation of methodological rules more complex and limit
automation of a refinement process for the methodology. The Figure 6.2 below rep-
resents a stereotype specialization principle. A MARTE4Optimum GaWorkloadBe-
havior stereotype that specializes the MARTE GaWorkloadBehavior stereotype is
created. The specialization does not add any property and preserves all properties
of the original stereotype but the extension of the NamedElement metaclass. We
make use of the UML redefinition capability to redefine this extension with a more
special one (a UML Activity is also a UML NamedElement). Therefore, we restrict
the application of the GaWorkloadBehavior stereotype to a UML Activity which is
a rule of the Optimum methodology described in the following section.

Table 6.1 lists the UML extensions specialization for the MARTE subset.
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Fig. 6.2: Stereotype specialization principle
Table 6.1: Optimum restriction of MARTE subset

MARTE4Optimum stereotype UML extensions
Alloc::Allocate Abstraction
Alloc::Allocated CallAction, Property
GRM::SchedulableResource Property
GQAM::GaPlatformResources Class
GQAM::GaWorkloadBehavior Activity
GQAM::GaWorkloadEvent AcceptEventAction
HRM::HwComputing::HwProcessor Class
SAM::SaAnalysisContext Package
SAM:: SaEndToEndFlow ActivityPartition
SAM:: SaCommHost Connector
SAM::SaExecHost Property
SAM::SaSharedResource Property
SAM::SaCommStep ControlFlow
SAM::SaStep CallBehavior Action

6.4.1.2 MARTE Compatibility

The MARTE4Optimum profile is constructed with respect to the following rules:
(1) MARTE4Optimum stereotypes and general MARTE stereotypes have the same
name, (2) MARTE4Optimum stereotypes inherit from MARTE stereo-type proper-
ties and no additional property is added to them, (3) UML metaclass used in the
extension redefinition is necessary a specialization of the UML meta-class used in
the general MARTE stereotype extension.

Compatibility with the MARTE profile is then preserved by the MARTE4Optimum
profile. The export of a MARTE4Optimum model in MARTE can be easily realized
by a one-to-one mapping consisting in unapplication of Optimum4MARTE stereo-
types and the application of the corresponding MARTE stereotypes.
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6.4.2 The Optimum Models

6.4.2.1 The Workload Model

The Workload model is constituted of a workload behavior specifying the con-
trolled sequence of actions triggered by external stimuli enriched with timing in-
formation. The construction of the workload behavior proceeds by the generation
of a UML Activity diagram containing a canonical form of the controlled sequence
of actions contained in the functional model. For the canonical form, the following
properties hold.

Properties on the Activity diagram are:

P1 - The subset of activity diagram elements used is: AcceptEventAction nodes,
CallBehaviorAction nodes, FlowFinalNode, MergeNode, ControlFlow, ActivityPar-
tition. All other activity diagram elements are not used.

P2 - Events are modeled as UML AcceptEventActions that have UML Triggers
referencing the Events. These events are modeled with UML SignalEvents.

P3 - In response to an event, the invocation of a function (modeled as UML Activ-
ity) is modeled with UML CallBehaviorAction. The CallBehaviorAction represents
the call to the UML Activity representing the function.

P4 - The last action to be executed in response to an event is always followed by
exactly one UML FinalFlowNode.

P5 - For each path connecting an AcceptEventAction to a FlowFinalNode, there
exist an ActivityPartition containing all the nodes of the path.

P6 - An AcceptEventAction has exactly one outgoing control flow that targets a
CallBehaviorAction.

P7 - Each path of the Activity begins with an AcceptEventAction node, termi-
nates with a FlowFinalNode.

P8 - The controlled sequence of actions does not contain cycles.

Properties on MARTE-based annotations are:

P9 - The Activity is stereotyped �GaWorkloadBehavior�.
P10 - Each UML AcceptEventAction is stereotyped �GaWorkloadEvent�. The

arrival pattern (periodic, sporadic) of the event is specified in the arrivalPattern prop-
erty. For the periodic pattern the period is specified following the Value Specification
Language (VSL) syntax periodic=(value, unit) where value is a nu-merical value and
unit is the time unit used (e.g. s, ms,..). Similarly, the minimum inter-arrival time is
specified with the following syntax sporadic(value, unit).

P11 - Each UML ActivityPartition is stereotyped �SaEndToEndFlow�. An
end-to-end deadline is specified in the end2EndD property of the �SaEndToEnd-
Flow� stereotype. This property is a duration specified with the following VSL
syntax (value, unit).
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P12 - Each action of type CallBehaviorAction is stereotyped �SaStep�. Each
step has a computational budget (execTime property) specified for a given type of
execution host (host property).

At this stage of the process, the platform is not determined yet because no de-
ployment is specified. However, as previously explained we need to specify an es-
timation of computation time budget for the actions stereotyped �SaStep�. A com-
putation time budget makes sense if it is related to a type of execution host. This
type of execution host is modeled with a UML Class stereotyped �HwProcessor�.
We can notice that this type can be modeled in model library and reused in several
workload models. This type of execution host will be used in the architecture model
for the definition of the platform processing resources.

6.4.2.2 The Architecture Model

The architecture model enriches the workload model with (1) an explicit con-
currency strategy and (2) a deployment model on a target hardware platform.

The concurrency model

A new UML Activity is built for the modeling of the concurrency strategy. This
activity contains the information provided in the workload model and adds to it
the information on the mapping of function executions (steps) to tasks. Moreover,
this UML activity will explicitly describe synchronization resources used to treat
contention in the multi-threading case. All the properties defined above for the char-
acterization of the UML Activity for the workload model specification are valid
for this new Activity. Yet, the following additional properties characterize the new
UML Activity for the concurrency strategy modeling:

P13 - A UML ActivityPartition is created for each task. The property “repre-
sents” of this ActivityPartition is valuated with a reference to the corresponding
element modeling the task in the platform resources (see next section).

P14 - Each CallBehaviorAction is mapped to at least one task. This mapping is
modeled by including the CallBehaviorAction in the ActivityPartitions representing
the tasks.

P15 - Let us consider two ActivityPartitions representing tasks t1 and t2 and two
sets of CallBehaviorActions A1 and A2. If there exists a path from one or more
actions of A1 to one or more actions of A2 and there exists a path from one or more
actions of A2 to one or more actions of A1, then the mapping actions to tasks is not
valid.

Additional properties on MARTE-based annotations are:

P16 - A UML Package is stereotyped �SaAnalysisContext�is created. The plat-
form property of this stereotype is valuated with a reference to the classifier stereo-
typed �GaResourcesPlatform�that models the platform resources (see next section).
The workload property is valuated with a reference to the Activity representing the
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concurrency model. Note that this stereotype is the key language concept to support
architecture exploration as detailed below.

P17 - Each ActivityPartition representing a task is stereotyped �SaStep�.
P18 - For each task the execution time is derived by making the additions of

the computational budgets of each step allocated to the task. The value of this ex-
ecution time is saved in the execTime property of the �SaStep�stereotype of the
ActivityPartition representing the task.

P19 - For each task, the priority is automatically assigned using the rate mono-
tonic priority assignment algorithm [9]. The assigned priority is saved in the priority
property of the �SaStep�stereotype of the ActivityPartition representing the task.

P20 - Each ActivityPartition representing a task is mapped to an execution host.
A reference to this execution host is saved in the host property of �SaStep�stereo-
type of the ActivityPartition representing the task.

P21 - For CallBehaviorActions that are shared between tasks and whose code
must be protected the sharedResources property of these actions, stereotyped �Sa-
Step�are valuated with a reference to synchronization resource that is add-ed in the
platform resources (see next section). The UML Behavior associated to the shared
CallBehaviorActions are non-reentrant (isReentrant property is set to false).

P22 - Schedulability analysis results for the tasks are serialized in �SaStep�stereo-
type properties of ActivityPartitions representing the tasks: respT for the response
time and blockT for the blocking time. End-to-end response time is serialized in the
endToEndT property of the �SaEndToEndFlow�stereotype.

Platform resources

The platform resources are modeled in a classifier stereotyped by �GaResour-
cesPlatform�. The platform resources model is an abstraction of the underlying
software and hardware platform that is needed to define the deployment of the con-
currency model on the available resources.

The following resources are considered in this abstraction: (i) tasks, here called
schedulable resources, along with their scheduling parameters, (ii) synchronization
resources used to solve contention in case of multi-threading (if necessary) and the
protocol used for accessing them, (iii) the processing and communication resources
topology, (iv) the scheduler algorithm used by the processing resources.

Each task, represented as an ActivityPartition in the concurrency model, is rep-
resented in the platform as a UML property stereotyped �SchedulableResource�.
The element ActivityPartition for the task is bound to corresponding UML prop-
erty through the Activity Partition’s meta-attribute ”represents” which will reference
the corresponding UML property stereotyped �SchedulableResource�. Scheduling
parameters for the task have to be specified. In the case a scheduling algorithm
based on fixed priorities is assumed, priorities have to be specified as scheduling
parameters. Scheduling parameters are specified through the schedParams property
of �SchedulableResource�. The value of a priority is in form of a VSL expression:
schedParams=[fp(priority-value)]

Each synchronization resource is stereotyped as �SaSharedResource�. The syn-
chronizing protocol has to be specified in the protectKind property of the stereotype
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�SaSharedResource�. The PriorityCeilingProtocol is used to protect the access to
these critical section regions.

The processing resources are modeled with UML Properties stereotyped �Sa-
ExecHost�and typed with the �HardwareProcessor�Class used in the workload
model for the definition of the computation time budgets of functions. These pro-
cessing resources are interconnected with communication resources that are mod-
eled with UML Connectors stereotyped �SaCommHost�.

The offered scheduling algorithm is specified for the processing and communi-
cation hosts. The scheduling algorithm is specified through the property schedPol-
icy. The value of schedPolicy is equal to FixedPriority.

6.4.3 Conformance to the Formal Schedulability Model

In this section we formally show the conformance of the Optimum model to the
formal model of Section 6.3.

Table 6.2: Conformance on sets

Conformance
Property

Formal Model Optimum Model

Event confor-
mance

E = (e1,e2, ...,en) Set of AcceptEventActions in the Activity Diagram stereo-
typed �GaWorkloadEvent�(property P10).

Task confor-
mance

T = (τ1,τ2, ...,τm) In the Optimum model, each task corresponds to one Activ-
ityPartition stereotyped �SaStep�and representing a UML
property stereotyped �SchedulableResource�(P13).

Resource con-
formance

P = (r1,r2, ...,rl) Set of UML properties stereotyped �SaExe-
cHost�/�SaCommHost�, properties of the UML Class
stereotyped �GaResourcePlatform�

As for assumptions on the formal model, Assumption 1 (Fixed-priority sched-
uler) is specified by property schedPolicy in the stereotype �saExecHost�applied
to processing/communication resources. The schedPolicy is equal to FixedPrior-
ity. Assumption 2 (Priority-ceiling) is expressed by the protectKind property
of the stereotype �SaSharedResource�applied to shared re-sources. The protec-
tKind is equal to PriorityCeilingProtocol. Assumption 3 (CAN-like channels)
means considering a communication channel where policy on messages to be sen-
t/received is based on fixed-priorities. The assumption implies thus to have each
�saCommHost�with schedPolicy equal to FixedPriority. As for the Partial-order
property on the set of task T, this property is satisfied in the Optimum model by
property P15.
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Table 6.3: Conformance on event occurrences characterization

Formal Model Optimum Model
ti From property P10 each AcceptEventAction is stereotyped �GaWorkload-

Event�. The period is specified in the arrivalPattern property.
Ri = (Ti,→i), /0⊂ Ti ⊆
T,T = (τ1,τ2, ...,τm)

Ti is obtained as follows: For each CallBehaviorAction cbh belonging to the
ActivityPartition stereotyped �SaEndToEndFlow�containing AcceptEven-
tAction (ei), take the ActivityPartition stereotyped �saStep�representing a
schedulable resource (τh) that contains cbh. By property P1 no fork node
there exists in the Activity diagram and by property P6 each AcceptEven-
tAction is connect to exactly one CallBehaviorAction, this ensures that for
each event there exists only one path towards the final flow node. The set
of CallBehaviorActions in the �SaEndToEndFlow�is then totally ordered.
The order on tasks is the order established by control flows sequencing
the actions and by property P15, no cycles can occur, reducing to a total
order on tasks. By property P5, exactly one ActivityPartition stereotyped
�SaEndToEndFlow�there exists. By property P14 at least one ActivityPar-
tition stereotyped �saStep�representing a schedulable resource (τh) there
exists, thus the set of tasks TI 6= /0

Di By properties P1, P5 and P6, each AcceptEventAction belongs to only one
ActivityPartition stereotyped �SaEndToEndFlow�(as already shown for Ri
conformance). Deadline Di corresponds to the property end2EndD of the
stereotype �SaEndToEndFlow �(P11).

WRi By properties P1, P5 and P6, each AcceptEventAction belongs to only one
ActivityPartition stereotyped �SaEndToEndFlow�. WRi corresponds to the
endToEndT (P22)

Table 6.4: Conformance on task execution characterization

Formal Model Optimum Model
Ph �SaStep�stereotype, attached to the ActivityPartitions rep-

resenting schedulable resources, contains the property
schedParam:SchedParameters[0..*]=[fp(priority-value)]

r ∈ P The �SaStep�stereotype, attached to the ActivityPartitions representing
schedulable resources, contains the property host by property P20.

Ci The �SaStep�stereotype, attached to the ActivityPartitions representing
schedulable resources, contains the property execTime by property P18.

CSh The list of critical sections the task pass through is specified in the prop-
erty sharedResources of the stereotype �SaStep �applied to the CallBehav-
iorActions belonging to the ActivityPartition representing the task by prop-
erty P21.

chi The duration of the critical section csi is equal to the execution time of the
CallBehaviorAction that includes the csi value in sharedResources of the
applied �SaStep�.

Bh �SaStep�stereotype, attached to the ActivityPartitions representing schedu-
lable resources, contains the property blockT (P22).

WT Rh �SaStep�stereotype, attached to the ActivityPartitions representing schedu-
lable resources, contains the property respT (P22).

6.4.4 Software Architecture Exploration Phase

Architecture exploration aims at finding an architecture model satisfying timing re-
quirements of the system and possibly other designer criteria. Many techniques can
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Fig. 6.3: System-level end-to-end scenarios

be employed in order to explore the design space, but here we are only interested
in supporting some comparative process in which different architecture models can
be built and co-habit for comparison. The key MARTE concept to support architec-
tural exploration is the �SaAnalysisContext�concept used in P16. Different UML
packages stereotyped �SaAnalysisContext�can be organized in order to store dif-
ferent candidates. Let us remind that the stereotype �SaAnalysisContext�allows
making reference to a platform and workload, which can be different for each con-
text. Interestingly this stereotype has an attribute optCriterion used to annotate the
context with designer criteria (optimization objectives) and their weights used for
the context. When the designer is satisfied by one candidate, the exploration phase
terminates and the candidate architecture is given as output to the process.

6.5 Application on an Automotive Case Study

In this section we will illustrate the application of the methodology on an automotive
case study. This subsystem is a sensor-controller-actuator system com-posed of the
following functions: a data processing function for data coming from the sensor, the
anti-locking brake function calculating the command to send to the actuator, and
a diagnosis function that disables the anti-locking function in case a fault in the
subsystem is detected.

Figure 6.3 below presents the functional model describing the system end-to-end
scenarios. Each function has an associated behavior modeled as a UML Activity
which is referenced by a CallBehaviorAction. Two events (acquisitionForAbs and
acquisitionForDiagnosis) are triggering the sequences of functions behavior exe-
cution. Between these events and the final flow node, there are respectively two
end-to-end timing requirements of 60 ms and 100 ms.

6.5.1 Workload model

The set of system’s end-to-end computations, called workload behavior, is rep-
resented with a UML activity diagram stereotyped with MARTE �GaWorkload-
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Fig. 6.4: Workload Behavior

Behavior�stereotype. This workload behavior actually represents the behaviors ac-
tivation graph. Each behavior is specified by a UML CallBehaviorAction annotated
with MARTE �SaStep�stereotype. Each step has a computational budget (exec-
Time property) specified for a given type of execution host (host property). A step
can be linked to a successor step with a control flow.

The workload behavior also specifies external events that trigger the steps. Each
external event is modeled with a UML AcceptEventAction stereotyped �GaWork-
loadEvent�. The arrival pattern of the event is specified in the arrivalPattern prop-
erty. For instance on Figure 6.4, aquisitionForAbs event is periodic with a period of
60 ms.

Once that control flow graph is defined, the steps and their respective activa-
tion events are grouped in so called end-to-end flows. An end-to-end flow is mod-
eled with a UML activity partition stereotyped �SaEndToEndFlow�. An end-to-end
deadline can be specified for each end-to-end flow in the end2EndD property of the
�SaEndToEndflow�stereotype. The absE2EFlow has an end-to-end deadline equal
to 60 ms. Let us to note that AntilockBehavior is a shared step between the two
specified end-to-end flows.

As explained previously, at this stage of the methodology, we needed to define
a type of processing resource in order to specify an estimation of computation time
budgets for steps. This estimation can be used to perform feasibility tests with re-
spect to expressed end-to-end deadlines and external events activation rates. The
processing resource type is modeled with a UML class stereotyped �HwProces-
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sor�. In this example, HECU is the type of execution host for the steps. This type
will be used in the architecture model to type the platform processing resources.

6.5.2 Generation of the Architecture Model

The following subsections give details of the generation of the Architecture Model
starting from the Workload Model.

6.5.2.1 Mono-Processor Platform Definition

The proposed generation produces a mono-processor architecture. The platform
(SaResources Class) includes then the property hecu of the type HECU. Inside the
property host of the stereotype �saStep�applied on CallBehaviorActions, the hecu
value is set. For the execution host hecu the FixedPriority scheduling algorithm is
set.

6.5.2.2 Independent Tasks Generation: Protecting Shared Functions

In order to apply a scenario-based task model generation (to get one single thread
of execution for each event), the situation of a function belonging to two different
end-to-end flows turning at two different rates and with different dead-lines must be
handled. If we map the function on two different threads (one per scenario), schedu-
lability analysis will compute an additional blocking time necessary to protect the
function code duplicated in the two threads. In fact, to avoid inconsistencies the
function virtually shared by two threads has to be accessed in mutual exclusion.
Blocking time for the access at the critical section (shared function code) is thus
computed.

The transformed graph, therefore, will explicitly describe synchronization re-
sources used to treat contention in this case. In our example the step AntilockBe-
havior, originally shared between the two specified end-to-end flows, is here mapped
into two different threads, namely task1 and task2. The synchronization among the
two steps preceding AntilockBehavior, i.e., DataProcessingBehavior and SelfDiag-
nosisBehavior is modeled through the presence of a synchronization resource here
named AntiLock, appearing in the property sharedResources, which actually repre-
sents a critical section for the execution of AntilockBehavior. In our example a UML
property AntiLock of type SharedResource is stereotyped as �saSharedResource�,
and then it is included in SAResources and the synchronization protocol specified.
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Fig. 6.5: TaskMapping

6.5.2.3 Rate-Monotonic Priority Assignment

In the example the two threads task1 and task2 are included in the platform re-
sources for schedulability analysis SaResources along with priorities. Priorities are
assigned as inversely proportional to deadlines following a rate-monotonic priority
assignment [16] that is optimal in case of independent tasks and fixed-priority.

6.5.3 Schedulability Analysis Results

The Optimum model as defined in the previous subsection contains all the needed in-
formation to perform schedulability analysis. Let us note that in this case responses
are constituted by one single task, tasks are independent (no order) but contain a crit-
ical section with duration equal to the execution time of the Control action (13ms).
A schedulability analysis test can be carried out on this model. Such test calculates
worst case response times for each event. Note that the worst-case response time
include the blocking time Bi calculated by the test.

Note that in this case, the highest priority task experiences a blocking time. In
fact in the worst case, the lower priority task (which has a computational time lower
than the highest priority task) acquires the lock before the highest priority task. Only
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Table 6.5: Schedulability analysis results

task Bi WRi
τ1 13 43
τ2 0 52

after the lock is released (after 13 ms), task τ1 continues its execution. For task τ2,
the worst case response time takes into account, the time for the highest priority task
to execute (30) and its execution time (22).

These results can be satisfactory for the designer, but he can also evaluate other
alternative architectures. In that case, multiple analysis contexts can be defined.
Each analysis context will contain the evaluated architecture completed by schedu-
lability results. Among these analysis contexts, the designer will choose the one that
better satisfies its own criteria.

6.6 Related Works

In order to support the development of real-time applications a wide number of
methodologies have been proposed for early analysis of non-functional require-
ments. While a vast number of model-based approaches have been proposed for per-
formance prediction [24], methodologies for schedulability prediction are more re-
cent and are gaining a growing interest with the increasing complexity of embedded
real-time systems [61, 25, 143]. COMET [108] proposes a methodology for the de-
velopment of concurrent and distributed real time systems but does not directly deal
with the issue of defining a methodology for schedulability validation. In Saksena
et al [260] a methodology for schedulability validation of object-oriented models is
proposed. The methodology starts from a design model where specification of ac-
tive and passive objects, message semantics and object interaction is available. Two
threading strategies are proposed: a single threading solution and a multi-threading
solution. Unfortunately, while the single threading solution is analyzable and appli-
cable, the multi-threading solution is difficult to analyze or inapplicable [26]. The
problem with schedulability analysis at the design level is that a non schedulability
aware design could have a concurrent model too difficult to analyze or for which no
automated support exists. This problem is also shared by other methodologies such
as [25, 116]. In [25], for instance, the UML-based methodology envisages and sup-
ports the use of task mapping algorithms and edf schedulability tests developed in
[26] but there is no automated support for the test which is ad-hoc. In [151], the au-
thor has explored the usage of MARTE to perform schedulability analysis with the
MAST tool. In this work MARTE has been used to build a MAST model library to
build MAST-specific analysis models. Unlike this approach, our approach proposes
methodological rules to build schedulability analysis models which are independent
from any schedulability analysis tool.
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6.7 Conclusions and Future Work

A lot of work has been achieved in formal approaches for timing analysis during
the past decades. Despite the importance of applying timing analysis for real-time
systems development, the formal nature of these approaches is an obstacle for their
adoption by the software engineering community. This paper presented a UML/-
MARTE front-end for these formal timing analysis approaches, focusing on the
schedulability aspect and integrated in the software life cycle since the very begin-
ning. The methodology is fully implemented in the UML modeling tool Papyrus
[88]. Bridges to the MAST [228] and Rt-Druid [95] tools are integrated for schedu-
lability tests. Let us remark that the methodology has been successfully applied in
the automotive domain in the context of two collaborative projects, the European
INTERESTED project and the French national EDONA project.


