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ABSTRACT
Modern cars have turned into complex high-technology products, subject to strict safety and timing require-
ments, in a short time span. This evolution has translated into development processes that are not as efficient, 
flexible and agile as they could or should be. This paper presents the main aspects and capabilities of a rich 
model-based design framework, founded on EAST-ADL. EAST-ADL is an architecture description language 
specific to the automotive domain and complemented by a methodology compliant with the functional safety 
standard for the automotive domain ISO26262. The language and the methodology are used to develop an 
information model in the sense of a conceptual model, providing the engineer the basis for specifying the 
various aspects of the system. Inconsistencies, redundancies, and partly even missing system description as-
pects can be found automaticlally by advanced analyses and optimization capabilities to effectively improve 
development processes of modern cars.
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1. INTRODUCTION

Commercial automobiles have become complex high-technology products in a relatively short 
time span. Different factors contribute to this complexity. One of them is the increasing number 
of vehicle functionalities supported by software, electronics and mechatronic technologies; a 
trend that does not seem to slow down. The involvement of carmakers in the development of 
these functionalities differs from one vehicle domain to the other (chassis, body, powertrain), 
ranging from black box integration to white-box developments. Another factor is the way in 
which car manufacturers have evolved from their historical mechanical and manufacturing 
background to the intricate organizations that develop the automobile products of today. The 
advent of the electrical vehicle makes this last two factors even more evident, not only because 
of the “untraditional” technologies that carmakers need to master, but also because the arrival 
of new stakeholders, actors and interests around the electrical vehicle mean that the traditional 
scope of the automobile has changed.

Generally, this evolution has translated into development processes that are not as efficient, 
flexible and agile as they could or should be (Chale et al. (2012)). The need to master these 
different complexity-inducing factors and improve the efficiency of product development, plus 
the arrival of the ISO 26262 standard (which besides from safety-related aspects, also raises 
issues concerning development processes of automotive systems, currently under-formalized) 
have motivated the adoption of model-based system engineering. Model-based system engi-
neering advocates the use of models, conforming to a common semantic meta-model, all along 
the system development process. The meta-model specifies a common unambiguous semantics 
formalizing system engineering terminology and then providing a common language for system 
descriptions, i.e. models. Models, produced along the development process, provide system de-
scriptions at different abstraction levels. Abstraction levels help human reasoning and analysis 
capabilities allowing system specifications to be refined and incrementally validated as long 
as the comprehension of the system increases. The meta-model approach is also attractive for 
system development as meta-models and their related models can be easily extended to support 
an open ended evolution of domain specific concepts. The resulting (information) models are 
conceptual models in the sense of a conceptual structure: the models impose a machine adequate 
outer structure upon the otherwise unbound creativity of the engineers, at the same time trying 
to be as flexible as possible to support a stimulating creativity process. The more concrete the 
abstraction level becomes (i.e., the more formally accessible system details are described) the 
lesser becomes the creativity freedom because the information model becomes more constrain-
ing until the code—as the final, formal specification—does not offer any more freedom as its 
respective set of instructions. This means that the information model described in this paper 
warily reduces the freedom that initially is of utmost necessity for the creativity process of the 
engineer along the abstraction levels in favour of the productivity of the computer, which in turn 
helps to find inconsistencies, redundancies, and partly even missing system description aspects by 
advanced analyses and optimization capabilities to effectively improve development processes.

Thanks to these capabilities, the adoption of model-based design has several benefits in-
cluding an improvement of quality, through a more rigorous and costless traceability between 
requirements, design, analysis and testing. While the benefits of model-based design are widely 
understood, there is no COTS solution today providing a full-fledged model-based environment 
for automotive systems. The first problem is that many commercial solutions use proprietary 
meta-models that scarcely fit automotive design needs. Moreover, ideally, the meta-model should 
be shared in the entire automotive domain, and then proprietary languages should be avoided 
opting instead for standard languages. UML extensions as SysML, could be an option, but SyML, 
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per se, does not support many concepts of vital importance for the automotive domain, as for 
instance, concepts for safety analysis, timing analysis and variability. To support these concepts 
UML needs to be specialized through specific profiles. Even though some efforts have been spent 
in that direction in literature—e.g. for safety (Cancila et al. (2009)), for timing (OMG MARTE 
(2011))—we did not reach the stage in which these efforts are unified and integrated in SyML.

EAST-ADL (EAST-ADL (2015)) (Electronics Architecture and Software Technology—
Architecture Description Language) is an architecture description language specially targeting 
automotive systems. EAST-ADL, is a result of a series of consecutive projects: EAST-EEA 
(EAST-EEA (2001)), ATESST I, ATESST II (ATESST (2006)), and MAENAD project (MAE-
NAD (2009)). Currently, EAST-ADL is managed by the EAST-ADL association (EAST-ADL 
(2015)). The main objective of EAST-ADL lies in encompassing all the relevant concepts to 
holistically support automotive engineering activities. To this end EAST-ADL aims at address-
ing: the ISO 26262 standard (ISO (2009)), which provides a general framework for functional 
safety handling in automotive systems, electrical vehicle specific concerns and related standards, 
along with timing, variability, and feature modeling. We believe that EAST-ADL successfully 
supports automotive engineering by providing methodological guidance on models to produce 
at different abstraction levels. Moreover, the methodology defines separated design flows (called 
swimlanes) following a separation of concern principle. A core design flow, only dedicated to 
mainstream system activities, is complemented by other three design flows, one to handle safety 
related activities (in conformance with the ISO26262), one dedicated to timing-related activities, 
and one called FEV (fully electric vehicle) swimlane to manage all the activities specific to fully 
electric vehicle sub-systems (not included then in the core design flow).

The language and methodology provided by EAST-ADL form the basic building blocks for 
a complete automation of the system development process. EAST-ADL comprises behavioral 
analysis of system functions, safety assessment, power analysis, and timing analysis. For safety 
and timing analysis advanced algorithms have been conceived, in order to provide fine predictions 
on system properties. Moreover a model-based optimization framework completes the panorama, 
by adding the capability of optimizing the system under conflicting objectives. A typical example 
comes when the safety assessment outcome suggests adding a software redundancy mechanism. 
The software redundancy mechanism, on the other hand, is time and resource consuming and 
can degrade system response time. Multi-objective optimization finds the right trade-off to not 
degrade too much system performance (or other safety conflicting goals as economic cost) and 
to assure the right level of safety.

This paper aims at presenting on one side the remarkable coverage of EAST-ADL as a 
conceptual model for the broad range of relevant concepts in the automotive domain, and on the 
other side the high level of integration of novel sophisticated analyses, for safety and timing in 
particular, and optimization capabilities to make adequate use of the productivity only comput-
ers can offer. To this end, we firstly present the EAST-ADL methodology, explaining in detail 
swimlanes and abstraction levels. We present all the models produced in the core swimlane using 
a case study running example. For the non-core swimlanes, we illustrate in the paper the safety 
and timing swimlane, in order to present the novel analyses developed during the MAENAD 
project. Principles for model-based optimization are also presented as the opportunity of dealing 
with conflicting goals.

The paper is organized as follows: Section 2 presents a literature review on modeling 
languages and related model-based design techniques. Section 3 presents the principles of the 
system development process depicting the abstraction levels EAST-ADL models conforms to. 
Section 4 presents the EAST-ADL methodology and swimlanes. Section 5 illustrates the core 
swimlane, presenting the models to be produced at each abstraction level and an example of 
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verification activity based on model-checking. Section 6 presents main models to be produced 
in the safety swimlane and novel concepts for safety analysis. Section 7 presents main concepts 
for timing modeling and presents advanced analysis for system schedulability estimation. Section 
8 presents recent research activities of a multi-objective optimization approach, while Section 
9 concludes the paper.

2. BACKGROUND

In this section we will evaluate modeling languages with regard to their capacity to support 
non-functional properties covering safety aspects, timing aspects and FEV aspects. We focus 
on standard modeling languages.

The Table 1 lists some standard modeling languages and shows whether they provide sup-
port for safety, timing, multi-core, and FEV non-functional aspects.

The table presents the abstraction level each language can be used. At system abstraction 
level, vehicle features are specified and logical functions realizing the features are identified. 
At design abstraction level the functional architecture, the hardware architecture, and an alloca-
tion of the functions to hardware resources are defined. On the implementation level, the design 
architecture is implemented on a concrete platform.

AADL (SAE (2009)) (Architecture Analysis and Design Language) is an architecture de-
scription language standardized by SAE. AADL was first developed in the field of avionics and 
derived from MetaH, made by Honeywell. AADL is a Domain Specific Modeling Language 
designed for the specification, analysis, and automated integration of real-time performance-
critical distributed systems. It allows analysis of designs prior to the implementation. AADL is 
adapted for systems architecture specification but lacks some standard support for requirements 
specification at system level.

UML (Unified Modeling Language) (OMG UML (2015)) is the most known modeling 
language. UML provides several views/diagrams for modeling structural and behavioral aspects 
of a system. UML is an object-oriented modeling language that is suitable for object-oriented 
software design. It is a general purpose modeling language, and while providing a basic support 
for timing specification (through timing observations and timing durations concepts), it lacks 
detailed modeling concepts for non-functional properties. For more specific modeling needs, UML 
provides a standard extension mechanism called profile. Examples of standard UML profile are 
SysML (OMG SYSML (2012)), MARTE (OMG MARTE (2011)) or QFTP (OMG QFTP (2008)).

Table 1. Standard modeling languages

Modeling 
Language Safety Timing Multi-Core FEV Level

AADL ✓ ✓ (✓) Design/Implem

UML ✓ Design/Implem

SysML ✓ System

MARTE ✓ ✓ Design/Implem

QFTP ✓ Design

AUTOSAR ✓ ✓ (✓) ✓ Implem
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SysML is a specialization of UML for system modeling. SysML provides support for 
requirements modeling, and a support for quantities and dimensions as the only support for 
non-functional aspects. MARTE is an extension of UML for real-time and embedded systems. 
It provides advanced concepts for the design and analysis of such systems, including modeling 
constructs for non-functional properties, time, resources. However, safety aspect is not addressed 
by the standard.

QFTP is a UML profile for modeling quality of service and fault tolerance characteristics 
and mechanisms, but it is not especially conceived to support safety activities prescribed by the 
ISO26262 standard.

Except for AUTOSAR, none of the presented languages provide support for the whole set 
of non-functional properties of interest. However, AUTOSAR targets the implementation of 
software parts of automotive systems and does not provide concepts for requirements specifica-
tion, refinement and traceability; hindering then its application at system level.

Mixing different languages to cover all levels (system, design and implementation) with a 
support for all non-functional properties modeling may be inappropriate. In fact, a joint usage 
of modeling languages can raise semantic and/or syntactic problems (Di Natale et al (2010)). 
Transformations from one language to another can lead to a loss of semantics in the output model. 
This can be the case even between two UML profiles like SysML and MARTE (Espinoza et al 
(2010)).

3. PRINCIPLES OF THE OVERALL SYSTEM 
DEVELOPMENT PROCESS

This section is devoted to the presentation of the main EAST-ADL principles guiding the de-
velopment process of automotive systems. To explain how EAST-ADL can be used, a classical 
V model is used as reference. According to the classical V model, design steps from top level 
requirements collection to component realizations are represented on the left in the V. Bottom-up 
test and integration is represented on the right side of the V.

Four development phases, corresponding to four abstraction levels of a system model, are 
identified. Figure 1 shows the EAST-ADL phases in a V model context. Vehicle phase cor-
responds to the early stages in the product life cycle, while implementation phase corresponds 
to the final stages of development. The Operational phase corresponds to stages in which the 
concrete vehicle is operational.

The development phases can be detailed as follows:

•	 Vehicle phase: During this phase the analysis of external requirements is carried out with 
the objective of constructing a top-level feature model. The top-level feature model provides 
the most abstract definition of expected functionalities by a vehicular embedded system. 
Through a vehicle feature model, the expected system functionalities in terms of features 
are configured and linked to the corresponding specifications of system level requirements, 
verification and validation cases;

•	 (Functional) Analysis phase: Typically based on the inputs of automatic control engineer-
ing, system design at this level refines the vehicle level system feature specification by 
indentifying the individual functional units necessary for system boundary (e.g., sensing 
and actuating functions for the interaction with target physical plant) and internal computa-
tion (e.g. feedback control functions for regulating the dynamics of target physical plant). 
The design focuses on the abstract functional logic, while abstracting any SW/HW based 
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implementation details. Through an analysis level system model, such abstract functional 
units are defined and linked to the corresponding specifications of requirements (which are 
either satisfied or emergent) as well as the corresponding verification and validation cases;

•	 Design phase: System design at this level refines the analysis level model to obtain a logical 
representation of the system functional units that are now structured for their realizations 
through computer hardware and software. This representation is obtained by capturing the 
bindings of system functions to I/O devices, basic software, operating systems, communica-
tion systems, memories and processing units, and other hardware devices. Again, through 
a design level system model, the system functions, together with the expected software 
and hardware resources for their realizations, are defined and linked to the corresponding 
specifications of requirements (which are either satisfied or emergent) as well as the cor-
responding verification and validation cases. Moreover, the creation of an explicit design 
level system model promotes efficient and reusable architectures, i.e. sets of (structured) 
HW/SW components and their interfaces, hardware architecture for different functions. The 
architecture must satisfy the constraints of a particular development project in automotive 
series production;

•	 Implementation phase: This phase focuses on the HW/SW implementation and configu-
ration of the final solution. This part is mainly a reference to the concepts of AUTOSAR, 
which provides standardized specifications at this level of automotive software development. 
However, the use of AUTOSAR concepts is not mandated by the methodology. Other, in 
particular more traditional implementation concepts can be used in this phase while leaving 
the other phases unchanged.

It is worth to notice that at the end of each phase, the main artifact to produce is a complete 
system definition in EAST-ADL. While being defined with the specific concepts used at each 
abstraction level (features, functions, etc.), each EAST-ADL model consists essentially of a set 

Figure 1. EAST-ADL phases in a V-model context
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of abstract system constituent entities. Typically, “m-to-n” relationships (from n entities of a 
higher level to m entities of the lower level) allow refining models throughout the process for an 
incremental system concretization. In particular, the analysis architecture and its requirements 
is a refinement of the feature model. This results in “m-to-n” relationships between the vehicle 
feature model entities and analysis architecture entities. In its turn the design architecture is a 
refinement of the purely functional analysis architecture. Again “m-to-n” relationships between 
the analysis functional architecture entities and design architecture entities there exist. Figure 
2 shows an example of ‘m-to-n’ relationships between features, analysis functions and design 
functions.

Summarizing EAST-ADL phases serve to explain the steps involved in engineering automo-
tive systems, following a staged approach for integration, validation and verification. This staged 
approach not only allows addressing the requirements corresponding to the current abstraction 
level, but implicitly allows addressing, all the way back, top level requirements as the design 
evolves and gets more concrete.

Let us remark that, even if illustrated on a V cycle process, the involved engineering steps 
can be deployed in any overall framework, from waterfall to agile development. Together with 
the support of EAST-ADL language, this definition of development phases allows a common 
reasoning of engineering activities, related design artifacts, and thereby any need for traceability, 
reuse and safety lifecycle management.

4. EAST-ADL METHODOLOGY – SWIMLANES 
AND MAIN ACTIVITIES

In this section we aim at presenting the EAST-ADL methodology. The methodology elaborates 
system development process principles presented in Section 3, giving guidelines on the set of 

Figure 2. EAST-ADL models and refinements
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engineering activities that help in incrementally define and validate designs in compliance with 
relevant standards.

Interestingly, the EAST-ADL methodology defines and organizes development activities in 
so-called swimlanes (MAENAD Methodology (2013) and TIMMO2USE (2012)). The structuring 
of swimlanes follows a separation-of-concerns principle, in which core system design activities 
are separated from activities related to specific aspects, as safety, timing and FEV. This structur-
ing results in four separated lanes:

•	 Core lane, covering design core activities, i.e. activities aiming at (i) representing core system 
structure and behavior and (ii) verifying functional properties of the system;

•	 Functional Safety lane, covering safety activities, i.e. activities aiming at representing and 
assessing system safety. The safety lane conforms to the ISO26262 standard;

•	 Timing lane, covering timing activities, i.e. activities aiming at representing and verifying 
timing properties of the system;

•	 FEV lane, covering FEV-related activities; i.e. activities aiming at representing and assessing 
system properties related to electric vehicles, in compliance with electric vehicle standards.

It is worth to notice that each lane covers all the EAST-ADL phases (feature, analysis, 
design, etc.). The possibility, however, to carry out some particular verification/assessment 
uniquely depends on the information available at each level of abstraction. For instance, timing 
activities related to schedulability estimation are not applicable until the design phase is reached, 
as information of hardware resources and allocation is needed. The same reasoning applies to 
most of the FEV related activities, which are mainly related to hardware properties. In the fol-
lowing, for each lane, assessment/verification activities are detailed for the Feature, Analysis 
and Design phases.

4.1. Safety Assessment Activities

The Functional Safety lane has been modeled by taking into account the ISO 26262 safety life-
cycle. In the automotive domain, the ISO 26262 standard provides a complete set of process 
flow recommendations covering analysis, design and implementation of safety-critical systems 
and helping to respect the safety issues all along the life-cycle.

Following a top-down approach, the functional safety lane starts from the EAST-ADL 
Vehicle phase. The activities at this phase include Item definition in terms of target feature and 
the malfunction definition (feature flaws), as anomalies of the Item’s outputs. On Vehicle phase, 
it is already possible to perform a Preliminary Hazard Analysis (PHA) and risk assessment, to 
estimate the level of risk associated with the Item (called Automotive Safety Integrity Level or 
ASIL), and to define a safety goal (and if it is possible the safe states) for each hazardous event 
identified, as well as, the set of essential safety requirements.

Once the functional safety concept (safety goals, ASILs, safety requirements, hazards and 
risks) is specified, the Item can be developed with a system perspective in the EAST-ADL 
Analysis Phase. The functional safety lane at the EAST-ADL Analysis Phase includes definition 
of the functional safety requirements and then their allocation to a preliminary architecture. At 
this phase, the System Hazard Analysis (SHA) can be conducted – in addition to the PHA and 
risk assessment – to study the propagation of failures across the system architecture. At this 
level the preliminary safety assessment can be conducted as well. Typical safety assessment at 
this phase employs Fault Tree generation and qualitative Analysis (FTA), Failure Mode and Ef-
fects Analysis (FMEA), Common Cause Analysis (CCA). FTA and FMEA are complementary 
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methods to analyze propagation of faults through the system. Since there is no information on 
allocation to the hardware components available at the Analysis phase, only qualitative analysis 
can be performed. Expected results may include list of possible failure modes of analyzed system 
components, fault trees generated for the feared (or top) events corresponding to the priory defined 
hazards and risks, minimal cut sets, FMEA tables and a list of common cause failures (CCF).

During the Design phase, it is possible to define the technical safety requirements and al-
locate them to architectural elements. This allows performing quantitative analysis of system 
hardware components. Safety activities imply refining priory obtained FTA, FMEA and CCA 
results, performing quantitative FTA, and in particular, calculating probability of the top events 
and minimal cut sets, calculating Probability of Failure on Demand (PFD) and Probability of 
Failure per Hour (PFH), etc.

In Section 6 we present the main models prescribed by the EAST-ADL methodology in the 
safety swimlane along with advanced safety analyses developed during the MAENAD project 
(see Table 2).

4.2. Timing Assessment Activities

The Timing swimlane gives guidelines on timing related activities conducted on EAST-ADL 
phases. Timing activities start on the EAST-ADL Analysis phase where functions that realize the 
vehicle features are introduced. This functional model is enriched with timing properties (e.g. 
activation rates for chain of functions) and constraints (e.g. end-to-end deadlines). However, in 
the Analysis phase, functions worst case execution times (WCETs) are unknown. In fact these 
WCETs needed for timing properties verification are available only after the implementation 
phase, which is a quite late point in the process to detect design errors. As a workaround to the 
missing WCETs, an activity called Time Budgeting allows specifying so-called time budgets. 
A global budget that might come from end-to-end deadlines is decomposed and allocated to 
functions. The outcome of this time budgeting activity is to enrich each function with a budget 
for its execution time and a budget for its local deadline. These budgets represent the timing 
requirements used as input of the following Design phase (see Table 3).

Table 2. Safety lane main activites

Table 3. Timing lane main activities
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On the EAST-ADL Design phase, two main timing activities might be conducted:

1. 	 The first one uses the function decomposition made in the Design phase to perform time 
budgets refinement. The result of this time budgeting activity is to enrich each atomic design 
function with an execution time budget. These refined budgets represent the timing require-
ments used as input of the implementation phase;

2. 	 The second timing activity makes use of the refined time budgets, the allocation model and 
the timing specification, to achieve a first estimation of system schedulability. Actually, 
schedulability analysis applies at implementation level, once the application has been mapped 
on execution tasks. Nevertheless, at design level, simulation and verification techniques can 
detect timing errors on functional models. In TIMMO (TIMMO (2007)) and TIMMO-2-USE 
(TIMMO2USE (2012)) projects, some methodologies for timing validation & verification 
of EAST-ADL models have been proposed. In this context (Arda, G. et al. (2013)) provide 
a formal validation & verification approach based on simulation and model checking for the 
design phase. In MAENAD we proposed another approach for schedulability estimation of 
EAST-ADL models, based on optimization techniques and schedulability analysis. Section 
7 presents such an approach along with main EAST-ADL models enabling schedulability 
estimation.

4.3. Fully Electric Vehicle Assessment Activities

The Fully Electric Vehicle swimlane is a guideline to develop FEVs by addressing the systems 
that are specific of this kind of vehicles. In particular, the functions and the systems considered 
have been grouped as follows: Electric propulsion, Regenerative Energy Storage, Regenerative 
Braking, Recharging, Energy conversion, Insulation and Protection, Anti-theft system andHu-
man Machine Interface (HMI). In order to provide an effective support to FEV development, for 
most of the activities of the process, the reference to the applicable standards and regulations, 
and some synthetic requirements of the norms are sufficient. The norm references include the 
relevant ISO, IEC, EN, SAE standards, and UNECE and FMVSS regulations. Table 4 illustrates 
specific analysis activities related to FEV development, such as energy flow analysis, vehicle 

Table 4. Fev lane main activities
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performance and range analysis, insulation resistance compliance analysis, etc. In the model-
based framework developed in the MAENAD project, FEV-related analyses have been applied 
thanks to the integration between EAST-ADL models/tools and simulation models/tools, but no 
research efforts have been conducted on the analyses themselves. For this reason activities of 
the FEV swimlane are not further detailed in this section.

4.4. Interdependencies among Swimlanes

Swimlanes identify activities related to a specific concept (core, safety, timing, FEV), however, 
they cannot be considered as independent. In particular it is expected that core swimlane artifacts 
will be input for safety, timing, FEV-swimlanes and viceversa. Figure 3 shows a general process, 
formalized in SPEM, describing the interaction between the core swimlane and an X-swimlane 
(where X stands for Safety, or Timing or FEV) in any phase ‘i’ (where i stands for Vehicle, 
Analysis, Design). This process is iterative: through activity 1 ‘manage core requirements’, core 
requirements are defined (possibly refined from higher-level requirements and taking into ac-
count the outcome of the previous iteration, if any). Core requirements and the core model from 
the higher phase (if any) are the input of activity 2: “create and verify core model”. Through this 
activity, a solution for the core model is defined. This core model is input for the X-swimlane. 
In the X-swimlane, X-related requirements are managed through activity 3 (possibly taking as 
input the X-requirements coming from the higher phase) and then an X-model is defined and 
verified through activity 4 ‘create and verify X-model’. The X-model captures all the informa-
tion required to carry out verification activities/analyses prescribed for the given swimlane at the 
given phase. This model is typically built on the core model, by adding annotations to capture 
the X-related information. Once these activities are performed the X model can be enriched with 
activities/analysis results. Finally activity 5 ‘elaborate outcome’ provides a complete document 
representing the outcome of the swimlane for the given phase. This document could serve to 

Figure 3. Spem process describing interaction between core and the other swimlanes
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refine/validate X-requirements (coming back to activity 3) and/or could contain recommendations 
for the core swimlane. In the core swimlane the X-swimlane outcome will be inspected through 
activity 6 ‘inspect X-swimlane outcome and decide for a new iteration’. Through this activity 
it will be decided if a new iteration is needed or it is possible to move down to the lower phase.

The methodology does not specify in detail how to proceed if the outcomes from different 
X-swimlanes are conflicting. For instance the safety swimlane can recommend adding a software 
redundancy mechanism to address a safety goal, whereas the timing swimlane will declare the 
software redundancy mechanism as exceeding the maximal CPU resource utilization. The resolu-
tion of this kind of conflicts is in general left to experienced system engineers. However, due to 
the increasing level of complexity of automotive architectures, system engineers cannot solve 
this kind of conflicts only relying on a manual approach. For this reason, automatic model-based 
optimization is going to play a central role in system development, helping system engineers to 
find appropriate trade-offs in case of conflicting goals. In the MAENAD project, a model-based 
optimization framework has been developed and will be presented in Section 8.

In the following we will detail modeling and verification support provided by the MAENAD 
model-based framework, focusing on the core, safety and timing swimlane.

5. MODELS AND VERIFICATION IN THE CORE LANE

The main aim of this section is to present the modeling concepts and their use to build artifacts 
in the core swim lane through a case-study, i.e. a power regenerative braking system. It shows 
how EAST-ADL covers design concepts throughout the design process, from high-level features 
to hardware/software functions identification, to capture key architectural concerns.

5.1. The Power Regenerative Braking System

The system combines conventional braking with power regeneration, architectural concepts are 
shown in Figure 4. The driver request is monitored through a brake pedal position sensor. A rota-
tion speed sensor, an ABS (Anti-lock Braking System) controller, and an electromagnetic brake 
actuator are placed at each wheel. When requested, the ABS controller regulates the braking 
through the electromagnetic brake actuator. By collecting the measured wheel rotation speed, 
an ABS controller also detects the occurrence of wheel slip by comparing the measured rota-
tion speed with current vehicle speed. In the case of wheel slip, the controller adjusts the brake 
torque value for maximizing the traction and braking effectiveness. For the braking control of 
entire vehicle, a global brake controller receives the measured wheel rotation speeds and driver 
braking request and then sends an estimation of current vehicle speed and brake force request to 
each ABS controller. Instead of having the braking force completely realized by electromagnetic 
brake actuators, the regenerative braking allows a fraction or whole of kinetic energy of braking 
to be recovered and stored in battery. To support this, the global brake controller also receives 
the observed battery and motor status and estimates the maximum possible braking torque to be 
offered by an electrical motor. The controller then arbitrates the braking torques to be provided 
by the motor and brake discs.

The system implementation will be based on a distributed electrical architecture with 6 
nodes: one central vehicle control node, four wheel brake control nodes, and one power electronic 
control node, as illustrated in Figure 4. The system has a communication network for distributing 
signals. For example, the estimated battery status information is fed from the battery observer 
to the power electronic control function for the torque estimation.
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5.2. Core Models

5.2.1. Vehicle Feature Model

On Vehicle Level, the abstract system description is obtained by managing the features of an 
entire product line. In Figure 5, the feature tree of the braking system is shown. Each vehicle 
feature (VF) denotes a functional characteristic, such as the functional, non-functional, or even 
mechanical properties to be supported. As a child of the longitudinal control (LongitudinalCtrl) 
feature, the braking control feature (BrakingControl) is needed for the vehicle longitudinal con-
trol. The regenerative braking feature (PowerRegenerativeBraking) is a child feature of power 
control, allowing the kinetic energy produced by braking to be converted to electrical energy 
and stored in capacitor or/and battery. The interdependencies of vehicle features are supported 
by feature links (FeatureLink). In a feature link definition, the precise semantics of a feature 
relationship is given by the type attribute (Kind) and the direction attribute (isBidirectional).

In EAST-ADL, this feature model is the so-called core feature model, i.e., a technical 
feature model, describing on the topmost level the abstract boundaries of the system, although 
the architectural boundaries are, of course, not concretely defined, because the first architecture 
description happens on Analysis Level. This core feature model is connected via a Configura-
tion Decision Model to the topmost feature models on Analysis Level and Design Level each. 
The Configuration Decision Model collects a set of configuration decisions. Each configuration 
decision expresses a connection between a specific (de)selection of features in the source fea-
ture model (here: the core feature model) and the required (de)selection of features in the target 
feature model (here: either the topmost feature model on Analysis Level or the topmost feature 
model on Design Level). By that, a pre-selection of features in the core feature model requires 
a specific pre-selection of features in the respective target feature models, i.e., the core feature 

Figure 4. Architectural concepts of the regenerative braking system
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model is the main source for configuring the variability of the system. Let us note that feature 
modeling in EAST-ADL is an orthogonal concept, not only providing variability for Vehicle 
level then, but for the Analysis and Design levels as well. This capability is used for design space 
specification as explained in Section 8.

5.2.2. Functional Analysis Architecture Model

As the first step towards system realization, each vehicle feature (VF) of concern is refined into 
some functional design solutions, mainly from a control engineering perspective. Figure 6 shows 
an excerpt of the functional analysis architecture (FAA) for the vehicle feature ABS braking 
(ABSBraking). For design traceability, a realisation model is used to maintain the realisation 
mappings from vehicle features to the functional design solutions.

Compared to the vehicle feature models, a functional analysis architecture model provides 
additional information about the variables to be monitored and controlled, the internal computa-
tion blocks and their interactions. Here, the types of system internal computation blocks and the 
types of the system external I/O transformation blocks are classified by two different EAST-ADL 
constructs, i.e. AnalysisFunction and FunctionDevice, respectively. The composition description 
follows the basic type-prototype pattern of EAST-ADL, where a prototype represents a particular 
instantiation of a given type in a context. For example, the design shown in Figure 6 includes 
four prototypes (one for each wheel) of the same function device (WheelSpeedSensor).

In regard to execution, each function prototype runs according to a run-to-completion semantics 
(Chen et al. (2013)): when triggered, it reads all input parameters, executes the computation, and 
then writes the output parameters. If new data of the input parameters arrives during the execu-
tion or writing phase, it cannot be processed in the current executing cycle. Moreover, each port 
represents a one size buffer that does not block the sender when it is full or the receiver when it 
is empty. Each connector relates a pair of ports of the same type with a shared variable semantics.

Figure 5. Vehicle feature model of the regenerative braking system
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5.2.3. Design Architecture Models

The design level architecture further details the analysis level design by taking the software and 
hardware resources into consideration. Again, the design traceability is maintained by a realisation 
model. Figure 7 shows an excerpt of the functional design architecture for the braking system. 
As it can be noted each wheel speed sensor analysis function (WheelSpeedSensor) in Figure 
6 is here refined in two different design level functions: 1. one hardware transfer function for 
the encoder hardware (WhlRotationEncoder), of which the type is classified by the construct 
HardwareFunction; and 2. one design function for the encoder software (WhlSpeedSensor-
Device), of which the type is classified by the construct DesignFunction. While a hardware 
transfer function is realized directly by hardware, a design function has instead a software based 
implementation. For example, the WhlSpeedSensorDevice function is further decomposed into 
a local device manager for application interactions and a basic software module for lower level 
hardware control. Each prototype with the corresponding type classified by design function has 
the same run-to-completion execution semantics as for the analysis level functions. The execu-
tion of a hardware transfer function is however given by the corresponding physical hardware. 
EAST-ADL allows additional behaviour constraints in regard to the physical dynamics to be 
annotated (see Section 5.3.).

One particular architectural design decision is related to the deployment of functions on 
hardware. To this end, EAST-ADL provides necessary language support for hardware modelling. 
The focus is on the specification of available electronic and electrical resources as well as the 
circuit design, such as communication network, I/O devices, ECUs (electronic control units) and 
power supplies. Being the allocation targets of design functions, these hardware resources are 
characterized by properties like memory size, clock frequency, bandwidth, etc. Figure 8 shows 
an excerpt of the hardware architecture model for the braking system, including the encoder 

Figure 6. Functional analysis architecture of the regenerative braking system (excerpt)
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device, the ECU, the brake actuator of a wheel, and the power supply unit. The connectors among 
these blocks represent the electrical wires, further characterized by physical circuit properties 
like length, resistance and insulation. Each wire connects a pair of hardware pins (HardwarePin) 
of the same type, representing the electronic or electrical connection points, such as the device 
power pins connected to the positive pole (v+) and minus pole (v-) of the 12V DC power supply 
(serviceBattery).

With EAST-ADL, dedicated allocation links (functionalAllocation) are introduced to specify 
the mapping from design functions to hardware resources. Figure 9 shows the EAST-ADL speci-
fication of allocations for some of the design functions with a matrix view and a textual view. 
Coming back to design functions shown in Figure 7, it can be noticed that the encoder device 
pEncoder_FL (with the column name checked in the matrix view) hosts now one prototype of 
the design function WhlRotationEncoder (pWhlSpeedSensorDevice_FL) and one prototype of 
the hardware transfer function WhlRotationEncoder (pMW_EncoderFL).

Figure 8. Hardware architecture of the regenerative braking system

Figure 7. Functional design architecture of the regenerative braking system (excerpt)
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5.3. Functional Verification via Model-Checking

EAST-ADL aims to obtain most of its analytical leverage through well established analysis meth-
ods and tools. To this end, the language package, referred to as Behavior Constraint Description 
Annex (Chen et al. (2013)), provides support for capturing and formalizing various behavioral 
concerns in the context of architectural design. On the basis of a formal semantics, several model 
transformations from EAST-ADL behavior constraint descriptions to several external tools (e.g. 
SPIN, UPPAAL, and Matlab/Simulink) have been developed. In the reminder of this section we 
introduce the basic EAST-ADL concepts for behavior descriptions through the ABS function.

5.3.1. Behavior Constraints for the ABS

In EAST-ADL, a behavior annotation, referred to as behavior constraint, can get different 
roles depending on the declared target associations. For example, such a behavior constraint 
can be used to capture the bounds of the acceptable behaviors of a system function. A behavior 
constraint can also be used to refine the textual statements of requirements including assumed 
system operational situations. Moreover, a behavior constraint can be introduced to provide a 
formalization of error annotations. The content of a behavior constraint is organized into the 
following three categories:

•	 Attribute Quantification Constraint: Relating to the declarations of value attributes and 
the related acausal quantifications (e.g., U=I*R);

•	 Temporal Constraint: Relating to the declarations of behavior constraints where the history 
of behaviors on a timeline is taken into consideration;

•	 Computation Constraint: Relating to the declarations of cause-effect dependencies of data 
in terms of logical transformations (for data assignments) and logical paths.

Figure 9. Allocation model for the regenerative braking system
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For example, the quantification constraint in regard to the slip rate estimation by ABS 
function is given in Figure 10. According to the constraint description, the estimated slip rate 
(SlipRate) should follow the slip rate quantification (SlipRateQuantification) with the expres-
sion: SlipRate=(VehicleSpeedIn- WheelSpeedIn*WheelRadius)/VehicleSpeedIn. Here, the 
VehicleSpeedIn and WheelSpeedIn are two variables received through the functional ports vehi-
cleSpeedRef_in and wheelSpeed_in respectively. The WheelRadius is a constant with the value 
of maximum allowed wheel radius. The EAST-ADL Behavior Constraint Description Annex uses 
an abstract notion of time, referred to as logical time condition, as the time basis for quantifying 
physical dynamics by means of continuous- and discrete-time model, or for defining the timed 
guard conditions and invariants of state-machines or computations.

In Figure 11, the behavior constraint is further elaborated by a temporal constraint description 
in state machine (SM). The state invariants and transition guards are precisely defined by some 
attribute quantification specifications. In Figure 12, the specification of computation constraint 
declares two valid invocations to a transformation Set_ABSBrakeTorqueOut that calculates the 
ABS brake torque request.

As already mentioned, the EAST-ADL behavior constraint descriptions are transformed to 
external tools for the analysis support. This allows the engineers to exhaustively verifying the 
model against requirements. The verifiable requirements include assertion, freedom of deadlock, 
reachability of the desired state, avoidance of or compliance with given execution patterns, 
and linear temporal logic (LTL) statements. Figure 13 shows the PROMELA code section of 
the ABS function. Please note the assertion assert(0) is an added statement to guide the tool to 
search the execution path which indicates the locked condition of a wheel. In model checking 
terminology, the path is a counterexample, which gives the designer the hint on how the given 
state may be reached.

Figure 10. The attribute quantification constraint description for an ABS function
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6. MODELS AND VERIFICATION IN THE SAFETY LANE

The safety swimlane focuses on the provision of methodology and modeling support allowing 
all safety related information according to ISO 26262 to be captured and managed seamlessly 
along with the core system design specification (Chen et al. (2011)). In this section we present 
the main models prescribed by the EAST-ADL methodology in the safety swimlane. Advanced 
safety analyses – developed during the MAENAD project – are also briefly presented.

6.1. Dependability Models

Through its Dependability package, EAST-ADL allows a wide range of functional safety related 
concerns (e.g. hazards, faults/failures, safety requirements) to be declared and structured seam-
lessly along with the lifecycle of core system development as shown in Figure 14. One key role 

Figure 11. The temporal constraint description for an ABS function

Figure 12. The computation constraint description for an ABS function
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Figure 14. Dependability model structuring information related to safety goals

Figure 13. The PROMELA code of the ABS function
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of EAST-ADL dependability model is to capture the related system requirements and design 
information from which the safety requirements are elicited.

Along with the modeling support for the elicitation of safety requirements, EAST-ADL 
also allows the engineers to precisely defining the related error behaviors for the purposes of 
safety analysis through explicit error models. These analytical models provide the support for 
associating the annotations of error descriptions (i.e., faults and error propagations) within the 
target system. See Figure 15 for a modeling example, where the connection links represent the 
error propagations due to communication links or allocation relations in the design.

Each block in the error model contains the descriptions of plausible anomalies (Anomaly) in 
terms of faults and failures that a target system entity can have. The ports declare which faults 
the targeted system entity can receive from its environment and which failures the targeted sys-
tem entity can propagate to the environment. Such ports are analytical and can be traced to the 
corresponding communication ports of functions or components.

Within each error model, there is a declaration of error behavior (ErrorBehavior) for relating 
the declared output failures to the declared faults. The exact formalism could be chosen accord-
ing to the analysis methods of interest as well as the complexity of error logic. For example, the 
formalism can be directly based on Boolean logic expression as given in HiP-HOPS. For a state-
machine (SM) based definition of error behaviors, the EAST-ADL temporal behavior constraint 
is used (Chen, Mahmud et al. (2013)). This is shown Figure 16, where the error model description 
targets a system control function with two internal parts func_a and func_b. The initial state is 
AB to indicate that the internal parts are both working and the failure of the system is sequence-
dependent—i.e., func_a and func_b both need to fail in sequence for the whole system to fail 
(state FAILED). However, if func_b fails first or alone then the system enters a DEGRADED 
state. Such a sequence-dependent behavior is not uncommon in safety-critical systems; for ex-
ample, in simple primary-standby architecture, if a sensor fails and the monitored component 
(the primary) fails afterwards, then the redundant component cannot be activated. But if the 
primary fails first or alone, then the system can still function in standby mode.

Figure 15. Error model defining the faults and error propagations of target system hardware 
and functions
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6.2. Safety Analysis

There are several well-known approaches to automated safety analysis. Some of these approaches 
infer the effects of component failures on the overall system by means of model-checking and 
simulation techniques, such as the approaches described (Bozzano et al. (2003)). These approaches 
can be computationally expensive due to their inductive nature (i.e. from causes to effects), 
especially when combinations of failures need to be considered. Instead, a deductive approach 
(i.e. from effects to causes) can often be more efficient. One example is the HiP-HOPS method, 
originally described in (Papadopoulos et al (1999)) for a static safety analysis, but recently 
extended in (Walker et al. (2009)) and (Mahmud et al. (2010, 2012)) for a temporal analysis.

HiP-HOPS starts taking place early in the design lifecycle with exploratory FFA; but can be 
mainly used after a hierarchical model of the system has been developed. The failure behavior 
of components is analyzed using a modification of classical FMEA, called the Interface Focused 
FMEA (IF-FMEA). The application of this technique generates a model of the local failure be-
havior of the component which is represented as a table. The table provides a list of component 
failure modes observed at the component outputs. For each component output failure, the causes 
are determined as a logical combination of internal malfunctions or deviations of the component 
inputs. An IF-FMEA table records component reactions to failures that are generated by other 
components. Moreover, the table determines the failure modes that the component itself gener-
ates and may propagate to other components. Upon determination of local failure behavior of all 
components, HiP-HOPS can show how the functional failures (identified in the exploratory FFA) 
arise from combinations of the low-level component failure modes (identified in the IF-FMEAs). 

Figure 16. A state-machine based error logic description
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This is done by automatically synthesizing fault trees. A fault tree is generated incrementally 
by parsing the expressions, which are derived from the IF-FMEA, and encountered during a 
hierarchical traversal of the system model. The tool automatically performs minimal cut-set 
analysis and probabilistic calculations on the minimized fault trees to predict the reliability and 
availability of the system.

The failure annotations required by HiP-HOPS are originally Boolean-based. For example, 
with an error behavior of the vehicle speed estimator (see Regenerative Braking System in Figure 
8) such that omission of output is caused either by an internal failure or by omission of any front 
wheel speed input or combined omission of rear wheel speed inputs. Furthermore, omission of 
output from any wheel speed sensor is caused either by an Electro Magnetic Interference (EMI) 
or by omission of input; and similarly, omission of output from any wheel rotation encoder 
is caused either by an internal failure or by omission of input. Figure 17 shows some cut sets 
(calculated by the tool) of the synthesized fault trees shown in Figure 18.

Figure 19 represents an FMEA table produced by the tool to show each failure mode, its 
further effect and the contributing failure modes.

As for SM-based failure descriptions, these can be basically compiled into fault trees such 
that each state that represents a system failure becomes the top event of a fault tree. Each branch 
of that FT represents the conjunction of the events that label a full path (from the initial state to 
the failure state). A conjunction of events represents one cut set of the fault tree, and if it contains 
no redundancies, then it is a minimal cut set (MCS). If there is a path with a loop (like in the 
SM describing an ABS function in Figure 16), then the conjunction of the events which label 
that path is not minimal and the loop needs to be removed. Therefore, the fault tree expression 
which corresponds to the error state of the SM of Figure 16 is as follows:

Figure 17. Cut sets displayed by HiP-HOPS for omission of vehicle speed estimator (excerpt)
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Figure 18. The HiP-HOPS synthesized fault trees for omission of vehicle speed estimator

Figure 19. FMEA displayed by HiP-HOPS (excerpt)
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Error = SlipRateOverstep + SlipRateOverstep . [(VehicleSpeedInGreaterThanABSThreshold) 
. (SlipRateGreaterThanThreshold)]	

where ‘+’ and ‘.’ represent the Boolean ‘OR’ and ‘AND’ respectively. The events ‘SlipRateOver-
step’ corresponds to the condition:

[not(0<=SlipRate <= 1)], ‘VehicleSpeedInGreaterThanABSThreshold’	

corresponds to the condition:

[VehicleSpeedIn>ABSVehicleThreshold]	

and:

‘SlipRateGreaterThanThreshold’	

corresponds to the condition:

[SlipRateThreshold <=SlipRate <=1]	

The failure expression of the corresponding fault tree can be simply minimized to:

Error = SlipRateOverstep	

Concerning sequence-dependent failures, however, Mahmud et al., (2010, 2012) proposed 
an approach which extends the HiP-HOPS method for dynamic analysis by generating and 
synthesizing Pandora Temporal Fault Trees (TFTs) from the state machines. On the one hand, 
Pandora is designed for temporal qualitative analysis (Walker et al., 2009); it is equipped with 
temporal laws which are very useful in enabling the minimization of the TFTs. On the other 
hand, the proposed conversion approach generates fault trees extended only with the necessary 
temporal information—i.e., it detects and preserves the significance of the sequencing of faults 
during the conversion and all along the logical analysis. Thus, the approach remains as close as 
possible within the flexibility and ease-of use of the conventional fault trees.

To correctly capture the sequence-dependent failures, the approach mainly uses the Pandora 
Priority-AND gate (PAND, symbol ‘<’) and the Priority-OR gate (POR, symbol ‘|’). A PAND 
gate represents a sequence of events typically from left to right, while a POR gate models a 
priority situation where one event (leftmost) must occur first and other events may or may not 
occur subsequently. To support a qualitative analysis, Pandora defines a set of temporal laws for 
identifying and removing redundant sequences of events. For example, (A|B). B ⇔ A<B, where 
the left hand side conjunction expression (A must occur first, but B must also occur) is equivalent 
to the right hand side expression (A occurs before B, both events have to occur).

The conversion algorithm which generates (temporal) FTs from the SMs performs backward 
traversals from each final state that represent a system (or a component) failure to the initial 
state. At each join state (a state at which paths diverge) during the traversal, if there is a common 
event with another divergent path, then the FT becomes temporal using POR. For example, the 
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conversion of the SM of Fifure 16 generates temporal rather conventional FTs since the two 
divergent paths at the join state (the initial state in this case) share a common event, and hence:

Degraded = B_Fails|A_Fails	
Failed = B_Fails . A_Fails|B_Fails	

The failure expression which corresponds to the Failed state is equivalent to A_Fails<B_Fails 
(using the temporal law described previously). The other expression specifies that only B_Fails 
needs to occurs, A_Fails may or may not occur afterwards.

The order in which failure events occur is captured in a probabilistically sound way, initially 
using POR only, then together with PAND, depending on the temporal law used. For example, in 
the case of exponential failure distribution for the basic events, the solution of the correspond-
ing Markov model gives the same probabilistic results associated with the states FAILED and 
DEGARDED as those given in (Fussel et al., (1976)) and in (Merle et al., (2010)) for the PAND 
and POR-like respectively, see (Mahmud (2012)) for a detailed comparison.

This conversion approach is used as part of a novel compositional method SAFORA1, 
which has been developed in (Mahmud 2012) to increase scalability. Safora (Figure 20) is a 
top-down synthesis of (temporal) FTs generated during backward traversals of component SMs. 
The synthesis starts from a highly abstract SM describing the monolithic behavior of the system 
(top level SM in the hierarchy), and from which we generate preliminary fault trees. Then we 
start expanding these fault trees from the SMs local to the components. The fault trees get mi-
nimised when appropriate during synthesis. A final analysis takes place for each system failure 

Figure 20. Overview of the Safora method



Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Conceptual Structures and Smart Applications, 3(2), 25-70, July-December 2015   51

(temporal) FT which is completely synthesized— i.e., when no more expandable or non-atomic 
events remain in the fault tree.

7. MODELS AND VERIFICATION IN THE TIMING LANE

7.1. Timing Models

Timing modelling in EAST-ADL results from the work done in TIMMO project (TIMMO (2007)), 
which produced a dedicated language called TADL and from Timmo2Use, which produced a 
second version of the language called TADL2 (TIMMO2USE (2012)). TADL concepts were 
integrated in the course of the ATESST2 project in the EAST-ADL language. TADL2 concepts 
will be integrated in EAST-ADL during the third year of the MAENAD project, but in the cur-
rent language version (2.1.10) TADL2 has not been integrated yet. For this reason we will refer 
to TADL in the reminder of the section.

EAST-ADL divides timing information into timing requirements and timing properties, 
where the actual timing properties of a solution must satisfy the specified timing requirements. 
EAST-ADL currently focuses on modelling of timing requirements on the functional abstraction 
levels of the architecture description language. The implementation level, i.e. AUTOSAR, is 
currently not explicitly considered, but it is expected that the information can be modelled in a 
similar way. The same holds for timing properties on both the functional abstraction levels and 
the implementation level.

Timing information on the functional abstraction levels is perceived as follows: timing 
requirements for a function can be captured on logical abstraction levels where no concrete 
hardware is yet available. This allows the specification of general timing requirements such as 
end-to-end delays from sensors to actuators regardless of how the final solution is built. This 
reflects the notion that a purely logical functional specification is not concerned with its technical 
realisation, i.e. how many ECUs or bus systems are ultimately involved. What matters from the 
functional perspective are the recurring end-to-end delays of a control application, which need to 
keep pace with the real plant. Specifying timing requirements on the implementation level might 
be both too late in the development process and rather difficult because of language complex-
ity (e.g. AUTOSAR) and the number of details on this level. However, it sounds more feasible 
to refine the timing requirements on the implementation level from the timing requirements 
of the design functional model. Indeed AUTOSAR Timing Extensions (TIMEX) (AUTOSAR 
(2015)) allows timing specifications in the AUTOSAR implementation level. It is important to 
note that the short semantic distance between TADL and TIMEX facilitates this refinement of 
timing requirements.

Timing properties are characteristics of a solution, e.g. actual response times, and should 
be reflected in the functional abstraction levels.

In EAST-ADL, timing requirements are divided into various kinds of delays (or latencies) 
for single time-consuming modelling entities as well as specific requirements for temporal syn-
chronisation of input or output data. The delays are either end-to-end delays, which are subject 
to segmentation along the functional decomposition track (e.g. end-to-end delay for a top-level 
function), or the delays form part of an end-to-end timing chain, and thus constitute segments 
of such an end-to-end timing chain. More precisely, EAST-ADL Timing concepts are based on:

•	 Events: Relate to EAST-ADL entities and depict observables: e.g. data arriving on a port, 
triggering of function execution, etc.;
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•	 Event Chains: Bind together events to establish sequences/relations between events e.g. 
to capture a complete end-to-end flow requirement between data sent by a sensor to output 
by an actuator;

•	 Constraints: Put temporal constraints on sets of events or on event chains, e.g. deadlines to 
be met, expected delays, patterns of data arrival, synchronisation of outputs on a set of ports, 
etc. Note that these constraints represent measured/computed properties when attached to a 
VVactualOutcome, concept coming from Verification&Validation constructs of EAST-ADL.

One example is featured in Figure 21 in which an excerpt of the functional design architecture 
of the Regenerative braking is shown. The timing model here must capture maximal end-to-end 
delays that must hold from the instant of time in which data arrives at the pedal sensor to the 
instant of time in which the output is produced by brakes actuators. The figure shows how to 
model this maximal delay for the output produced at the brake actuator of the front left wheel. To 
identify the instants in which data is available at input/output ports, two events are here defined. 
The first event (‘BrakePedalSensorInputPortEvent’) represents the data arrival at the input port of 
the brakeSensor function, while the second one (BrakeActuatorFLOutputPortEvent’) represents 
the data availability at the output port of the actuator. These two events represent respectively the 
stimulus and the response of the event chain. The event chain is subject to a reactionConstraint 
whose maximal tolerated value is 50ms.

Other common constraints/properties characterizing timing models are execution timing 
constraints. The difference between a reaction constraint and an execution timing constraint is 
appreciable at design level in which hardware allocation is specified. Execution time constraint 
concerns the time needed by the function to be executed in isolation. It can be considered as a 
minimal bound for the function to be executed. A reaction constraint is a requirement that set the 
upper bound for the function to complete its execution; it must be greater than the execution time.

Timing constraints on data availability can be specified as well. For instance, an output 
synchronization constraint expresses a timing constraint on the output synchronization among 
the set of response events. On Figure 21, for readability concern we have omitted to display 
flow port events and event chains that are constrained by the output synchronization constraint 
‘TorqueOutputSynchronization’.

The functional model of the design phase depicted in Figure 21 specifies a graph of func-
tions. Activation semantics is added to that functional graph through events definition and timing 
constraints among these events. This gives a timed partial order of execution for functions which 
is needed to make timing analysis. The following subsection shows timing analysis made on this 
BBW timed functional architecture model.

Figure 21. Timing model for the regenerative braking
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7.2. Timing Analysis

The validation of timing properties during the development is a continuous process. Since 
refinements are top down, deadlines can only be validated under assumptions abstracting the 
lower-level details, such as the worst-case execution times (WCETs) of functions. Unless the 
implementation of functions is reused from previous systems, precise knowledge of WCETs of 
functions is not available before code implementation in the design process. To define a system 
architecture supporting functions with time constraints and provide the specification of its com-
ponents to the suppliers, automotive developers and domain experts propose a time budgeting 
activity as part of the development methodology. The system integrator specifies and assigns time 
budgets. These time budgets are constraints on worst-case execution time that must be respected 
by the suppliers delivering the functions implementation. If all the delivered functions fulfill their 
local constraints, the end-to-end deadlines are satisfied. In the meantime, based on the budget 
assumptions, the system integrator can evaluate and optimize a functional architecture design.

The TIMMO-2-USE project (TIMMO2USE (2012)) discusses the need for time budget-
ing in the context of the process stages dedicated to the refinement of the system architecture. 
The project deliverables discuss a set of guidelines for budgeting the worst-case response times 
(WCRTs), based on the designer experience and do not provide a specific algorithm.

The concept of time budgeting in the integration of automotive systems is among the re-
search topics of the ALL TIMES project (ALLTIMES (2009)). The approach proposed in the 
project deliverables takes as an input an already deployed architecture, i.e. the decision about 
functions allocation to hardware resources is already made. However, since the objective here 
is to determine time budgets (which are not determined yet), the function allocation decision 
cannot exploit time budget information of functions. On the other hand a functional allocation 
is only possible if the hardware resources have enough capacity to execute the function: a very 
time-consuming function would probably need a more powerful resource in terms of resource 
capacity. This is a typical egg-and-hen problem, in which functional allocation depends on time 
budgets and time budgets estimation depends on functional allocation.

We propose to break this tie by an interleaved approach in which we iteratively solve the 
time budget estimation problem and the functional allocation problem. Note that the overall goal 
is to obtain a design-level architecture which is schedulable: in which end-to-end deadlines on 
functional chains are respected despite delays induced by execution and communication mecha-
nisms at software and hardware level.

In the following we will proceed bottom-up, discussing design phase activities and then 
analysis phase activities. We firstly introduce the schedulability notion (pertaining to the design 
phase), then we propose an algorithm to solving respectively the functional allocation problem 
(design phase) and the time budget estimation problem (analysis phase). Finally we will discuss 
the interleaved approach.

7.2.1. Schedulability Estimation

Schedulability estimation at design level is able to detect resources overload situations that will 
prevent the schedulability of the system, computing bus and processor utilization. Following 
formulas are used for the computation of processors utilization (on the left hand side) and buses 
utilization (on the right hand side). In these formulas:

•	 si is the ith signal of the system;
•	 fi is the ith function of the system;
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•	 βi is the ith communication bus;
•	 ci is the ith processor;
•	 The → relation indicates that the left term (function/signal) is allocated on the right term 

(processor/bus);
•	 ωi,j represents the WCET/WCTT of the function/signal i on the processor/bus j;
•	 Pi is the activation period of the function/signal i:
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Based on this formulation for the Regenerative Braking we obtained a bus utilization of 36%. 
For processor utilization we obtained the results shown in Figure 22 provided by the Qompass 
tool (MAENAD (2013)).

Even though, bus and processor utilization are key indicators for system schedulability, the 
respect of maximal resource utilization capacities does not imply that the system is schedulable. 
System schedulability can be verified only by computing end-to-end latency of each path from 
sensors to actuators and comparing latencies against end-to-end deadlines. So-called response-time 
analysis is usually employed to compute end-to-end latency. Response time analysis, however, 
considers tasks chains instead of function chains. Functions and tasks, however, are not the same 
thing: a task is the software resource that executes functions. Response time is very sensitive 
to the way in which functions are partitioned into tasks. For this reason response-time analysis 
is usually reserved to the implementation phase. During the MAENAD project, however, we 
investigated solutions to anticipate response-time analysis to the design phase. The idea is to 
make an “optimal” assumption about how functions are partitioned into tasks, by running an 

Figure 22. Resources utilization for a manual allocation of functions to ECUs
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optimization algorithm solving the partioning problem. The output given by this optimization 
algorithm can be then used to estimate end-to-end responses. As a result of this investigation, 
three different advanced optimization approaches able to provide a prediction on latency of 
end-to-end chains at design level and to use this information to solve the functional allocation 
problem as detailed in the next section.

7.2.2. Functional Allocation

During the MAENAD project we elaborated three approaches to solve the functional alloca-
tion problem subject to schedulabilty constraints. The first approach lies in computing latency 
assuming the best partitioning of functions to tasks (from now on called simply partitioning) 
and best priority assignment to tasks (from now on called scheduling) with respect to latency 
minimization. Operationally, this means: to start from a manual allocation of functions to nodes 
(available at design level), to find a partitioning and scheduling that minimize latency via an 
optimization method, and then to output minimal latency as the latency for the initial manual 
allocation. The other two approaches aims at improving the first approach treating as well 
the allocation problem (functions to nodes) in the optimization loop. RTCSA (Mehiaoui et al 
(2012)) is a two-stage optimization approach. First stage of this approach deals with allocation 
optimization with respect to resource utilization. Allocation found in the first stage is given as 
input to the second stage that deals with partitioning and scheduling optimization with respect to 
latency. LCTES (Mehiaoui et al (2013)) is an improvement of RTCSA. Concretely, like RTCSA 
an optimized allocation is found and an optimized partitioning and scheduling is found for this 
allocation, but here the allocation is optimized with respect to latency already in the first stage, 
by combining two classical optimization strategies: divide and conquer and iterative improve-
ment. Divided-and-conquer consists in dividing the allocation, partitioning and scheduling 
(PPS) problem in two sub-problems solved in cascade, in which allocation is solved first (PP 
stage), and then partitioning and scheduling (PS stage). In both sub-problems, we minimize the 
latency. Iterative improvement is used to move towards the optimum. Figure 23 shows the main 
algorithmic steps of the approach.

Each iteration starts from a PP optimization with an initial (valid) configuration for PPS as 
an input. PP provides the allocation of functions/signals to nodes/buses in an implicit manner. 
Namely, during this stage, tasks and messages are allocated on nodes/buses; however, knowing 
the partitioning of functions/signals at this stage, their allocation can be derived. Next, the PS 
stage tries to find a new partitioning and scheduling solution that improves the solution found 
in the PP stage.

The inner loop tries to find an optimal system configuration by applying iteratively an op-
timization sequence until convergence (two successive solutions are the same). Depending on 
the selection of the initial configuration, the PP+PS solution may be a local optimum. To move 
away from local minima, the outer loop selects random initial configurations for expanding the 
exploration space.

Based on an MILP (Mixed Integer Linear Programming) formulation of these stages this 
algorithm has been implemented in Qompass tool (MAENAD (2013)). Figure 24 and Figure 25 
give formulas for response time, computed on chains of functions and signals. These formulas 
are an adaptation of traditional formulas for chains of tasks and messages, assuming pre-emptive 
tasks and non-preemptive messages. These formulas are used to set the objective function and 
the latency constraint of the MILP formulation (not shown here for space reasons).

Within these formulas in addition to the previously described terms the following ones mean:
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•	 Ri is the Worst-Case Response Time (WCRT) of function/signal i;
•	 Ji is the jitter of the activation of function/signal i;
•	 W i is the completion time of function/signal i;
•	 hp(i) is the set of functions/signals with a priority greater than the priority of function/signal 

i that are allocated on the same processor/bus;
•	 Bi is the blocking time of function/signal i;
•	 Φ is the set of signals of the system;
•	 F is the set of functions of the system;

Figure 23. Overview of the LCTES optimization approach

Figure 24. Formulation of functions response time computation



Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Conceptual Structures and Smart Applications, 3(2), 25-70, July-December 2015   57

•	 τfi is the task on which function fi is allocated;
•	 μsi is the message transmitting signal si;
•	 sndsi is the function sending the signal i;
•	 rec(si)is the set of functions that receives the signal i.

The global WCRT for a function fi (Figure 24) is computed as the sum of the jitter (represent-
ing the delay between the instant of the external event arrival, the instant of function activation) 
and the function completion time (representing the delay between the instant of its activation 
and the instant of its termination).

The global WCRT of a signal (Figure 25) is equal to the sum of its jitter, its worst-case 
transmission time, the worst-case transmission time of all signals that are allocated to the same 
message, and the longest duration of waiting in the queue before its election for a transmission 
on the bus.

Figure 26 gives end-to-end chains latencies for the three approaches and allows their 
comparison. We can notice that latencies of the manual allocation have been improved by the 
two other approaches (LCTES 2013, and RTCSA 2012). We can also notice that LCTES 2013 
approach has improved latencies of RTCSA 2012 approach.

Figure 27 gives processors and bus utilizations obtained with the three approaches. We can 
observe that in terms of utilization ‘Manual Allocation’ and ‘RTCSA 2012’ are comparable, 
whereas ‘LCTES 2013’ improves bus utilization which is the cause of the global latencies im-
provement observed in Figure 23. This is due to the fact that distant communications are source 
of a large latencies value.

As can be seen results of these advanced analyses give hints on how to improve core models 
(allocation in particular). In the regenerative brake example, the new allocation found with the 
LCTES method can be part of the recommendations for the core swimlane in order to improve 
global latency.

Figure 25. Formulation of the response time computation for signals
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7.2.3. Time Budget Estimation

In the previous section we presented an optimization approach to solve the functional allocation 
problem under schedulability constraints. This approach is supposed to be applied during the 
design phase. The approach takes as input WCETs of functions, however this information might 
be missing for new functions (never implemented before). To cope with this issue several ap-
proaches suggest to parform an time budget estimation at analysis level, to provide time budgets 
for functions missing WCET.

In this section we present a time budgeting algorithm (Wozniak, E. et al (2014)). Note that 
this first algorithm takes as input a functional allocation (as done in the ALL TIMES project). 
Before giving details of the algorithm, let us first introduce concept notations used for its defini-
tion (see Table 5).

This work considers an optimization metric expressing the relaxation of time budgets 
within the end-to-end deadline constraints. The function f TBA

tb ( )  in equation bellow requires 
as an input the set TBA of functions with the specific valuation for their time budgets. It is defined 
as the minimum time budget value for all functions in RB  normalized with respect to the target 

range tb tbr
m

r
M

k k
,( ) . The optimization objective is to maximize f TBA

tb ( ) , or equivalently, to 

maximize the minimum normalized time budget among functions in RB :

Figure 26. Comparison of end-to-end chains latencies for the three approaches
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Figure 27. Comparison of: (a) Processors; and (b) Bus utilization for the three approaches
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Algorithm 1 is executed for a deployment configuration to compute the corresponding 
optimum set of time budgets based on which value for the metric function f TBA

tb ( )  can be 
calculated. The time budgeting algorithm has four inputs: Ψ  (functional allocation), RB,   
and M

RB
.   is the maximum error on the computed budgets that controls the terminating con-

dition (line 15). The lower is the value of  , the more accurate are the time budgets, and the 
larger is the runtime of the algorithm. M

RB
 is a set of upper bounds on the functions budgets 

computed for a specific functional allocation Ψ , where M i
RB ( )  is the maximum value for ri . 

The values in M
RB

 are computed before running Algorithm 1, based on the end-to-end deadlines, 

utilization bounds, and the constraints tb
r
m

i
 and tbr

M
i

.
Algorithm 1 tries to relax the time budgets for all the functions in RB  according to the 

metric f TBA
tb ( )  using a binary search algorithm. The upper bound values are tried first, giving 

the maximum possible value of f TBAtb ( )  (lines 6-8). If the corresponding configuration is 
schedulable, it is returned as the optimum value (line 9). If not, then the algorithm assigns to 
each r

j
 in RB  a budget value that is the medium value between the minimum tb

r
m

j
 and the 

upper bound M i
RB ( )  (lines 11-13).

Table 5. Definitions of each concept notation

Concept Definition

 tbri  Time budget for the function r
i

. Time budget in our case represents the constraint imposed on 
the WCET of a function.

 tb
r
m

i
 Minimal time budget for the function ri . The designer has the option to provide a minimum value 

for tb
ri

 as tb
r
m

i
. Its intuitive meaning is a preliminary evaluation of the minimum required 

execution time for the functionality, based on the experience of the designer. If it is not specified, 

then tbr
m
i
= 0 .

 tb
r
M

i
 Maximal time budget for the function r

i
. Its intuitive meaning is a preliminary evaluation of the 

maximal execution time for the functionality, based on the experience of the designer. If not 

explicitly set, it is assigned with the period of the end-to-end chain to which ri  belongs.

 RB  Set of functions for which a budget assignment must be provided.

 TBA  This set represents specific Time Budget values Assignment, i.e. the valuation. Namely each 

element is a value assigned for a corresponding time budget tbrj .
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From this point on, Algorithm 1 continues by iteratively reducing the range of the time 

budgets, defined as Ltb Utbr rj j
,



  for function r

j
. The algorithm works as a binary search. In 

each iteration, if the current budget values, at the midpoint between the upper and lower bounds 
result in a schedulable solution, the upper bound Utbrj  remains the same, and the lower bound 

Ltb
rj

 is updated to be midpoint (line 20), and the range is reduced to be half of the size. If the 

current settings result in a non schedulable solution, it means that the time budget value is too 
large, and the next iteration will search within the lower half of the range (line 22).

7.2.4. Interleaving Time Budget Estimation and Functional Allocation

In (Wozniak, E. et al (2014)) we proposed an interleaved approach in order to solve budget 
estimation and functional allocation in a coordinated manner. The proposed approach goes 
through two stages: in the first stage functional allocation is solved as shown in Section 7.2.2 

Algorithm 1. Algorithm for the one-dimensional binary search
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The second stage tries to optimize the time budgeting only. The two stages are computed sequen-
tially inside a loop until there is no further improvement. The staged algorithm implements an 
iterative improvement strategy that is in essence a local search. Starting from an initial solution, 
the current best solution is tentatively improved in the iterations of an inner cycle that includes 
the two optimization stages. If at any iteration, the two stages fail to produce a better result, the 
algorithm terminates and returns the best solution found until that point. The rationale for this 
choice is that we do not want the algorithm (a local search) to end prematurely and we try to 
ease schedulability (and provide for maximum allocation freedom) as much as possible in the 
first step. Details of the algorithm can be found in (Wozniak, E. et al (2014)).

8. MULTI-OBJECTIVE OPTIMISATION

The current challenge in the field of research is not only the exploration of additional use cases 
for software applications, but also the optimization of existing and future system architectures 
taking a multitude of different quality attributes, i.e. design objectives, into consideration (Walker 
et al. (2013)). This challenge is complicated by the fact that many real-world objectives conflict 
with each other, which necessitates a mechanism for trade-off resolution.

The resulting trade-off analysis is a hard combinatorial problem, which can often not be 
resolved by hand for all but the most trivial cases. In absence of adequate automated solutions, 
industry standard often relies on manual decision making when it comes to finding optimal or 
near-optimal configurations for variant-rich architectures. Due to the complex interdependencies 
and decision ramifications in sufficiently large design spaces, it is reasonable to assume that 
a large number of currently employed system designs in the automotive domain are based on 
suboptimal configuration decisions.

In order to establish a robust foundation for automated optimization approaches, a system’s 
information model has to facilitate a high degree of expressiveness in regard to its variability 
management capabilities and its support of relevant quality attribute data. The utilization of a 
domain-specific ADL like EAST-ADL allows for model-based analyses on an information model 
of ample expressiveness comprised in a single monolithic model structure (Blom et al. (2013)). A 
comprehensively engineered EAST-ADL model can provide all relevant information necessary 
for an optimization analysis; including the system’s variability information and a variety of data 
eligible for the assessment of quality attributes.

To make use of such information repositories for the purpose of architecture optimization, 
our goal is to create an approach for generating multi-objective programs from variant-rich 
EAST-ADL models. This can be realized by representing quality attribute data as objective 
functions and variability information as program constraints. We are also taking care in creating 
a heuristic variability interpretation process, which allows for product-line-aware optimization 
analyses, i.e. the possibility of family-based optimization of entire product lines in one sweep, 
as opposed to the optimization of individual products (Thüm et al. (2012)).

In this section, we provide a summary of our ongoing work on the subject of generating multi-
objective programs from variability information and quality attribute data of given EAST-ADL 
models and showcase our progress in regard to different aspects of the intended implementation.

8.1. EAST-ADL Variability Language Concepts

Variability modelling in EAST-ADL can generally be divided into two different categories. 
One category, variability on the Vehicle Level, is represented in the form of cardinality based 
feature models (CBFM) (Czarnecki et al. (2005)). Its purpose is to establish an abstract view of 
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the system’s variable content, including the interdependencies between variable elements. This 
view offers a distinction between a technical perspective and customer-specific perspectives, 
but does not disclose any particulars about implementation details (please refer to 5.2, especially 
page 12f). The other category, variability on the artifact levels, can be represented as part of the 
systems FAA, FDA, and HDA models by means of both CBFM and concrete variation points. 
This view is concerned with the actual technical implementation of variable content, by defin-
ing the relationships and interdependencies between variable architecture entities, i.e. actual 
functional components or hardware elements on the artifact levels of the system architecture.

In order to relate variability information of different feature models, as well as to allow for 
logical bindings from feature models to variation points on the artifact level, the language also 
supports configuration modelling by means of configuration links. These links contain atomized 
rules – so called configuration decisions – for the configuration of target model entities based 
on a given configuration of source model entities. Configuration links can be used to relay con-
figuration information across EAST-ADL layers; but also in a more local context, for creating 
bindings of the internal variability of a container element with feature model representations of 
that internal variability – a so called public feature model. The application of these variability 
concepts facilitates the use of compositional variability management (CVM) as a systematic 
language concept of the EAST-ADL language (Reiser et al. (2009)).

8.2. Product Line Variability versus Architecture Design Space

In addition to the different variability description methods described in section 3.2, a distinction 
between product-line-oriented variability (Metzger et al. (2007)) and the system’s architecture 
design space, also called architectural degrees of freedom (Aldeida et al. (2013)), is essential 
for realizing a product-line-aware architecture optimization approach. Table 6 gives a summary 
of the conceptual differences between these two kinds of variability.

The intended output of our proposed optimization approach is a product line with optimal 
architectural decisions, as opposed to an optimally configured product based on the given product 
line. It is therefore necessary to establish a way to differentiate between the two types of vari-
ability, in order to be able to mark product-line-oriented variations as restricted for optimization. 
The approach presented in this paper achieves this distinction by tracing the propagation of 
individual variation points through the different layers of the given model.

In case of product line variability, a regarded variation point can always be traced all the way 
up to the features on the model’s Vehicle Level by means of configuration decision connections. 
The features represent product line variations and therefore allow for configuration of variation 
points located on underlying abstraction levels, i.e. all variability that ultimately is rooted on 
Vehicle Level is product line variability.

If no such traceable connectivity to the Vehicle Level exists, the variation point is instead 
considered as part of the model’s architectural design space. Such variation points are not con-

Table 6. Characteristics of product line variability and architecture design space

Product Line Variability Architecture Design Space

Purpose: satisfies needs of a particular market segment 
or mission (e.g. different models of cars)

Purpose: represents different implementation variants (e.g. 
multiple suppliers for a subsystem)

Variations have functional influence on the target system Variations only have influence on non-functional system 
characteristics like cost, performance or dependability
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figured as part of a product line configuration, but are instead decided at design time. Finding 
optimal allocations for these architecture variation point is the primary objective of the intended 
optimization approach.

8.3. Optimization Approach

In order to establish a robust foundation for optimization analyses of variant-rich EASTADL 
models, an expedient course of action is to first educe a rigorous mathematical model, which 
reduces the complexity of the initial problem down to the fundamental drivers of the optimization 
process. This distillation procedure results in a lean representation of the optimization problem, 
which can be easily transformed into fitting input data for existing optimization software.

In EAST-ADL models however, the information relating to variability and design objectives 
is interwoven with other aspects of the given architecture description. There exists no separate 
depository for this kind of supplementary data; the identification and interpretation of the relevant 
information together with the transformation into a proper mathematical formulation is therefore 
part of the research presented in this section.

In order to accomplish this goal, we propose an approach for generating multi-objective pro-
grams from given EAST-ADL models, by representing the design objectives as a set of objective 
functions, and the system design space as a set of program constraints. Figure 28 illustrates the 
basic workflow of deriving such a program from a given model in terms of relevant activities. 
In order to allow for product-line-aware optimization, a number of specific considerations have 
to be made in regard to the examined variability information (cf. section 8.2.).

Our efforts to devise a comprehensive approach are part of an ongoing work in progress; 
our current, preliminary method still has certain restrictions in terms of the kind of variability 
and the kind of design objectives that can be handled and converted into a mathematical form. 
These restrictions are (a) the limitation to strictly boolean solution spaces, as opposed to non-
boolean aspects introduced in particular by parametrization, and (b) the limitation to strictly 
linear design objectives, like unit cost and weight minimization.

The effect of these limitations on the generated output is that the resulting program is both 
linear and disjunctive. Future iterations, assuming that the current limitations can be lifted, may 
instead produce multi-objective non-linear mixed-integer programs.

Figure 28. Generation of a multi-objective program with linear and non-linear objectives
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8.4. Pareto Optimality

When considering multiple objectives as part of an optimization analysis, it is usually impos-
sible to find a single perfect solution which is truly optimal with respect to all objectives. This 
complication is caused by the often conflicting nature of typical design objectives, e.g. improving 
safety will decrease performance, and vice versa. One possible solution for this dilemma is to 
convert the multi-objective analysis into a single-objective analysis, by formulating an entirely 
new objective function from a weighted aggregation of the original objectives – a process 
known as scalarization or weighted normalization (Grodzevich et al. (2006)). This approach, 
while widely used, has significant drawbacks, in particular the fact that the weighting factors 
for the objectives have to be defined beforehand, i.e. before there is tangible knowledge about 
the properties of possible optimal solutions.

An alternative (and exhaustive) approach involves the simultaneous evaluation of all distinct 
objective functions in a single optimization sweep. This approach is usually regarded as genuine 
multi-objective optimization, also called Pareto optimization due to the particular composition 
of the analysis result. The typical outcome of a Pareto optimization is a Pareto set, also called 
Pareto frontier, which constitutes the set of all Pareto-optimal solutions of the optimization 
analysis (MAENAD (2012), p.54f).

Pareto optimality is based on the concept of dominance. A solution is called dominant if 
and only if no other solutions exist, which outperform it with respect to at least one objective 
without degradation in any other objective (Burke et al. (2005), p.414ff). Figure 3 depicts a solu-
tion space for an optimization analysis with two conflicting design objectives A and B plotted 
against the axes. In this example, both objective functions were to be maximized – think safety 
and performance. The Pareto set is represented by the filled bullets in the main graph. The smaller 
graphs depict typical scenarios for solution dominance (see Figure 29).

Figure 29. Pareto dominance for an exemplary solution space
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8.5. Problem Representation as Multi-Objective Program

In order to attain a suitable mathematical representation of a given EAST-ADL optimization task, we 
propose an approach which makes use of the formulations of multi-objective programming (Benayoun 
et al. (1971), Marler et al. (2004)). Our current exclusion of non-boolean variabilities and non- linear 
design objectives, as noted in section 3, results in a program in which the constraints and objective func-
tions are (a) linear, and (b) strictly binary. The application of such programs is called 0-1 integer linear 
programming, or disjunctive programming (Balas (1979)). Such a program can be formulated as follows:

Minimize Cx subject to Ax a x     ≥ ∈{ }0 0 1, 	

where C is a (m;n)-Matrix representing a mapping of objective coefficients; A and a0 are a (p;n)-
Matrix and a p-vector, respectively, representing the mapping of the variability space to constraint 
coefficients; and x is an n-vector of strictly 0-1 binary architecture decisions.

The Matrix Cx is in principle just an alternative representation of a set of linear functions 
F(x) = (f1(x), f2(x), …,fm(x))T, where each function represents one distinct design objective, and 
thus one of the target parameters in the Pareto trade-off analysis. The coefficients can be parsed 
directly from extension constraints affiliated to the respective variable architecture elements in 
the given EAST-ADL model (cf. section 8.1.). Each of the Pareto-optimal solutions to this math-
ematical program represents a corresponding Pareto-optimal configuration of the initial system.

9. CONCLUSION AND FUTURE WORK

This paper presented model-based analysis and engineering capabilities offered by the EAST-
ADL. Thanks to the omni-comprehensive nature of the EAST-ADL language, a wide range of 
advanced analyses have been seamlessly integrated in the framework, providing fine predictions 
of system properties at different abstraction levels, while initially stimulating the creativity of the 
engineer. These predictions allow front-ending verification activities at early stages of the system 
development process. Beside functional properties, verified by well-known model-checkers, the 
paper presented as well novel analysis methods for safety, timing and multi-objective optimisation 
analysis. Power analysis capabilities, even if not shown in the paper, could be easily provided 
thanks to available transformations towards simulation tools. The possibility of encompassing 
in one single framework different analyses has the further advantage of making possible opti-
mization activities, where different analyses results are gathered by a centralized optimization 
framework able to rank analyzed model candidates in Pareto-optimal configurations.

While we think that model-based optimization is an emerging trend in both industry and 
research domains, multi-layered design flows pose several challenges from an optimization per-
spective (Broy et al. (2012)). It is not clear, in particular, how front-end optimization activities 
impact lower level designs, where new design elements (not taken into account in the higher-
level optimization) emerge.
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