Rouwaida Abdallah
email: rouwaida.abdallah@cea.fr

Nataliya Yakymets
email: nataliya.yakymets@cea.fr

Agnes Lanusse
email: agnes.lanusse@cea.fr

Towards a Model-driven based Security Framework

Keywords: Security, Model-driven, UML Profiles, EBIOS, Attack Trees, Papyrus Tool

In this paper, we propose a model-driven framework for security analysis. We present a security analysis process that begins from the design phase of the system architecture then allows performing several security analysis methods. Our approach presents mainly two advantages: First, it allows the traceability of the security analysis methods with the system architecture. Second, this framework can include several security analysis methods. Moreover it allows information reuse which is complicated when we use separate methods dedicated tools. Thus, we can have more consistent and accurate security analysis results for a system. We chose to implement two methods: A qualitative method named EBIOS which is simple and helps to identify areas of focus within the system. Then, to get more accurate results, we implement a quantitative method, the Attack trees. Attack trees can be automatically generated from the Ebios analysis phase and can be completed later on to get more specific results.

INTRODUCTION

Today Model Driven Engineering (MDE) has proven its efficiency to cope with the ever-growing system complexity [START_REF] Bernardi | Model-Driven Dependability Assessment of Software Systems[END_REF], [START_REF] Bran | Modeling and Analysis of Real-Time and Embedded Systems with UML and MARTE[END_REF]. In particular, there has been substantial research on model-based security analysis [START_REF] Basin | A decade of model-driven security[END_REF]. The use of models in security engineering offers more focused views of complex systems, and several levels of abstraction to assist non-security experts to implement security efficiently.

Several risk management methods have been established to improve the security of information systems. These methods identify areas of focus within the project that need special attention and security and privacy measures. These methods can be broken down mainly into two essential types: qualitative (e.g. NIST SP 800-30 [START_REF] Stoneburner | Risk management guide for information technology systems[END_REF], CORAS (den Braber, 2007), OCTAVE [START_REF] Alberts | Introduction to the OCTAVE Approach[END_REF], EBIOS (Secrétariat Général de la Défense Nationale,2004), etc.) and quantitative (e.g. CORA (International Security Technology, 2002), ISRAM [START_REF] Karabacaka | ISRAM: Information security risk analysis method[END_REF], AttackTree (Schneier, 1999), etc.). Some approaches can be applied to all types of risks, while others are specific to particular risks like for instance risks related to information security. Qualitative methods implement no mathematical computations in general and thus they are considered as simpler but less precise than quantitative methods. Then, if an organization is concerned with simplicity rather than accuracy, qualitative methods are good fit, otherwise the choice will be quantitative methods (Behnia, 2102).

In this paper, we present the first steps towards a model-driven process for risk analysis in order to get accurate results but in a simpler way. This process is twofold: First, we proceed by a qualitative method to assess the risks that we consider as dangerous or unacceptable relatively to the threshold we have preliminary fixed for the system. This step will reduce the perimeter of the risk analysis. Then we apply a quantitative method considering only the reduced perimeter to get more precise and accurate results for all the system.

Our approach presents many advantages: First, as it is a model driven approach we can benefit from the architecture of the system realized at the design phase to apply the risk analysis methods. Second, having the two methods in the same environment allows us to reuse information which is complicated when we use special methods dedicated tools. Most existing risk analysis methods rely on separate tools or models etc. Using separate tools requires a lot of experience and extra effort and may lead to inconsistencies between the different analyses. Similar challenges have been solved in software engineering by model-driven approaches. The core idea is to reuse as much information as possible from earlier design stages in later stages of the development cycle. This idea is already very successfully being used for the development of software intensive systems [START_REF] Gudemann | Towards model-driven safety analysis[END_REF] In this paper we present the first steps towards a model-driven process for security analysis. It is structured as follows: Section 2 provides the background of this work. Section 3 describes the process and the model driven approach. Section 4 presents related works. Finally, the conclusions are in section 5.

BACKGROUND

In this section, we present first the two security analysis methods: EBIOS and Attack Tree. Then we give the motivation of this work.

EBIOS Method

One of the well-known qualitative methods dedicated to manage risks in information systems operating in steady environments is called EBIOS (Expression of Needs and Identification of Security Objectives). EBIOS is used by many organizations in both public and private sectors to conduct Information System Security (ISS) risk analyses. EBIOS method (Secrétariat Général de la Défense Nationale, 2010) provides uniform vocabulary and concepts that allows attending security objectives. It can be adapted to the context of each organization (its tools and methodologies) and then used to develop either a complete global study of the information system or a detailed study of a particular system. Some efforts have been made to automate the EBIOS method. It helps the user to perform risk analysis and management steps according to the five EBIOS phases and to automatically generate reports: Phase 1 deals with context analysis. It establishes the environment, purpose and operation of the target system and identifies the essential elements (assets) on which they are based.

Phase 2 conducts the security needs analysis. The identified security needs of the essential elements are evaluated in terms of availability, integrity and confidentiality, etc. In other terms we identify the Feared Events of the system. We also define a severity level to this Feared Event based on the harm that it may induce.

Phase 3 consists of identifying and describing the threats affecting the system. This is done by studying the attack methods and threat agents using them by exploiting existing vulnerabilities of the elements of the system. We associate to each threat the likelihood of occurrence.

Phase 4 contributes to risk evaluation and treatment. It formalizes the real risks affecting the system by comparing the threats with the security needs.

Phase 5 determines how to specify security countermeasures allowing the security objective to be fulfilled and how to validate these measures and the residual risk. Actually, for each Feared Event we associate a risk level. This level is computed based on the severity "sev" (possible values for sev : Negligible, Limited, Important, etc.) of the Feared event concerned by the risk and the maximal value "lik" (possible values for lik : Minimal, Significant, Heavy, etc.) between the likelihoods of the threats that lead to this Feared Event (possible values for the risk level: Negligible, Significant, Intolerable, etc.). The risk level is deduced from a predefined matrix RiskLevel(sev,lik). A residual risk is the risk after applying existing or new countermeasures what may decrease the severity and/or the likelihoods and so it may decrease the risk level. Some efforts have been made to automate the EBIOS method. It helps the user to perform risk analysis and management steps according the five EBIOS phases and to automatically generate reports. However, such tools are disconnected from the design model and do not provide an overview of the system or its layers. Besides, they do not offer the possibility to perform any further security analysis methods which can be important to get a more complete security analysis of the system.

Although EBIOS is dedicated to ISS, it can be adapted to different contexts such as (Mcdonald et al., 2011). Besides, EBIOS meets the risk management described in ISO 27001 and supports entirely ISO 27005 and ISO 31000 (Secrétariat Général de la Défense Nationale, 2010).

Attack Tree Quantitative Method

Attack trees (the term is introduced by Schneier in [START_REF] Schneier | Attack trees: Modeling security threats[END_REF]) can be used to model potential attacks on a system and corresponding risks associated with each attack path.

Attack trees describe attacks towards any system as a logical function of atomic attacks. The top node of an Attack tree is the ultimate goal with combinations of sub-goals. Children of a node are refinements of this goal, and leaf nodes therefore represent attacks that can no longer be refined. An Attack leaf can be an element of different intrusion scenarios, depending on the node connectivity associated with it. We have two types of node connectivity: "OR" nodes represent different ways to achieving the same goal (in Figure 2 the top node is an OR node). "And" nodes represent different steps in achieving a goal (in Figure 2 the node labeled by "Eavesdrop" is an AND node). [START_REF] Schneier | Attack trees: Modeling security threats[END_REF].

Figure 3 presents the procedure that we follow in general in an Attack tree based analysis inspired from [START_REF] Ten | Vulnerability assessment of cybersecurity for SCADA systems[END_REF]. Once a tree is created, we can compute all the scenarios that lead to its top node. Moreover, Attack trees allow several parameters values to be associated to leaf nodes (cost, time to achieve, likelihood of occurrence, etc., or qualitative statements such as "possible" "impossible", etc.). These parameters are used to compute the value of the vulnerability index (or index) associated to an Attack tree. We distinguish between three types of indices: First, the index (l i) associated to a leaf node l i which is computed based on a formula F that we choose and the set of parameters values P i of this as shown in (1). Second, the index V(s m) of an Attack scenario s m concerning a subset L m = {l 1 ,l 2 ,..,l p } of p leaf nodes is computed as shown in (2). Finally, the index of a top node V t is determined from the scenarios as shown in (3) where S= {s 1 , s 2 ,…,s k } is the set of the scenarios and k is the total number of scenarios.

(l i) = F(P i) (1) V(s m) = (2) V t = max{ V(s 1), V(s 2) , …, V(s k) } (3)

Motivation

In many engineering disciplines, model building is at the heart of any system design. But model building is not an end in itself and certainly does not come for free. There is an important added value so that this effort becomes worthwhile. In [START_REF] Basin | A decade of model-driven security[END_REF] (1) Models, especially graphical ones, give a clear overview of the system or a part of it. The core idea is to reuse as much information as possible from earlier design stages in later stages of the system development cycle. Existing EBIOS tools do not present any graphical representation of the system, the security analysis performed with EBIOS is not based on any other document or support used in the system design phase. Moreover, the contextual information about the system and its environment are entered from scratch. For Attack trees we find several graphical tools (e.g. SecureITree [START_REF] Saini | Threat modeling using Attack trees[END_REF]) however they are not related to the design phase either. (2) EBIOS presents a very robust process for analyzing security requirements. However, we believe that a global overview and several viewpoints of the system, or subsystems can offer to the security engineer a better recognition of the hazards. Attack trees method is not as robust as the EBIOS method at this point. (3) To perform a robust security analysis we need to run several analysis security methods. Each method has its own and independent model. Consequently, to conduct several methods, the model transformation remains very important. Model transformation plays a key role in modelbased software development. It describes the relationship between models, more specifically the mapping of information from one model to another which allows traceability. This traceability allows tracking changes in models and how it affects other models. (4) Some model-based environments (for instance, Papyrus [START_REF] Gérard | 19 Papyrus: A UML2 tool for domain-specific language modeling[END_REF]) offer the possibility of code generation. On the other side, implementing several methods in the same environment allows the reuse of information. This remains particularly difficult, when we use separate method dedicated tools as it requires a lot of experience and extra effort and may lead to inconsistencies between the different analyses. Besides, this approach allows to automatically generating skeletons or even a full body for the next methods to be applied. This is what we will show in the next section where we explain how to automatically generate partial Attack trees from an EBIOS analysis study.

MODEL DRIVEN APPROACH

In this section we present the process that we propose and the way to implement it.

Process Description

The process that we propose (see Figure 4) is described as follows: Phase 1: We design or use an existing architecture design of the system. Phase 2: We apply the EBIOS analysis by following the five phases described in the previous section (section 2.1): We first define the context. Second we define the Feared Events. Third, we describe the threats and relate them to the existing Feared Events so that for each defined Feared Event we have a list of threats where each of them can lead to the occurrence of this Feared Event. Fourth we appreciate the risk level for each Feared Event. Fifth, we consider the existing security countermeasures in the system to compute the residual risk level for each Feared Event. At this phase, we do not only apply a classical EBIOS analysis but we also relate it to the design architecture of the system. Actually, we relate the Feared Events, threats and vulnerabilities to the concerned assets (a component in the system architecture: function, software, hardware, etc.) in the system architecture. This allows visualizing the critical components in a system, and keeps the traceability between all the phases. Phase 3: We automatically retrieve the Feared Events that have the residual risk level higher than a threshold that we have already fixed. Phase 4: We generate an Attack tree for each Feared Event as follows: The top node of the tree is the Feared Event. This node is an OR node, and its children are the threats that lead to this Feared Event as defined in the EBIOS Analysis step (It is an OR node because as it is defined in EBIOS method any of these threats can lead to the Feared Event). Then those threats nodes are AND nodes based on the description in the EBIOS Analysis: Each Threat can exploit one or several vulnerabilities of an asset. Besides the generation of the structure of the tree we also generate some parameters that might help in the evaluation of the Attack tree: For instance for each vulnerability corresponding node we keep the concerned asset information (parameter A). This allows us to keep the traceability of the Attack tree with the system architecture. Second, in the EBIOS analysis we associate likelihood for each threat. But, as in Attack trees, parameters are associated only to leaf nodes that represent vulnerabilities in our case, we will associate to each vulnerability node a new parameter which is the set of likelihoods of all threats that can exploit this vulnerability (parameter P).

Finally, another parameter is the countermeasures that are related to the assets in the EBIOS analysis. Then, as in an Attack tree, a vulnerability node is related to one asset, we can deduce the set of countermeasures that are concerned (parameter M). The structure of a generated tree is presented in Figure 5. Phase 5: We can complete the tree in three manners. First we might add some new nodes: to add new threats that may be missed in the EBIOS Analysis step, or to detail some nodes, or maybe to go deeper in the description of the Attack tree (more than 3 levels depth). Second, we can add new parameters to the nodes. Actually, in the EBIOS analysis level the evaluation of risk is computed as described in section 2. It is based on the severity level parameter associated to a Feared Event and the likelihood parameters associated to threats. However we might define new formulas to have more precise evaluation or even to consider other criteria to evaluate the Attack tree. For instance, in the Magerit (Ministerio de Administraciones Publicas, 2006) method they also consider a third parameter to compute the risk which is vulnerability level, as for [START_REF] Ten | Vulnerability assessment of cybersecurity for SCADA systems[END_REF] their evaluation of the Attack tree is based on the existing countermeasures in the system only. Third we define the formula to compute the evaluation of the tree. We notice that we didn't define any formula by default to compute the evaluation of the tree we only extract the parameters from the EBIOS analysis phase that we consider that might be useful for the evaluation. Phase 6: At this level we can compute the different indices based on the Attack tree and the parameters that we have associated to their nodes. Then we propose countermeasures to minimize indices that are higher than the threshold we decided. We model the system architecture in the Papyrus environment which is an Eclipse based environment supporting UML and SysML modelling standards. Besides, Papyrus can serve as a modelling platform for other tools dedicated to different analysis and specific domains and this by using UML profile (e.g. RobotML [START_REF] Dhouib | Robotml, a domain-specific language to design, simulate and deploy robotic applications[END_REF]). Profile is a powerful extension mechanism for UML that allows introducing specific concepts to the model.

We implement a framework that allows integrating security analysis methods into uniform Papyrus. This framework includes profiles and tools to automate typical security analysis methods. Thus, we propose to implement EBIOS method and Attack Tree method based on UML profiles. We can also generate tables and documents as in the EBIOS Tool. Besides the complete analysis study and the architecture of the system can also be generated in documents that we can customize.

RELATED WORKS

There are several model-based technologies and tools for security analysis in general. For instance, Coras, Magerit, Mehari, these methods similar to EBIOS, propose a model based analysis of the system. However, with these tools we can only model security concepts and Attack scenarios, but not the design of the system. For Attack trees, we can find several graphical tools, but the analysis is still independent of the system architecture and of other security analysis methods.

The use of UML Profiles becomes very widespread in several domains: In [START_REF] Panesar-Walawege | Supporting the verification of compliance to safety standards via model-driven engineering: Approach, tool-support and empirical validation[END_REF], the authors provide a generalizable and tool-supported solution to support the verification of compliance to safety standards IEC 61508. The Object Management Group (OMG) has standardized the UML Profile for Modelling and Analysis of Real-time and Embedded Systems (MARTE) [START_REF] Bran | Modeling and Analysis of Real-Time and Embedded Systems with UML and MARTE[END_REF]. In [START_REF] Omg | Profile for modeling quality of service and fault tolerance characteristics and mechanisms[END_REF], authors present a UML Profile for modelling QoS and Fault Tolerance Characteristics and Mechanisms (QFTP), etc.

An existing framework named Sophia [START_REF] Yakymets | Model-driven safety assessment of robotic systems[END_REF] based on UML Profiles, presents a similar approach but for safety. Sophia framework extends generic Papyrus environment to safety domain. Sophia includes facilities (i) to automatically perform various Safety Analysis methods (SA), (ii) to make semantic connections with formal SA tools, (iii) to represent SA results in the system modelling environment. Our approach is a security approach for Sophia framework.

Our framework considers a part of the RMF (Risk Management Framework) proposed by NIST SP 800-160 (National Institute of Standards and Technology, 2014). RFM provides a process that integrates information security and risk management activities into the system development life cycle. RFM considers 6 steps: (1) Categorize information system, (2) Select security controls, (3) Implement security controls, (4) Assess security controls, (5) authorize information system, (6) Monitor security controls. In our framework, we consider steps (1) and (2). Phases 1 to 5 in our Process are included in step (1): we describe the system, and the existing security controls (or countermeasures) of the system (Figure 4 -Phase 2: we consider these existing controls to compute the residual risk in the EBIOS analysis), and we compute the risk level. Phase 6 is included in step (2) where based on the previous step results we select the controls to apply. Documents related to the security plan considered by RFM can be partially generated as we don't have for the moment the implementation related to process management.

CONCLUSION, PERSPECTIVES

In this work, we propose a model-driven based framework for security analysis. We implement several security analysis methods into uniform Papyrus modelling environment as UML profiles.

We choose to implement two methods: The first is a qualitative method named EBIOS which is widely used and that supports entirely ISO 27005 standard. This method allows identifying the most critical Feared Events for the system. Then we apply the second method we have implemented, the quantitative Attack trees method, which gives more accurate results Our approach presents many advantages: from one side, it keeps the traceability with the design architecture. From the other side, it keeps the traceability in overall the security as the Attack trees are partially automatically generated from the EBIOS analysis phase. These generated Attack trees can then be completed to fit our needs from this study (adding parameters, formulas, etc.).

This work presents several perspectives: One perspective is to merge this framework with Sophia to get a safety and security. Another perspective is to improve the qualitative analysis phase to be able to generate more complete Attack trees. Besides, many other methods can still be added to our process.

Figure 1 :

 1 Figure 1: EBIOS analysis method.

Figure 2 :

 2 Figure 2: Example of an Attack Tree[START_REF] Schneier | Attack trees: Modeling security threats[END_REF].

Figure 3 :

 3 Figure 3: General Attack tree analysis process.

Figure 4 :

 4 Figure 4: The structure of a generated Attack tree.

Figure 5 :

 5 Figure 5: Generated Attack Tree structure.

MODELSWARD 2015 -3rd International Conference on Model-Driven Engineering and Software Development

Towards a Model-driven based Security Framework

ACKNOWLEDGEMENTS

The work in this paper is funded by SesamGrids project (The consortium Sesam-Grids, 2012) and Risc project (The consortium RISC, 2013).

We want to thank the Phd student Anas Motii for his important participation to a part of this work.