
HAL Id: cea-01810068
https://cea.hal.science/cea-01810068

Submitted on 7 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-Driven Safety Assessment of Robotic Systems
Nataliya Yakymets, Saadia Dhouib, Hadi Jaber, Agnes Lanusse

To cite this version:
Nataliya Yakymets, Saadia Dhouib, Hadi Jaber, Agnes Lanusse. Model-Driven Safety Assessment of
Robotic Systems. 2013 (IEEE/RSJ) International Conference on Intelligent Robots and Systems, Nov
2013, Tokyo, Japan. �cea-01810068�

https://cea.hal.science/cea-01810068
https://hal.archives-ouvertes.fr

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

Model-Driven Safety Assessment of Robotic Systems
N. Yakymets , S. Dhouib , H. Jaber, A. Lanusse

Abstract— Robotic systems (RSs) are often used for
performing critical tasks with little or no human intervention.
Such RSs must satisfy certain dependability requirements
including reliability, availability, security and safety. In this
paper, we focus on the safety aspect and propose a
methodology and associated framework for safety assessment
of RSs in the early phases of development. The methodology
relies upon model-driven engineering approach and describes
a preliminary safety assessment of safety-critical RSs using
fault tree (FT) analysis (FTA). The framework supports a
domain specific language for RSs called RobotML and
includes facilities (i) to automatically generate or manually
construct FTs and perform both qualitative and quantitative
FTA, (ii) to make semantic connections with formal
verification and FTA tools, (iii) to represent FTA results in the
RobotML modeling environment. In the case study, we
illustrate the proposed methodology and framework by
considering a mobile robot developed in the scope of the
Proteus project.

I. INTRODUCTION

Modern robotic systems (RSs) are complex and capable
to perform sophisticated tasks in different domains [1][2].
In order to cope with system complexity, engineers consider
new approaches to system development based on
formalized modeling [3]. Model-driven engineering (MDE)
is expected to significantly simplify the support of system
requirements, design, analysis, verification and validation
through a system life-cycle. The use of system level models
enables simulation of the overall performance and behavior
of complex RSs. In addition, MDE gave birth to domain
specific languages like Robotic Modeling Language
(RobotML) [4] to target system development in different
domains. RobotML is built as a UML profile to design,
simulate and deploy robotic applications. RSs can be
defined using appropriate RobotML notations, abstractions
and facilities to automatically generate executable code.
RobotML could be a solution for robotics experts to deal
with variability problems and to hide the lower level
programming details.

N. Yakymets is with the CEA, LIST, DILS, Laboratory of model driven
engineering for embedded systems - Point Courrier 174, Gif-sur-Y vette,
91191, France (e-mail: nataliya.yakymets@ cea.fr).

S. Dhouib is with the CEA, LIST, DILS, Laboratory of model driven
engineering for embedded systems - Point Courrier 174, Gif-sur-Yvette,
91191, France (e-mail: nataliya.yakymets@ cea.fr).

H. Jaber was with the CEA, LIST, DILS, Laboratory of model driven
engineering for embedded systems - Point Courrier 174, Gif-sur-Yvette,
91191, France. He is now with the Laboratoire Génie Industriel, Ecole
Centrale Paris, Grande voie des vignes, 92290 Chatenay-Malabry, France
(e-mail: hadi.jaber@ecp.fr).

A. Lanusse is with the CEA, LIST, DILS, Laboratory of model driven
engineering for embedded systems - Point Courrier 174, Gif-sur-Yvette,
91191, France (e-mail: agnes.lanusse@ cea.fr).

Our research has been inspired by RSs for safety-critical
applications. Such RSs as [1] or [2] are expected to satisfy a
high level of safety. Standards [5] [6] concerned with the
development of safety-critical systems require an
application of specific design flows where system
engineering is conducted in parallel with safety assessment
(SA) as shown in Figure 1. This allows the concept, design
and implementation of safety-critical RS to be developed
with respect to the safety aspects. Each phase of SA flow
implies application of a set of specific methods and
activities. Typical SA methods include preliminary and
system hazard and risk analysis [7], fault tree (FT)
generation and analysis (FTA) [8], failure mode and effects
analysis (FMEA) [9]. Although these well-established
methods provide an efficient support for safety engineers,
they could greatly benefit from a tighter coupling with
system modeling environments. MDE offers facilities to
annotate models with information needed for SA, to
perform validation according to dedicated rules, to write
transformation rules towards formal languages to permit
their analysis by formal tools. It becomes thus possible to
perform model-driven SA by incorporating existing SA
methods and tools into a uniform MDE environment.

Safety
Assessment

System
Development

Concept &
Requirements c Acceptances

Va iterance

Safety Modeling Preliminary Safety Designi / * -
Framework Assessment Optimization \ ,V; Integration S Test

System Safety
Assessment

Figure 1. SA-based life-cycle of system development

In this paper, we aim to contribute to integration of SA
techniques and standards into the MDE environment based
on RobotML. Certain efforts have already been put into
investigation of possible ways of SA through the MDE
process based on the general purpose System Modeling
Language (SysML) [10]. Similar studies are also
undertaken with other modeling languages such as
architecture description language for automotive embedded
systems (EAST-ADL) [11] or architecture analysis and
design language (AADL) [12]. However, these languages
are limited for RS design compared to the domain specific
RobotML language.

We propose a methodology and associated framework
for model-driven analysis of RSs in the preliminary SA
phase (Figure 1.). The safety standards for robotics are not
mature enough and some of them [13] have been still under
development. Therefore the methodology follows the

978-1-4673-6358-7/13/$31.00 ©2013 IEEE 1137

IEC61508 [5], a generic standard on functional safety
design, and describes S A using F T A approach. It leverages
features of RobotML (i) to capture information required for
formal analysis (ii) to propagate S A results back into the
M D E environment. The framework includes metamodels,
profiles, model transformation and F T generation plug-ins,
tools for formal verification and F T A . The use of the
proposed methodology and framework allows the safety
engineer to start S A from the early phases of R S
development which can significantly reduce time and cost
constraints.

We discuss a case study called Robotic Young
Challenge (RYC) which has been designed by the Proteus1

project partners. R Y C addresses problems of autonomous
motions of mobile robots in unknown structured
environment. Its main functionality is outdoor exploration
and target searching. Using this case study, we perform
preliminary S A by F T generation and further qualitative and
quantitative F T A according to IEC61508. We also show
how to use RobotML-based M D E environment to describe
possible effects of failures (or dysfunctional behavior) of
the Proteus R Y C robot and to display generated FTs and
F T A results.

The remainder of the paper is organized as follows. In
section II , we analyze existing methods and tools for S A .
Then we introduce our S A methodology and toolset for RSs
in sections III . In section IV, we present the case study on
S A and conclude in section V .

I I . RELATED WORKS AND PAPER CONTRIBUTION

In our research we focus on the preliminary S A phase of
S A flow shown in Figure 1. The goals of this phase are (i)
to evaluate R S architecture with respect to the list of
possible hazards obtained from the hazard analysis phase
and (ii) to derive safety requirements. R S architecture can
be evaluated using such methods as F T A [8][14][15],
F M E A [9][16], event tree analysis, etc. F T A and F M E A are
complementary methods aiming to analyze propagation of
faults through the system. F M E A is an inductive bottom up
method used to analyze a system on component level and
check what happens on system level. F T A , a deductive top-
down method, does the opposite by defining a state on
system level and checking what can cause this at component
level. In practice, F T A is performed on larger systems,
which makes it more suitable for S A of complex RSs.

F T A was originally developed by H . A . Watson in 1962
at Bell Laboratories [17]. A typical F T consists of the top
event and a set of basic and house events organized with the
logic gates (AND, O R , etc.). The qualitative analysis of F T
aims to find all the minimal combinations of basic events
(called minimal cut sets) resulting in the top event. The F T
quantitative analysis is also often used in probabilistic
computation.

The F T generation approaches fall into several
categories depending on the method used to annotate a
system with its dysfunctional behavior. Structured

1 http://www.anr-proteus.fr

approaches [8][18] use manually created models of failure
behavior. Such approaches are time consuming and rely
upon the ability of the safety engineer to predict the system
behavior and may lead to higher probability of errors.
Another group of approaches is based on the decision table
method [19]. They are quite efficient for small and middle
range systems but may require sophisticated tables for the
large systems with complex multi-level hierarchy.
Approaches based on failure modes injection extend each
component of the nominal system model with a set of
possible failure modes and then model the system
dysfunctional behavior using such an extended model. The
tools based on these approaches (for example,
FSAP/NuSMV [20]) translate an extended model into a
state machine and then use formal verification algorithms to
generate minimal cut sets and construct FTs. In the case of
complex systems, however, the application of such
approaches may result in combinatorial explosion when the
number of failure modes in state machines grows. Some FT
generation approaches are based on failure logic modelling.
These approaches use analytical expressions associated with
the system components to model the possible propagation
of failures. HiP-HOPS [21] or SafetyArchitect2 tools
support failure logic modelling.

T A B L E I. METHODS AND TOOLS FOR F T A

Tools
SA

FT
generation

method
Support of
hierarchical

systems
FTA

Formal
verification

Input
language

Saml

MIN.
CUT
SETS

V

S
V

Saml

KB3

Ma
nual

-

</
-

Figa
ro

HiP
Hops

Analy
tical
expr.

•

</
-

Matlab
EAST-
ADL

FS AP/Nu
SMV

Min. cut
sets

V

S
V

SMV

Our MSA
framework
Analytical
expr., Min.

cut sets
•

</
V

RobotML,
AltaRica,
OpenPSA

The comparative analysis of existing approaches and
tools for FT generation and analysis is given in TABLE I.
We list here only academic approaches, since industrial
solutions generally rely on a part of them. Although some of
these tools [20][21] perform automatic FT generation, their
capabilities are limited for SA of complex RSs. First, they
lack convenient representation of the input system models.
For example, FSAP/NuSMV, SAML [22] or ARC3 tools
use formal symbolic languages such as SMV, SAML [22]
or AltaRica [23] to describe a system. This might require
certain time efforts from the SA engineer to formulate and
enter the model in these formats. Second, they lack a
convenient representation of the final results of SA. In HiP
HOPS, for instance, safety annotations can be entered
through a profile of the EAST-ADL implementation in the
Papyrus4 tool, but there are no elaborated mechanisms to

http://all4tec.net/index.php/en/model-based-safety-analysis/25-safety-
architect-a-mbsa-tool

http://altarica.labri.fr/forge/projects/arc/wiki
http://www.eclipse.org/modeling/mdt/papyrus/

1138

show the results of conducted SA in the system modeling
environment.

In this work, we analyze the possibilities of using
different methods and tools for model-driven SA during the
early phases of RS development. The IEC61508 standard
[5] refers to FTA as a recommended technique to perform
SA in the design phase of system life-cycle. We propose a
methodology to perform a preliminary SA of RSs using
FTA and then to derive the obtained results back into the
RobotML model. To automatically generate FTs from
RobotML models, we combine the approach based on
analytical expression of dysfunctional behavior with formal
verification based on AltaRica language. The AltaRica
model is automatically generated from the RobotML
annotated model using transformation rules. The
methodology was implemented in a framework which
integrates formal verification and FTA algorithms in the
MDE environment supported by the Papyrus editing tool for
RobotML. The framework contains model transformation
and FT generation plug-ins, as well as profiles for model
annotation and FT visualization. The qualitative and
quantitative FTA is carried out with built-in ARC and
XFTA5 engines.

In the next sections, we shall describe the methodology
and framework, and show how they can be used for SA of
RSs.

III. METHODOLOGY AND FRAMEWORK

The methodology is dedicated to the preliminary SA of
safety-critical RSs. Figure 2. illustrates the SA flow based
on the use of the proposed methodology. The following
information is taken as input data:

• the SA recommendations taken from the IEC61508
standard;

• the list of possible hazards derived from the hazard
analysis phase of SA flow;

• the system architecture defined as a multi-level
network of RobotML components like Sensors,
Actuators, etc.

RobotML Model IEC6150S Possible hazards .
A ψ *.uml X

Model Annotation

ψ *.uml

Model Translation
from RobotML to Altarica

vjr '.alt
Fault Tree Generation

ψ *.psa
Qualitative &. Quantitative

FTA
ψ *.uml, *.txt

Delivery of FTA Results to
RobotMLModel

Figure 2. The SA methodology

First, a RS is designed with the Papyrus platform using
RobotML language. Second, we define the sufficient finest
level of RS architecture where SA will be conducted and
then annotate a RobotML model with the possible failure
behavior at this level. While defining failure modes of the
components, information on the possible hazards derived
from the hazard analysis is taken into account. RS
dysfunctional behavior is annotated using analytical
expressions. Once the annotation has been done, the failure
states and events related to the component failure modes are
automatically extracted, and the RobotML model is
converted into the AltaRica language. The checking of the
AltaRica model is performed by the ARC tool. This tool
also computes minimal cut sets for the considered model.
Based on this information we automatically generate FTs
and represent them in the Open-PSA format6 . Finally, we
perform FT qualitative and quantitative analysis according
to IEC61508 and compute a set of factors (like probability
of the top FT event, contribution of minimal cut sets, etc.)
to evaluate system safety. In order to make SA results more
representative, we display FTs in RobotML modeling
environment with FT profile.

The complexity of the proposed methodology is strongly
linked to the number of levels in the system hierarchy and to
the scalability of the formal verification tool used. If the
number of potential failure modes increases, the risk of
combinatorial explosion is higher. The proposed
methodology provides a possibility to control the
granularity of SA through the assessment process by
choosing the finest level of RS architecture where the
components are annotated with the dysfunctional behavior.
Therefore it is a flexible instrument to control the number of
failure modes and to decrease the risk of combinatorial
explosion.

Eclipse + Papyrus

Fault
Tree

Profile
k J

Operi-
PSA
Meta-
model

RobotML
Profile

Annota
tion

Profile
.

AltaRica
Meta-
model

I)
i l

XFTA

-FT
quantitative
analysis

Fault Tree
Generator

Script
Generator

RobotML to
AltaRica Converter

"-··.

To £

ARC/AltaRica
-Minimal cut sets generation

Figure 3. The architecture of the framework

The architecture of our framework is represented in
Figure 3. It has been implemented using java under Eclipse
Modeling Framework (EMF). The framework contains two
sets of tools including safety profiles and metamodels and
tools for SA at the preliminary SA phase including FT
generation and analysis.

In order to illustrate the proposed SA methodology and
framework as clearly as possible, we consider the example of

' http://www.lix.polytechnique.fr/~rauzy/xfta/xfta.htm ' http://www.open-psa.org

1139

a mobile robot and go through the safety modeling flow
associated with our approach in the next section.

IV. CASE STUDY

We validate the methodology and framework described
in the previous sections by analyzing one of the case studies
developed in the scope of the Proteus project. The
considered example is a scenario defined by Robotic Youth
Challenge (RYC) and deployed in a WifiBot robot7. The
R Y C targets autonomous motion of mobile robots in
unknown structured environment. The main scenario for the
robot is outdoor exploration and target searching. The R Y C
architecture developed in RobotML using RobotML
modeling environment is shown in Figure 4. The top
hierarchical level includes nine components: Mission
Generator generates R Y C missions, Path Planner
calculates a path for the R Y C robot using the global map
and information on current mission and position, Navigator
delivers local trajectory for the pilot taking into account the
local map, Pilot calculates the left and right wheel speed
setpoints that the robot is supposed to reach to follow the
input trajectory, Servoings transforms the speed commands
to the format (tics) used by the wifibot robot, Sensors
captures information on surrounding environment,
Proximetry builds a map in polar coordinate with only
meausres from sensors directly printed in it, Local Map
builds a relative Cartesian 2D map with obstacles placed in
it, Global Map builds an absolute map of the scene.

In this example, we consider a hazardous event when
"The RYC robot does not follow the commands". In other
words, this will be a top event of the tree.

A. Model Annotation
The R Y C model described in RobotML is annotated

with failure behavior. Information on hazards, derived from
the hazard analysis according IEC61508, is taken into
account while defining possible failures of R Y C
components. The dysfunctional behavior is represented as a
set of analytical expressions showing how deviations in the
component outputs can be caused by internal failures of the
component and/or possible deviations in the component
inputs. Only components of the finest level defined for S A
(or basic components, BCs) are annotated with the
analytical expressions. For example, the output deviation
expression for the output Path of the B C called Path
Planner (Figure 4.) has the following format:

(NOT f) AND Mission_Type AND Position AND Map.

It means that the output Path does not propagate failure
behavior if (i) there is no failure/ "Path Planner internal
failure" of the component Path Planner and (ii)
information on the input ports Mission_Type, Position and
Map is correct.

The dysfunctional behavior of the components
representing higher hierarchical levels is simulated by
model checking engine. It is a composition of state
machines obtained after model transformation into the

http://www.wifibot.com

AltaRica language from the output deviation expressions of
BCs.

We assign output deviation expressions using a UML
profile mechanism in Papyrus environment. The framework
contains an annotation profile enabling to stereotype each
BC output port with deviation expressions. During the
model translation process, the failure states and events
related to the RYC components are automatically extracted
from these expressions.

B. Model Translation
The next step is to extract information on the failure

states and events from the output deviation expressions and
to convert the RobotML model into the AltaRica language.
The transformation method used for conversion of
RobotML model to AltaRica language relies upon the MDE
approach. TABLE II. lists the mapping we defined for our
transformation algorithm implemented in the framework.

T A B L E II. TRANSFORMATION RULES

Concept
Component
type
Component

/Prototype
Flow variable
/Type

/Direction
Connection
components

Output
deviation
expression

RobotML
Robot

Software, Hardware, RoboticSystem,
SensorSystem, ActuatorSystem,
CameraSystem, GPSSystem, Object-
DetectionSensorSystem, Sensor-
Driver, ImageSensorSystem,
EngineSystem, WheelSystem,
ObjectTrackingSensorSystem,
LocalizationSensorSystem,
SimulatedSystem
Part
DataFlowPort
/ Type

/ Direction
Connector

Stereotyped DataFlowPort

AltaRica
Node main

Node

Field:sub
Field: Flow
/bool,integer,
float,domain
/In , Out
Assertion

Failure states and
events, output
assertions

Descr.
RS under
analysis
RS
components

RS ports

Connection
between
components
Component
failure
behavior

By default, we assume that the RYC robot is operating
normally. Consequently, all extracted failure states
associated with BCs (or nodes in AltaRica) are initialized as
"false" in AltaRica. Based on information on the extracted
failure states, we create a set of events resulting in the
occurrence of these states and then generate appropriate
transactions. The declaration of the main node in AltaRica
model relies upon information extracted from RobotML top
architecture diagram: the system parts are translated into
sub-nodes connected via assertions.

C. Fault Tree Generation and Analysis
In this phase RYC is assessed by using FTA method.

The framework uses integrated model checking engine
called ARC and script generator to compute minimal cut
sets for a considered top event. Then FT is built with FT
generator. We consider only static FTs, however, the ARC
engine can provide the facilities to further analyze a
dynamic behavior of RSs.

FT generation includes several steps. First, we obtain all
possible minimal combinations of component failures
violating a given failure event. Second, we group these
combinations, called minimal cut sets, in a tree structure as

1140

follows. The events from each minimal cut set are
considered as basic and grouped using A N D gate. Then we
connect all the A N D gates to the O R gate which, in turn, is
linked to the top event.

The qualitative F T A has shown that the top event "The
RYC robot does not follow the commands" occurs if any
sequence of basic failure events given in T A B L E III.
occurs. Once a F T has been obtained, we carry out a
quantitative F T A using integrated X F T A engine. This
engine performs quantitative analysis of FTs and provides
information on the top event probability for different
mission times, importance factors of basic events, common
cause failure analysis, etc. According to the standard
IEC61508, we assess the probability of the considered top
event based on the statistical data on failure rates of basic
events of the considered components. In addition, the
probability and contribution of each minimal cut set are
computed (TABLE III.). Moreover, we define the most
critical part of R Y C , the Sensors sub-system, since its
failure has the highest impact on the failure of the whole
R S .

D. Propagation of FTA Results
The automatically generated F T can be either

represented in open-PSA format, the F T specific format
developed for describing complex FTs, or in a graphical
form via dedicated profile. By using the F T profile, we can
present FTs that consist of basic, house and top events
organized with A N D or O R gates, as well as F T A results.
Thus, the use of such a profile helps to construct FTs in
RobotML/Papyrus environment and provides a better
connection between system functional and dysfunctional
behavior through M D E .

V. CONCLUSION

In this work, we propose the methodology and
framework which provide a support for safety engineers by
integrating safety techniques within a model-driven
engineering process. The methodology relies on the generic
standard on functional safety design IEC61508 and shows
how to automate safety assessment process of robotic
systems in the early development phases. The use of the
proposed methodology aims to fill the gap between system
modeling and safety assessment tools and helps to better
cope with system engineering time and cost constraints.
Indeed, the results of preliminary safety assessment can
reveal the most safety-critical parts of the system which
should be mitigated.

To implement the proposed methodology, we develop a
safety modeling framework which automates safety
assessment of robotic applications in the RobotML-based
modeling environment. The framework is an alternative to
such safety assessment tools as HiP-HOPS, FSAP/NuSMV,
KB3 , S A M L . As opposed to these tools, the framework is
oriented to the robotic domain and provides the facilities of
RobotML domain specific language to develop safety-
critical robotic applications. Furthermore, the framework
supports a common system model for system and safety

engineers, by using U M L profile mechanisms in Papyrus.
This allows to integrate all data linked with safety
assessment in the same system model, as well as to
customize an interface to show different results within one
uniform environment and reuse this information for further
reliability studies.

ACKNOWLEDGMENT

The authors thank Hadi Jaber for his strong contribution
to this work during his internship in CEA.

REFERENCES

[I] J J . Biesiadecki, M.W. Maimone, "The Mars exploration rover
surface mobility flight software: driving ambition," IEEE Aerospace
Conference Proceedings, March 2006, Montana, USA.

[2] A. Rankin, C. Bergli, S. Goldberg, and L. Matthies, "Passive
perception system for day/night autonomous offroad navigation," In
SPIE U G V Symposium, Orlando, FL, April 2005.

[3] J. A. Estefan, "Survey of model-based Systemse (MBSE)
methodologies," Rev A, Incose MBSE Focus Group, 2007.

[4] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, M. Ziane, "RobotML,
a domain-specific language to design, simulate and deploy robotic
applications," Int. Conference on Simulation, Modeling and
Programming for Autonomous Robots, pp. 149-160, 2012.

[5] IEC, 61508: 1998 and 2000, part 1 to 7. Functional safety of
electrical, electronic and programmable electronic systems, 2000.

[6] ARP-4754: Certification considerations for highly-integrated or
complex aircraft systems, Society of Automotive Engineers (SAE)
standard, 1996.

[7] IEC 61882: Hazard and operability studies, application guide, 2001.
[8] Fault tree handbook with aerospace applications. N A S A , 2002.
[9] IEC 60812: Analysis techniques for system reliability - Procedures

for F M E A , 1985.
[10] P. David et al., "Reliability study of complex physical systems using

SysML," Reliability Engineering and system Safety, Elsevier, pp.
431-450, 2010.

[II] P. Cuenot, D J . Chen, S. Gerard, H. et al. Towards improving
dependability of automotive systems by using the E A S T - A D L
architecture description language. Architecting Dependable Systems
IV, Lecture Notes in Computer Science, vol. 4615, pp, 39-65, 2006.

[12] P. H. Feiler, D. P. Gluch, "Model-based engineering with A A D L : an
introduction to the S A E architecture analysis & design language,"
Addison-Wesley Professional, 1st ed., pp. 496, 2012.

[13] ISO/FDIS13482: Robots and robotic devices - Safety requirements
for non-industrial robots - Non-medical personal care robots (Final
Draft International Standard).

[14] C. Carreras, I.D. Walker, "Interval methods for fault-tree analysis in
robotics," IEEE Trans. on Reliability, Vol. 50, No. 1, 2001, pp. 3-11.

[15] I.D. Walker, J.R. Cavallaro, "Failure mode analysis for a hazardous
clean-up manipulator," Reliability Engineering and System Safety,
Special Issue on Safety of Robotic Systems, Vol. 53, No3,
September 1996, pp. 277-290.

[16] M.L. Visinsky, J.R. Cavallaro and I.D. Walker, "Robotic fault
detection and fault tolerance: a survey," Reliability Engineering and
System Safety, Vol. 46, #2, 1994, pp. 139-158.

[17] C. Ericson, "Fault Tree Analysis - A History," Proceedings of the
17th International Systems Safety Conference, 1999.

[18] I. Renault, et al.,"KB3: computer program for automatic generation
of fault trees," Rei. Maintain. Symp., pp. 389 -395, 1999.

[19] J. D. Andrews, J. J. Henry, "A computerized fault tree construction
methodology," in Proc. of the Institution of Mechanical Engineers,
1997; 211(E), pp. 171-183.

[20] M. Bozzano, Ch. Jochim, "The FSAP/NuSMV-SA safety analysis
platform," Int. Journal on Software Tools for Technology Transfer,
2007,v.9, Noi, pp. 5-24.

[21] M. Walker et al., "Compositional temporal fault tree analysis.
Computer safety, reliability, and security," Lecture Notes in
Computer Science, vol. 4680, 2007, pp. 106-119.

1141

[22] M. Gudemann, F. Ortmeier, "A Framework for qualitative and
quantitative formal model-based safety analysis," In Proc. 12th IEEE
High Assurance Systems Engineering Symp., pp. 132-141, 2010.

[23] A Arnold, A. Griffault, G. Point, A. Rauzy, "The AltaRica language
and its semantics," In Fundamenta Informaticae, vol. 34, pp 109-
124, 2000.

TABLE III. FAULT TREE ANALYSIS RESULTS

Qualitative FTA
N
1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16
17

18

19

20

21

22

23

24

25

26

27

28

29
30
31

32

Minimal Cut Set
(sensors.camera_FireWire.Incorrect_video_c
apturing_occurs,
sensors .camera_FireWire. Incorrect_calibratio
n occurs)
(sensorsxarnera_FireWire.mteraal_Camera_f
ailure_occurs)
(sensors.LaserRange.Incorrect_laser_scan_oc
curs)
(pilot.pilot.Pilot_doesnt_avoid_obstacles_see
n in approximetric map occurs)
(pilot.pilot .Pilot_follows_wrong_tr ajectory_
when_calculaÜng_set_points_in_operating_sp
ace occurs)
(pilot.iKM. IKM_doesnt_transform_velocities
_from_operational_to_articular_space_occurs
)
(navigator.navigator.Incorrect_velocity_analy
sis_occurs,
navigator.navigator.Incorrect_position_analys
is_occurs,
navigator.navigator.Incorrect_local_map_ana
lysis_occurs,
navigator.navigator.Incorrect_path_analysis_
occurs)
(navigator .navigator .Internal_failure_of_Navi
gator_occurs)
(missionGenerator.mission.internalFailure_oc
curs)
(sensors.wifibot_Frame_Out.internalFailure_
occurs)
(sensors. odometer .intemalFailure occurs)
(proximetry. amer_I dentif. Incorr ect_interpr eta
tion camera results occurs)
(proximetry. amer_I dentif. Intemal_failur e_Am
er Identif occurs)
(proximetry.proximetric_Map.Incorrect_bit_
map generation occurs)
(proximetry.proximetric_Map.Internal_failure
Proximetric Map occurs)

(sensors.IMU.internalFailure occurs)
(proximetry. super DKM .internalFailure_occur
s)
(pathPlanner.path_Planner.Wrong_path_gene
ration based on correct input data occurs)
(pathPlanner .path_Planner. Intemal_failure_of
Path Planner occurs)

(proximetry. super DKM. Wrong_velocity_calc
ulation using correct input data occurs)
(proximetry. super DKM. Wrong_position_calc
ulation using correct input data occurs)
(proximetry. super DKM. Intemal_failure_Supe
r DKM module occurs)
(local_Map. amer_Loc. Intemal_failure_Amer
Relative occurs)

(local_Map.local_Map.Incorrect_analysis_of_
proximetric_map_occursf
local_Map local_Map. Incorrect_analysis_of_
GPS_data_occurs,
local_Map.local_Map. Incorrect_analysis_ofv
elocity_occurs,
local_Map local_Map. Incorrect_analysis_of_
position occurs)
(local_Map.local_Map.Memory_failure_occu
rs)
(local_Map.local_Map.Internal_failure_Local
Map occurs)

(global_map. global_Map. Incorrect_analysis_
of_position_data_occursf
global_map.global_Map.Incorr ect_analysis_o
f_local_map_data_occursf
global_map.global_Map.Incorr ect_analysis_o
f GPS data occurs)
(global_map. global_Map. Intemal_failure_of_
GlobalMap module occurs)
(sensors.GPS.Internal GPS failure occurs)
(in Robot. isAbsent)
(servoing.servoings. Incorrect_interpr etation_
of_command_Left_occurs,
servoing. servoings .Incorr ect_interpretation_o
f command Right occurs)
(servoing.frame_In.Internal_failure_of_modul
e WifiBot Frame In occurs)

Top Event
The RYC robot does not follow the commands

Quantitative FTA
Probability
0.0000045

0.008

0.004

0.0065

0.003

0.002

0.0015

0.005

0.002

0.003

0.0015
0.005

0.003

0.0065

0.006

0.001
0.007

0.003

0.0065

0.003

0.0035

0.006

0.005

0.0000157

0.007

0.0015

0.0000167

0.004

0.008
0.005
0.0000385

0.0045

Contribution
0.0000370239

0.0658203

0.0329102

0.053479

0.0246826

0.0164551

0.0123413

0.0411377

0.0164551

0.0246826

0.0123413
0.0411377

0.0246826

0.053479

0.0493652

0.00822754
0.0575928

0.0246826

0.053479

0.0246826

0.0287964

0.0493652

0.0411377

0.00011565

0.0575928

0.0123413

0.00005877

0.0329102

0.0658203
0.0411377
0.00031676

0.0370239

Probability
0.121543

Figure 4. The RYC architecture

1142

