
HAL Id: cea-01810030
https://cea.hal.science/cea-01810030

Submitted on 7 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation-Driven Optimization of Real-Time Control
Tasks

Matteo Morelli, Yasmina Seddik, Marco Di Natale, Chokri Mraidha, Sara
Tucci-Piergiovanni

To cite this version:
Matteo Morelli, Yasmina Seddik, Marco Di Natale, Chokri Mraidha, Sara Tucci-Piergiovanni.
Simulation-Driven Optimization of Real-Time Control Tasks. 2015 IEEE 17th International Con-
ference on High Performance Computing and Communications (HPCC), 2015 IEEE 7th International
Symposium on Cyberspace Safety and Security (CSS) and 2015 IEEE 12th International Conf on
Embedded Software and Systems (ICESS), Aug 2015, New York, United States. �10.1109/HPCC-
CSS-ICESS.2015.276�. �cea-01810030�

https://cea.hal.science/cea-01810030
https://hal.archives-ouvertes.fr

Simulation-driven optimization of real-time control
tasks

Matteo Morelli, Yasmina Seddik
CEA, LIST, Laboratory of Model-Driven

Engineering for Embedded Systems

Email: {matteo.morelli, yasmina.seddik}@cea.fr

Marco Di Natale
Scuola Superiore S. Anna

Email: marco@sssup.it

Chokri Mraidha, Sara Tucci-Piergiovanni
CEA, LIST, Laboratory of Model-Driven

Engineering for Embedded Systems

Email: {chokri.mraidha, sara.tucci}@cea.fr

Abstract—In this paper we define a simulation-driven process
to improve the design of real-time control systems. The process
aims at exploring the interplay betwen control performance and
real-time behavior of control tasks. The traditional design flows
based on the definition of implicit tasks deadlines on control
functions are extended to include the exploration of relaxed
deadlines and order of execution constraints. Relaxed deadlines,
coupled with an optimization approach to find feasible task sets,
allow the exploration and evaluation of different task implemen-
tations. The definition of relaxed deadlines and the evaluation
of task implementations is performed using the T-Res (Time and
Resource) scheduling simulation framework [21] under Simulink.
The problem is defined as a quadratic optimization problem using
a tight upper bound formulation of the task response times. The
application of the method to a quadcopter case study shows how
the consideration of the control performance in the definition of
the timing parameters of interest can lead to an improved design.

I. INTRODUCTION

The design of real-time control systems is typically per-
formed in two steps. First, the control system is designed as a
graph of functional blocks activated at a given rate (sampling
period). Then, the software implementation is designed as a
set of real-time tasks in charge of executing the functional
code. The sampling periods of the functions, determined in the
control design phase, become timing constraints in the software
implementation phase, and deadlines are often assumed as
implicit, meaning that each task instance must complete before
the next activation. The software designer must define a
feasible task set where each task meets its deadline.

In real-time control systems, however, the interplay of the
control performance, timing constraints and scheduling effects
can be somewhat subtle and the traditional design flow may
be ineffective and result in deadlines tighter than necessary. To
clarify this point let us introduce a case study of a quadcopter
system adapted from [22] and developed in Simulink. The
Simulink language by Mathworks is often used in the industry
to model the (continuous time) set of differential equations
defining the dynamics of the controlled system (or Plant)
and the (discrete-time) model of the controller functionality,
to be implemented in software. The Simulink model of the
quadcopter system is shown in Figure 1.

The Simulink model of the controller functionality contains
a set of subsystem blocks, representing the processing to be
performed at each iteration of the control loop. In Simulink,
these computations are specified as executing in logical time

w_all

X

Telemetry

w X

Quadrotor

state vector

tau_pr

tau_y

thrust

w

CtrlMix_s6

0 pr_d

X

tau_pr

AttitudeLoop_s3

t

xy_d

yaw_d

z_d

SetPointGen
_s1

xy_d

X

R_y

pr_d

PositionLoop_s2

y_d

X

R_y

tau_y

YawLoop_s4

z_d

X

thrust

AltitudeLoop_s5

Controlled
system

Controller

Fig. 1: Simulink model of the quadcopter flight-control scheme
(adapted from [22])

with a given period and under the synchronous assumption,
that is, each reaction must complete before the next event in
the system.

In our sample quadcopter system, the physical system is
represented by the white box on the right (Quadrotor). The
other subsystems represent (left to right): the generator of the
setpoints of the desired trajectory, the position, yaw, altitude
and attitude control loops and the merger of the control actions
to drive the actuators. They have different execution rates, that
range from 10 Hz for reading (generating) set-points to 50
Hz for controlling the vehicle attitude. The quadcopter model
is used as a running example and case study throughout the
paper.

When the model is implemented in code, two code func-
tions are generated for each subsystem: one performs its
initialization at startup, and another (called Step) dynamically
performs the update of the subsystem outputs and state at each
periodic execution of the control loop.

The simulation results retain their validity upon condition
that the implementation preserves the execution semantics. The
functions implementing the subsystems must be activated at
a rate matching the logical time specification of the model,
they must execute in an order consistent with the input-output
dependencies of the model and the code implementation of
each subsystem must complete before the next trigger event.

The first constraint is taken into account by executing
the subsystem functions in tasks activated with a period that

2015 IEEE 17th International Conference on High Performance Computing and Communications (HPCC), 2015 IEEE 7th

International Symposium on Cyberspace Safety and Security (CSS), and 2015 IEEE 12th International Conf on Embedded Software

and Systems (ICESS)

978-1-4799-8937-9/15 $31.00 © 2015 IEEE

DOI 10.1109/HPCC-CSS-ICESS.2015.276

991

corresponds to the subsystem period. The order of execution is
satisfied by executing the predecessor subsystem code before
the successor (when running in the same task) or by executing
the predecessor in a task with higher priority. Finally, the last
requirement translates into deadlines that apply to the tasks
running the control code (each task must have a deadline
smaller than or equal to its period).

When an implementation according to these rules is not
possible because the resulting task set would not be schedula-
ble, the designer is forced to explore other options, including
possibly relaxing deadlines and allowing for additional delays
in the control functions.

Previous work [26] in the context of real-time task design
optimization has focused on the assumption of implicit dead-
lines, performing the assignment of the subsystem functions
to tasks in such a way that a timing metric (typically latency-
dependent) is optimized. However, a task configuration that is
only optimized with respect to timing metrics can easily be
inefficient.

A. Aim of this work

In this work we define a simulation-driven process intended
to improve the design flow of real-time control systems. The
defined process aims at exploring the interplay between control
performance and real-time behavior for a better design.

To represent computation and communication delays in
Simulink, a possible solution is provided by the TrueTime
toolbox [31]. TrueTime allows to model multi-task real-time
kernels and networks in Simulink models of networked em-
bedded control systems, and study the impact of lateness and
deadline misses on controls. In TrueTime, the task model and
the control logic are coded as a set of MATLAB functions. As
a result, the integration of TrueTime with existing Simulink
control toolboxes and models is difficult and requires substan-
tial rewriting.

T-Res [21] is a novel Simulink-based co-simulation frame-
work that enables the evaluation of the impact of latency
and jitter on the performance of control functions. in T-Res
the scheduler and task model are explicitly represented by
Simulink blocks, interacting with the blocks of the functional
model. Accordingly, T-Res integrates seamlessly with existing
Simulink models and toolboxes, with only limited and local-
ized changes.

Our design process is in three stages. In the first stage,
relaxed deadlines are obtained on an estimate of control
performance with respect to latency. Simulations are performed
on the Simulink model of the controller by applying increasing
delays on the output ports of each subsystem, one subsystem
at a time. The simulation runs aim at estimating the maximum
delay that can be applied to each subsystem in isolation before
the control performance deteriorates in an unacceptable way.

In the second stage, the mapping (or implementation)
of subsystems onto periodic tasks scheduled by priority is
computed using an optimization formulation. To find an effec-
tive mapping (functions into tasks and priority assignment to
tasks) we encode the problem as a mathematical optimization
process. The problem is quadratic, but formulated as a Mixed-
Integer Linear Programming (MILP), encoding the response

time formulation that is obtained from schedulability analysis
theory as a set of linear constraints. Different metrics are tried
and evaluated according to the simulated performance results.
Different mappings considering both minimal deadlines and
relaxed deadlines are considered.

In the third stage, the task mappings obtained as optimal
solutions by the MILP solver are evaluated using the T-Res
framework, to estimate the control performance and compare
the effectiveness of different metric functions and approaches.

B. Related work

Several approaches have been proposed in the literature
to optimize control performance under schedulability con-
straints. In [3], tasks periods are selected to optimize control
performance on a monoprocessor system with the EDF unit
utilization bound. The work is extended in [5] by considering
the impact of control delays on performance. In [11], task pe-
riods are dynamically adapted to optimize the performance of
controls within the schedulability boundary for a uniprocessor
platform.

The study of the optimal priority-based network scheduling
with respect to controls performance can be found in [9].
In [6], a genetic algorithm is used to select task periods and
scheduling to optimize the control performance on a distributed
platform. An extension of the algorithm applies to FlexRay
networks [10]. In [7], task sampling periods and bus scheduling
are synthesized for distributed time-triggered (FlexRay-based)
platforms. The sampling periods are enumerated from a set
of possible values and the problem is solved by integer linear
programming (ILP). Most recently, in [12], both the control
quality (in the average-case) and the control robustness (in the
worst-case) are considered in the exploration of sampling pe-
riods, system scheduling and control synthesis. The controller
periods are optimized by using the coordinated search method
combined with the direct search method.

Most of related works define design processes based on
an analytical formulation of control and real-time scheduling
co-design problem. They are tied on specific control-oriented
performance metrics, usually from the optimal-control theory.
Our approach couples MILP with simulation. In general, sim-
ulation allows to capture effects like cache faults, preemption
of message transmission attempts, task migration delays, finite
copy time of messages between driver and adapter levels,
etc., that are difficult to model analytically. We synthesize
SW implementations of controls by solving multiple MILP
problems with different criteria and constraints related to real-
time performances. Then, we use simulation to evaluate the
effects of the different SW implementations on the control per-
formances, and select the implementation having the smallest
impact.

The paper is organized as follows. In Section II, we
describe the system model. In Section III, we describe the
simulation framework and the computation of the relaxed
deadlines. In Section IV we describe the optimization model, in
particular the considered constraints and the optimized metrics.
In Section V the proposed approach is run on the quadcopter
case study. Finally, we draw some conclusions in Section VI.

992

II. SYSTEM MODEL

We consider systems with a single CPU, on which a set
of n functions F = {f1, f2, . . . fn} obtained as the code
implementation of Simulink models must be executed. Each
function fi is the code implementation of a subsystem si (for
convenience we assign the same index to a subsystem and its
function) and has a worst-case execution time (WCET) Ci > 0
and a period Pi > 0 (matching the period of the subsystem
they realize), i = 1, . . . , n.

Simulink subsystems communicate by exchanging signals.
In the code implementation these signals are realized as (possi-
bly shared) communication variables. Each signal has a sender
and a destination subsystem/function. In the model simulation,
it is transmitted in zero logical time. Signals dependencies
correspond to order of execution constraints when the outputs
of the receiver subsystem are computed as a function of its
input values (as opposed to its state only). Functions and
signals can thus be represented as a directed acyclic graph
in which nodes are functions and edges are signals. We use
the notation fi → fj to indicate that fj must execute after
fi according to the transitive closure of the order of execution
constraints. Sink functions are those functions that do not have
successors in the graph, and source functions have at least
one signal that is not received from any predecessor (meaning
that they process information coming from sensors, or external
input.)

We define the set of all graph paths P = {p1, p2, . . . pq}
from a source to a sink.

A mapping is determined by:

• A partition of functions f1, . . . , fn on tasks
T1, . . . , Th, h ≤ n: each function is assigned to
exactly one task. The functions are called by the task
in order.

• An order of execution of functions within a task.

• The priority level πi that is assigned to each task τi.
Priorities define a total order on tasks. By extension,
the priority level of any function executed by τi is also
πi.

Inter-task communications are performed through finite
length buffers with suitable size [28]. A function samples its
inputs (resp. produces its output) at execution start (resp. end).

A. Response time analysis

The performance of the code implementation of the control
algorithms depends on their latencies and jitter, which are in
turn dependent on the response times of the functions. In order
to estimate these response times, we make use of established
and recent results on schedulability analysis.

1) Deadlines within the interarrival times: When response
times are guaranteed (by construction or by adding constraints)
to be less than or equal to periods, the worst case response
time of each function can be computed in correspondence
to its critical instant, when the task in which it executes is
activated at the same time with all other higher priority tasks.
Analytically, the worst-case response time ri of fi can be

computed as (from [23], a straightforward extension of the
task-based formulation for periodic tasks in [1]):

ri = Ci +
∑

j∈prec(i)
Cj +

∑
j∈hp(i)

⌈
ri
Pj

⌉
Cj (1)

where prec(i) is the set of functions that are in the same task
as fi but invoked before it, and hp(i) indicates the set of all
functions executed by tasks with priority higher than the task
implementing fi.

2) Deadlines larger than the interarrival times: When the
system also allows for functions response times that are larger
than periods, that is, when a task may be activated again when
it is still awaiting its completion, the previous formula (1) may
be optimistic and the exact formulation (as in [24]) requires
considering all the task activations in the busy period of level
πi. The exact formulation becomes very difficult to encode in
a formal linear or convex optimization formulation and it is
therefore discarded in favor of a recent upper bound ri ≥ ri,
as defined in [2].

ri =
Ci +

∑
j∈prec(i) Cj +

∑
j∈hp(i) Cj(1− Uj)− γi

1−∑
j∈hp(i) Uj

(2)

where Uj = Cj/Pj is the utilization of function fj , and γi is
defined as:

γi =
∑

j,k∈hp(i),j<k

min{Pj , Pk}UjUk (3)

III. TIME AND RESOURCE AWARE SIMULATION IN

SIMULINK

The evaluation of the performance of the control functions
by simulation, considering the functions and tasks execution
times and scheduling delays is performed in Simulink using
the T-Res [21] co-simulation framework. T-Res is designed
according to object-oriented design patterns to provide the
integration of the Simulink simulation engine with a real-time
scheduling simulator that complies with a simple event API.

T-Res is implemented as a set of custom blocks repre-
senting the scheduler and the tasks that execute at all major
steps. Every time a major step occurs, the block implementing
the scheduler within the operating system kernel is invoked
and processes (if there is any) the task arrival events. Next, it
queries the scheduling simulator to determine future events
(execution completions and context switches) and uses the
Simulink API to define major steps in the simulation at all
the points in time in which a task scheduling event occurs.

Tasks execute according to a model of (time-consuming)
computations. In T-Res the execution of a task proceeds
according to units called segments that correspond to the
execution of the functions that are called by the task main code
and implement the subsystems in the model. Each segment
is identified by an execution time and all segments execute
in a sequence. Segments represent the execution of Simulink
subsystems and their execution order in a task must match

993

Task1

C D E

BA

A AB B

C D D E

activate
segment

terminate
segment

D

PID

y

r

u

f() f()

Latch

D Q

segment
terminate

segment
activate

Task2

Fig. 2: Segments execution model in T-Res.

Task1

activ

next_instr_duration

Kernel

activ

duration

trigger

[T1]

[S_1_1]
[F_1_1]

[A1]

[A3]

[A2]

[T]

[F_1_2]
[S_1_2]

[T2]

[T1]

[T]

[A1]

[T3]

boolean

Aperiodic
Activations
Pattern

Poisson
Integer

f()

Fig. 3: Interfaces of T-Res Kernel and Task blocks.

the order of execution of subsystems. The time duration
of each segment corresponds to the execution time of the
code implementing the subsystem. The start and completion
times of the segments correspond to the times in which the
corresponding subsystems read or sample their inputs and
produce their outputs.

To synchronize in Simulink the completion of the segments
with the production of the output values, the activation of the
Simulink subsystems is changed from periodic to function
activated and a latch barrier is added on all their outputs.
Figure 2 shows the activation mechanism: when a segment
starts executing, the subsystem is activated; the output signals
are latched and enabled when the segment terminates. The
signals activating a subsystem (and its input sampling) and
its output latch are generated by the task blocks upon the
beginning of the execution and the completion of the task
segment.

The actual implementation of T-Res relies on two custom
blocks, namely Kernel and Task, implemented as C++ S-
Functions. Blocks’ input/output interfaces are shown in Fig-
ure 3. The block Task models one instance of a task that con-
sists of the serialized execution of the segments/subsystems.
Task is a triggered subsystem, executed on the occurrence of
a function call event received on its port f(). Its output port
activ issues activation and termination events to the task
segments; port next_instr_duration outputs a scalar
signal representing the duration of next segment executed by

the task. The duration of segments is set by a variable in the
Matlab workspace. The computation time of a segment can be
fixed or random (e.g., uniform and exponential distributions).

The block Kernel models an event-based RT kernel and
the scheduler inside it on a single- or multi-core computer
node. It is responsible for keeping the scheduling simulation
aligned with the system simulation. At each activation, it
checks for any aperiodic requests. If there is any, it activates
the corresponding aperiodic tasks. Next, it advances the RT
scheduler simulator. Two types of events are relevant for the
simulation: the segment completion and task completion. In
the first case, Kernel reads the input signal on the port
duration and dynamically creates a new instruction for the
corresponding task. In the second case, Kernel resets the
internal state of the corresponding task. T-Res is open-source
and is released under the terms of the 3-Clause BSD License.

A. Finding the maximum subsystem delays using T-Res: the
quadcopter example

The quadcopter model of our case study (Figure 1) is
evaluated on a path in which it takes off and flies in a circle at
constant altitude, while spinning slowly around its Z-axis. The
inputs are the speeds of the four rotors; the output is the 12-
element state vector with the position, velocity, orientation and
orientation rate of the quadcopter. The actual vehicle velocity
is assumed to be estimated by an inertial navigation system
or GPS receiver (i.e., there is no velocity estimator in the
Simulink model).

The control strategy involves multiple nested loops that
compute the required thrust and torques so that the quadcopter
moves to the desired set-points. Each control loop is a Simulink
subsystem executing at its rate. A suffix _si is appended at
the name of each control subsystem in the figure to identify its
code implementation fi. In the following, for sake of simplic-
ity, we will use the numeric indices of subsystems to refer to
the corresponding functions in the SW task implementation.

The periods of the subsystems and functions are: P1 =
100ms, P2 = 20ms, P3 = 20ms, P4 = 50ms, P5 = 25ms and
P6 = 20ms.

state vector

w_all

X

Telemetry

tau_pr

tau_y

thrust

w

CtrlMix_s6

0 pr_d

X

tau_pr

AttitudeLoop_s3

w X

Quadrotor
t

xy_d

yaw_d

z_d

SetPointGen
_s1

y_d

X

R_y

tau_y

YawLoop_s4

z_d

X

thrust

AltitudeLoop_s5

f() activ

next_instr_dur

Task1

[A]
[S2]

[T]

[A]
[T]

activ

duration

trigger

Kernel

[]

[F2]

f()xy_d

X

R_y

pr_d

PositionLoop_s2

f()

D Q

Latch

[S2] [F2]

Fig. 4: The T-Res setup to evaluate the maximum acceptable
delay for f2.

994

0 5 10 15 20 25 30 35
0

2

4

Z
(m

)

Functional
r
6
 = 41ms

0 5 10 15 20
0

0.05

Time (s)

‖X
Y
e
r
r
‖
(m

)

r
2
 = 120ms r

2
 = 90ms r

2
 = 60ms r

2
 = 30ms

Fig. 5: Values of delays for f6 (top) and f2 (bottom) for which
the performance is significantly compromised.

A relaxed deadline Dmax
i is computed for each function fi

by estimating the maximum delay that it can experience in iso-
lation, i.e., assuming an ideal execution of the other functions,
before the control performance deteriorates in an unacceptable
way. To estimate Dmax

i , each function fi is considered as
the only time-consuming computation activity in the system
and its delay before writing on ports is incremented, until
the control becomes unstable, or the deviation from the pure
functional control (i.e., the control where all functions execute
in zero time, including fi) is so large that the performance is
considered unacceptable.

Figure 4 shows the model configuration to compute the
relaxed deadline of f2, by using T-res. A single periodic task
(Task1), executes f2 with a variable computation delay/ex-
ecution time, defined as a variable in the Matlab workspace
and incremented across multiple simulations, until an approx-
imation of D2 is found.

Figure 5 shows the control performance when varying the
response time of functions f6 and f2 (in isolation), respectively
indicated by r6 and r2. The top side shows the impact of
r6 on the altitude (Z) control. The control performs well
until r6 is incremented to 41ms, when it suddenly becomes
unstable and makes the quadcopter fall down on the ground.
The bottom side of Figure 5 shows the effects of increasing
r2 with respect to the XY path following. The graph shows
the norm of the difference of the controlled position with
respect to the pure functional control, indicated as ‖XYerr‖,
versus time. For r2 = 30ms the difference is small at steady-
state (black dashed line), and the control performance is
acceptable. It becomes larger as r2 increases, and reaches a
significant steady-state value for r2 = 90ms (continuous-thin
black line). There are also small peaks in the range 0–5 sec.,
that indicate a further deviation from the original simulation
results in the early phases of the application of the control
action. For r2 = 120ms, ‖XYerr‖ � 5cm at steady state and
peaks are even larger. The control performance is considered
unacceptable for r2 > 120ms.

The procedure is repeated for the other functions imple-
menting the flight-control logic. As a result, the relaxed dead-
lines are: Dmax

1 = 500ms, Dmax
2 = 120ms, Dmax

3 = 40ms,

Dmax
4 = 301ms, Dmax

5 = 82ms and Dmax
6 = 40ms.

IV. OPTIMIZATION MODEL

In order to compute optimal mappings with respect to a
given optimization metric, we model the problem as a Mixed
Integer Linear Program (MILP).

A MILP formulation is defined by a set of constraints de-
limiting the set of feasible solutions, and an objective function
to optimize. Constraints and objective function are defined in
terms of optimization variables (the design parameters to be
determined) and parameters (the known values).

For our function allocation and task configuration problem
we extend the MILP formulations in [25] [26] [29]. All these
papers considered deadlines lower than or equal to periods.
We generalize the model to arbitrary deadlines.

Optimization variables

To determine a mapping, a task must be assigned to each
function, a priority must be assigned to each task, and an
execution order must be defined for functions executed in the
same task. The task mapping and task priority assignment are
defined by a single set of priority values assigned to functions.
Each priority value is implicitly assigned and identifies a single
task. The function priority defines at the same time the task into
which it executes and its priority level. Given that the priority
assignment defines a total order, we do not assign absolute
priority values, but rather a priority order.

Priorities are defined by variables πi,j , i, j = 1, . . . , n:

πi,j =

{
1 if πi > πj

0 otherwise

A sequence order on functions assigned to the same task
(i.e. with the same priority) is defined by variables σi,j , i, j =
1, . . . , n:

σi,j =

{
1 if πi = πj and fi → fj
0 otherwise

The πi,j and σi,j assignments must be constrained in such
a way that the transitive and antireflexive properties hold for
priority and order assignments (omitted here, see [26] for a
description).

A. Constraints

A necessary requirement for a mapping is to ensure the
schedulability of all the functions, i.e. the following constraints
must be satisfied:

ri ≤ Di, i = 1, . . . , n (4)

where ri denotes the response time of function fi, i =
1, . . . , n. Response times are computed as described in Sec-
tion II-A.

995

Deadlines less than or equal to periods

When the response times are less than the periods, Equa-
tion (1) applies. The MILP encoding of (1) is (as in [30])

ri = Ci +
n∑

j=1
j �=i

σj,i Cj +
n∑

j=1
j �=i

πj,i Cj Ij,i (5)

where integer variable Ij,i represents the possible number
of interferences of (possibly higher priority) function fj on fi.
The variable Ij,i is defined by the bounds

ri/Pj ≤ Ij,i < ri/Pj + 1 (6)

Deadlines possibly larger than periods

In this case, Equation (2) is expressed as:

ri =
n∑

j=1
j �=i

riπj,iUj+Ci+
n∑

j=1
j �=i

σj,iCj+
n∑

j=1
j �=i

πj,iCj (1−Uj)−γi

(7)

where:

γi =

n−1∑
j=1
j �=i

n∑
q=j+1
q �=i

πj,i πq,i min(Pj , Pq) Uj Uq (8)

Equations (7) and (8) are not linear (quadratic) due to the
products of the optimization variables. To linearize Equation
(7), we introduce a real variable ρj,i that accounts for the
product ri πj,i and is defined using the big M formulation
that is typically used to encode conditional constraints.

ρj,i =

{
ri if πj,i = 1

0 otherwise
(9)

The value of ρj,i is determined by the following con-
straints:

ρj,i ≥ 0 (10)

ρj,i ≤ ri (11)

ρj,i ≤M πj,i (12)

ρj,i ≥ ri −M (1− πj,i) (13)

where M is any constant greater than ri. A suitable value
for M is (from an upper bound on Equation (2)).

M =

n∑
j=1

Cj(2− Uj) (14)

In a similar way, to linearize Equation (8), we introduce the
variable μj,q,i:

μj,q,i =

{
1 if πj,i = 1 ∧ πq,i = 1

0 otherwise

and the following constraints:

μj,q,i ≤ πj,i (15)

μj,q,i ≤ πq,i (16)

πj,i + πq,i ≤ μj,q,i + 1 (17)

Finally, Equations (7) and (8) are replaced by:

ri =

n∑
j=1
j �=i

ρj,i Uj +Ci +

n∑
j=1
j �=i

σj,i Cj +

n∑
j=1
j �=i

πj,i Cj (1−Uj)− γi

(18)

γi =

n−1∑
j=1
j �=i

n∑
q=j+1
q �=i

μj,q,i min(Pj , Pq) Uj Uq (19)

In addition, the mapping must be performed in such a way
that all functions in a task have the same period. For any pair
of functions {fi, fj} it must be

πi = πj ⇒ Pi = Pj ,

encoded in MILP form by the following constraint:

πi,j + πj,i = 1 for all i, j = 1, . . . , n, such that Pi 	= Pj

(20)

Finally, the last set of constraints deals with the need of
preserving the order of execution of functions. For any pair of
functions {fi, fj} such that fi → fj in some path, we have:

πi ≥ πj ∨ (πi = πj ∧ σi,j = 1), (21)

represented by the following constraints:

For all i, j = 1, . . . , n, such that fi → fj in some path:

πj,i = 0 (22)

σj,i = 0 (23)

σi,j = 1− πi,j (24)

B. Optimization metrics

We consider three optimization metrics based on path
latency, intuitively corresponding to the worst case end-to-end
response on a given path. The latency of path pi is denoted as
Li and computed as [26]:

Li =
∑
fj∈pi

Pj + rj (25)

996

We consider the classical average latency and maximum
latency metrics for minimization.

Metric 1. Average latency (AL): 1
q

∑q
i=1 Li

Metric 2. Maximum latency (ML): maxi=1,...,q Li

Another optimization metric that attempts at easing future
extensibility, is the maximization of the minimum slack. We
considering the fractional slack (relative to the D term), in
order to have a normalized objective function.

Metric 3. Maximizing the minimum fractional slack

(FS): max min
i=1,...,q

D(pi)− Li

D(pi)
, which is equivalent (through

simple math) to minimize the maximum relative latency:

max
i=1,...,q

Li

D(pi)
.

where D(pi) is the deadline of path pi, computed as:

D(pi) =
∑
fj∈pi

Pj +Dj (26)

V. CASE STUDY

In the optimization of the task implementation of our
quadcopter example, we consider five configurations, with
different execution times, each represented in the following
table (all times are in ms, the last column shows the total
system utilization Ut, ranging from 84% to 99% - overload
conditions are not considered):

C1 C2 C3 C4 C5 C6 Ut

I84 3 4 5 5 4 2 0.84
I92 2 5 5 5 5 2 0.92
I94 3 5 5 8 5 1 0.94
I94b 2 5 5 4 6 2 0.94
I99 2 6 5 4 6 2 0.99

Dmin
i 100 20 20 50 25 20

Dmax
i 500 120 40 301 82 40

A. Exploration strategies

The first step to the software synthesis is to compute an
optimal mapping for each possible configuration, that preserves
constraints (4) with Di = Dmin

i and (22)–(24) (preservation
of execution order). The solver could not compute any feasible
mapping for the five configurations. To obtain a feasible
mapping, we explored two possible relaxations of the model:

• an execution that violates the order of execution
among subsystems, denoted as Ro and,

• an implementation Rd that allows Di = Dmax
i , i =

1, . . . , n.

In the exploration of the possible solutions, we allow
executions that violate the order prescribed by the Simulink
semantics (Ro). Order violations may results in data (control
samples) loss by overwriting or skipping. The effect is similar
to a disturbance that may be tolerated by the control systems.

We therefore solved three optimization problems by com-
bining these two relaxations:

state vector

w_all

X

Telemetry

0

w X

Quadrotor

f()xy_d

X

R_y

pr_d

PosLoop_s2

f()

D Q

Latch2

[S2] [F2]

f()
D1

D2

D3

Q1

Q2

Q3

Latch1

f()

t

xy_d

yaw_d

z_d

SPGen
_s1

f()D1

D2

Q1

Q2

Latch4

f()

D Q

Latch3

f()

D Q

Latch5

f()

D Q

Latch6

f()y_d

X

R_y

tau_y

YawLoop
_s4

f()pr_d

X
tau_pr

AttLoop_s3

f()z_d

X
thrust

AltLoop_s5

f()

tau_pr

tau_y

thrust

w

CtrlMix_s6

[S1] [F1]

[S5] [F5]

[S3] [F3]

[S4] [F4]

[S6] [F6]

f() activ

next_instr_dur

Task_f2f3f6

[S2]

[T_236]

[A_236]
[F2][[[F

[S3]
[F3][[[F

[S6]

36]

[F6]

f() activ

next_instr_dur

Task_f1

[S1]

[T_1]

[A_1]

[T[

]

[F1]
f() activ

next_instr_dur

Task_f5

[S5]

[T_5]

[A_5]

[T[

]

[F5]

f() activ

next_instr_dur

Task_f4

[S4]

[T_4]

[A_4]

[T[

]

[F4]

[A_1]
[T]

activ

duration

trigger

Kernel

[]

[A_5][]

[A_4][]

[A_236]

[T]

[T_1]

[T_5]

[T_4]

[T_236]

Fig. 6: A task implementation model for the quadcopter
example

• Model Ro is obtained by relaxing the execution order
preservation constraints (Equations 22, 23, 24);

• Model Rd is obtained by setting Di = Dmax
i , i =

1, . . . , n;

• Model Rod is obtained by relaxing the execution order
preservation constraints (Equations 22, 23, 24) and
setting Di = Dmax

i , i = 1, . . . , n.

For each of these three problems we tried the three
candidate optimization functions. The nine resulting MILP
formulations are solved for each of the five execution time
configurations described before. The MILPs are solved with
an IBM ILOG Cplex 12.6 solver. The computed mappings
and the results are summarized in Table I. In the table, AL
indicates the results when maximizing the average latency, ML
for the optimization of the maximum latency, and FS for the
maximum fractional slack. The notation for the results is as
follows. Tasks are listed from higher to lower priority; for
each task, the function indexes mapped onto it are shown. For
example, [6],[1],[2,3],[5],[4] indicates that the highest priority
task executes function f6, the next task executes function
f1, then another lower priority task executes f2 and f3 in
sequence, then a task executes f5 and finally the lowest priority
task executes f4. When multiple optimal solutions are found,
they are all listed in the corresponding cell.

The highest utilization configuration is only feasible when
Di = Dmax

i , i = 1, . . . , n. Also, different relaxation methods
and different metrics functions can bring to substantially dif-
ferent configurations, even for our relatively simple case study.
The task of the performance evaluation stage is to understand
which relaxation strategy and which metric function work best.

B. Modeling mappings in Simulink

We use the T-Res co-simulation framework to evaluate
the quality of the implementation options (task mappings),

997

TABLE I: Table of all computed mappings.

Ro Rod Rd

I84

AL [6],[1],[2,3],[5],[4] [6],[1],[4],[2,3],[5] [1],[4],[5],[2,3,6]

ML [6],[1],[2,3],[5],[4] [1],[4],[6,2,3],[5] [1],[4],[5],[2,3,6]

FS [6,2,3],[5],[4],[1] [6,3],[5],[2],[4],[1] [1],[4],[5],[2,3,6]

[6,3],[5],[1],[2],[4] [1],[5],[4],[2,3,6]

[6,3],[1],[5],[2],[4]

[6,3],[5],[2],[1],[4]

I92 AL [6,3,2],[5],[4],[1] [6],[1],[4],[3,2],[5] [1],[4],[5],[2,3,6]

ML [6,2,3],[5],[4],[1] [1],[4],[6,2,3],[5] [1],[4],[5],[2,3,6]

[6,3,2],[5],[4],[1]

FS [6,2],[5],[3],[4],[1] [6,3],[5],[2],[1],[4] [1],[5],[4],[2,3,6]

[6,2,3],[5],[4],[1] [6,3],[1],[5],[2],[4] [1],[4],[5],[2,3,6]

[6,3],[5],[1],[2],[4]

[6,3],[5],[2],[4],[1]

I94 AL [6,3,2],[5],[4],[1] [6],[1],[4],[3,2],[5] [1],[4],[5],[2,3,6]

ML [6,2,3],[5],[4],[1] [6],[1],[4],[2,3],[5] [1],[5],[4],[2,3,6]

[6,3,2],[5],[4],[1] [6],[1],[4],[3,2],[5] [1],[4],[5],[2,3,6]

FS [6,2],[5],[3],[4],[1] [6,3],[5],[2],[1],[4] [1],[4],[5],[2,3,6]

[6,3],[5],[2],[4],[1] [6,3],[1],[5],[2],[4]

[6],[5],[3,2],[4],[1] [6,3],[5],[1],[2],[4]

[6,3,2],[5],[4],[1]

I94b AL [6,3,2],[5],[4],[1] [6],[1],[4],[3,2],[5] [1],[4],[5],[2,3,6]

ML [6,2,3],[5],[4],[1] [1],[4],[6,3,2],[5] [1],[4],[5],[2,3,6]

[6,3,2],[5],[4],[1] [1],[4],[6,2,3],[5]

FS [6,3,2],[5],[4],[1] [6,3],[5],[2],[1],[4] [1],[5],[4],[2,3,6]

[6,2,3],[5],[4],[1] [6,3],[5],[1],[2],[4]

[6,3],[1],[5],[2],[4]

I99 AL

Infeasible

[6],[1],[4],[3,2],[5] [1],[4],[5],[2,3,6]

ML [1],[4],[6,3,2],[5] [1],[4],[5],[2,3,6]

[1],[5],[4],[2,3,6]

FS [6,3],[4],[1],[5],[2] [1],[4],[5],[2,3,6]

[6,3],[5],[1],[4],[2]

returned as optimal solutions by the MILP solver, with respect
to the control performances. Figure 6 shows the Simulink
scheme that models a run-time implementation of the controls
with four periodic tasks executed by a priority-based RT kernel
(in which functions f2, f3, f6 are realized by one task and all
other functions have a dedicated task). Task_f1 runs every
100ms and reads the set-points (f1). Task_f2f3f6 uses the
set-points and the current state of the vehicle to perform the
position control. Every 20ms, it executes the position loop (f2),
the attitude loop (f3) and the control mixer (f6), in sequence.
Finally, Task_f4 and Task_f5 use the same information to
perform yaw (f4) and altitude control (f5) with a period of
50ms and 25ms, respectively.

The model in Figure 6 can represent all the mappings in
the last column of Table I with a suitable definition of task
priorities and functions computation times. The priorities of
the tasks and the execution times of the functions are specified
in configuration variables in the Matlab workspace and set
as parameters of the Kernel and Task blocks. The top
side of Figure 7 shows a snapshot of the Matlab variable
that configures Kernel. It specifies the task priorities for the

% Description of timing properties of task set
task_set_descr = {...
% type %iat %ph % prio
’PeriodicTask’, 100*0.001, 0.0, 0; ... % Task_f1
’PeriodicTask’, 25*0.001, 0.0, 10; ... % Task_f5
’PeriodicTask’, 50*0.001, 0.0, 5; ... % Task_f4
’PeriodicTask’, 20*0.001, 0.0, 15; ...}; % Task_f2f3f6

% Sequences of pseudo instructions (I94b)
f1_instrs = {’fixed(0.002)’}; % f1
f5_instrs = {’fixed(0.006)’}; % f5
f4_instrs = {’fixed(0.004)’}; % f4
f2f3f6_instrs = {...
’fixed(0.005)’; ... % f2
’fixed(0.005)’; ... % f3
’fixed(0.002)’; ... }; % f6

Fig. 7: Configuration of Kernel and Task blocks to model
mapping [1], [4], [5], [2,3,6] for I94b.

mapping [1], [4], [5], [2,3,6] (lower numbers indicate higher
priorities) and sets the computation time of each function
according to instance I94b.

Similar Simulink models and Matlab code configurations
of the blocks Kernel and Task enable the representation of
all the mappings in Table I.

C. Performance evaluation

Figures 8–9 show the measure of the absolute difference
of the controlled variables values between the task implemen-
tations (with execution and scheduling delays) and the pure
functional design. On top, the figures show the norm of the
difference ‖XYerr‖ in the controlled XY variables (XY-path
following). At the bottom, they show the absolute value of
the difference of the controlled altitude |Zerr|. Lower errors
indicate better results.

The use of different metrics in Ro and Rd has no significant
impact on the control performance. This is probably due to the
size of the case study and the restrictions of such models.

Figure 8a shows the results for the mapping obtained by
optimizing the maximum fractional slack metric. The dashed
lines represent the performance when the order of execution
is relaxed (Ro), whereas continuous lines correspond to the
case of relaxed deadlines (Rd). Only instances I92 and I94
are shown in the figure, respectively as dark and light lines,
since they are representative of the behaviour of all cases
Ro and Rd and high processor utilizations (U ≥ 92%). Ro

generates mappings with worse performances. This is clearly
visible for the altitude control. The trajectory control exhibit
two kinds of behaviours: either the dashed line is strictly higher
than the continuous one (U = 92%), or the two lines nearly
converge at steady-state but the dashed one has an initial peak
(U = 94%). This is due to f1 having the lowest priority, which
occurs in most Ro mappings (see Table I). In those cases the
vehicle is forced to follow a wrong reference trajectory at the
beginning of the control application, and this causes a large
deviation (peak) from the simulation results obtained with the
pure functional design. Function f1 has the lowest priority in
most Ro mappings because of the tight deadlines of the other
functions. The low priority of f1 corresponds to a violation of
the execution order. The solutions found with both relaxations

998

0 5 10 15 20
0

0.01

0.02

0.03

‖X
Y
e
r
r
‖
(m

)

0 5 10 15 20
0

0.1

0.2

Time (s)

|Z
e
r
r
|
(m

)

 I
92

; R
o
; [6,2], [5], [3], [4], [1]

I
92

; R
d
; [1], [5], [4], [2,3,6]

I
94

; R
o
; [6], [5], [3,2], [4], [1]

I
94

; R
d
; [1], [5], [4], [2,3,6]

(a) Difference in control accuracy with respect to ideal case: U ≥ 92%.

0 5 10 15 20
0

0.01

0.02

0.03

‖X
Y
e
r
r
‖
(m

)

0 5 10 15 20
0

0.1

0.2

Time (s)

|Z
e
r
r
|
(m

)

R
o
; [6], [1], [2,3], [5], [4]

R
d
; [1], [4], [5], [2,3,6]

(b) Difference in control accuracy with respect to ideal case: U = 84%

Fig. 8: Difference in control accuracy with respect to ideal
case

enabled (Rod) (not shown in Figure 8a) yield a performance
in between the two Rd and Ro cases.

A lower processor utilization (U = 84%) may increase the
solution space, and the model Ro yields to a mapping with a
very good performance in terms of trajectory following (dashed
line in Figure 8b).

In order to evaluate the performances of the different
metrics, we focus on the problem definition Rod, which yields
a larger solution space. Figure 9 shows the performance of
the solutions for case I92 (other instances have a similar
behaviour). The mapping with the best overall performance
(i.e., on both trajectory following and altitude control) is
[6,3], [1], [5], [2], [4], obtained by minimizing the maximum
fractional slack. This mapping produces a good performance
for the trajectory following, because the most critical functions
f1 and f6 have high priorities. It also has a good performance
in altitude control, because f5 is not too much delayed. In
case the task of trajectory following is considered to be more
critical than altitude control, optimizing the maximum latency
yields the best performance (dark dashed line in Figure 9).
Minimizing the average latency seems to yield the least per-
formant mappings (light dashed line). This result is somewhat
expected, since this metrics is quite coarse: it does not target

0 5 10 15 20
0

0.01

0.02

0.03

‖X
Y
e
r
r
‖
(m

)

0 5 10 15 20
0

0.1

0.2

Time (s)

|Z
e
r
r
|
(m

)

 [6], [1], [4], [3,2], [5]
[1], [4], [6,2,3], [5]
[6,3], [1], [5], [2], [4]
[6,3], [5], [2], [4], [1]

Fig. 9: Rod model, comparison of task configurations and
optimization metrics (U = 92%)

individual paths and allows some responses to be quite large
while others can be very small.

The continuous lines in Figure 9 also show how different
mappings that are equivalent from the optimality point of view
for a given objective function (the maximum fractional slack
in this case) may exhibit different control performances. This
enforces the claim that it is important to co-design the system
and not simply design the control first and then synthetize
its SW implementation, by merely dealing with the real-time
aspects and concerns of the design.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a simulation-driven optimization pro-
cess for the implementation of real-time control software. The
experiments conducted on a quadcopter case study have clearly
shown that the consideration of the control performance for
real-time software design leads to better results. The pre-
sented experiments involved several tools with many manual
operations. In order to fluidize the design and optimization
process, we aim to setup a toolchain integrating the design
and simulation tools with optimization engines. This work
based on model-driven solutions is ongoing. The resulting
automated toolchain will be used to perform a large number
of experiments. We intend to use the optimization results of
these experiments to identify efficient design patterns for real-
time control applications. Future investigation will include the
study of allocation policies and different scheduling options in
multi-core architectures.

REFERENCES

[1] M. Joseph and P. K. Pandya, “Finding response times in a real-time
system”, in The Computer Journal 29 (5), 390–395, 1986.

[2] E. Bini, A. Parri, G. Dossena, “A quadratic time response time upper-
bound with a tightness property”. Proceedings of the IEEE Real Time
Systems Symposium, 2015.

[3] D. Seto, J. Lehoczky, L. Sha, and K. Shin, “On task schedulability in
real-time control systems,” in Real-Time Systems Symposium, 1996., 17th
IEEE, dec 1996, pp. 13 –21.

[4] K. J. Astr om and B. Wittenmark, “Theory and design,” in Computer-
Controlled Systems. Prentice Hall, 2007.

999

[5] E. Bini and A. Cervin, “Delay-aware period assignment in control
systems,” in Real-Time Systems Symposium, 2008, 30 2008-dec. 3 2008,
pp. 291 –300.

[6] S. Samii, A. Cervin, P. Eles, and Z. Peng, “Integrated scheduling and
synthesis of control applications on distributed embedded systems,” in
Design, Automation Test in Europe Conference Exhibition, 2009. DATE
’09., april 2009, pp. 57 –62.

[7] D. Goswami, M. Lukasiewycz, R. Schneider, and S. Chakraborty, “Time-
triggered implementations of mixed-criticality automotive software,” in
Design, Automation Test in Europe Conference Exhibition (DATE), 2012,
march 2012, pp. 1227 –1232.

[8] Simulink, “http://www.mathworks.com/products/simulink/.”

[9] M. Branicky, S. Phillips, and W. Zhang, “Scheduling and feedback co-
design for networked control systems,” in Decision and Control, 2002,
Proceedings of the 41st IEEE Conference on, vol. 2, 2002, pp. 1211–
1217 vol.2.

[10] S. Samii, P. Eles, Z. Peng, and A. Cervin, “Design optimization and
synthesis of flexray parameters for embedded control applications,” in
Electronic Design, Test and Application (DELTA), 2011 Sixth IEEE
International Symposium on, 2011, pp. 66–71.

[11] S. Samii, P. Eles, Z. Peng, P. Tabuada, and A. Cervin, “Dynamic
scheduling and control-quality optimization of self-triggered control
applications,” in Real-Time Systems Symposium (RTSS), 2010 IEEE 31st,
30 2010-dec. 3 2010, pp. 95 –104.

[12] A. Aminifar, P. Eles, Z. Peng., and A. Cervin, “Control-quality driven
design of cyber-physical systems with robustness guarantees,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2013, March
2013.

[13] T. Henzinger, B. Horowitz, and C. Kirsch, “Giotto: a time-triggered
language for embedded programming,” Proceedings of the IEEE, vol. 91,
no. 1, pp. 84–99, Jan 2003.

[14] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and
A. Sangiovanni-Vincentelli, “Period optimization for hard real-time dis-
tributed automotive systems,” in Design Automation Conference, 2007.
DAC ’07. 44th ACM/IEEE, june 2007, pp. 278 –283.

[15] D. Goswami, R. Schneider, and S. Chakraborty, “Co-design of cyber-
physical systems via controllers with flexible delay constraints,” in
Design Automation Conference (ASP-DAC), 2011 16th Asia and South
Pacific, jan. 2011, pp. 225 –230.

[16] L. Sha, X. Liu, M. Caccamo, and G. Buttazzo, “Online control
optimization using load driven scheduling,” in Decision and Control,
2000. Proceedings of the 39th IEEE Conference on, vol. 5, 2000, pp.
4877 –4882 vol.5.

[17] X. Liu, Q. Wang, S. Gopalakrishnan, W. He, L. Sha, H. Ding,
and K. Lee, “Ortega: An efficient and flexible online fault tolerance
architecture for real-time control systems,” Industrial Informatics, IEEE
Transactions on, vol. 4, no. 4, pp. 213 –224, nov. 2008.

[18] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area
network (can) schedulability analysis: Refuted, revisited and revised,”
Real-Time Syst., vol. 35, no. 3, pp. 239–272, 2007.

[19] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on
geometric programming,” in Optimization and Engineering, april 2007,
pp. 67 –127.

[20] M. Neukirchner, S. Stein, and R. Ernst, “Smff: System models for free,”
in 2nd International Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS 2011), 2011.

[21] F Cremona, M Morelli, M Di Natale, ”TRES: A Modular Represen-
tation of Schedulers, Tasks, and Messages to Control Simulations in
Simulink” in Proc. of the ACM SAC Conference, 2015, Salamanca, Spain.

[22] P.I. Corke, ”Robotics, Vision and Control: Fundamental Algorithms in
Matlab.” Springer Publisher, 2011.

[23] M. Di Natale, V. Pappalardo, ”Buffer optimization in multitask im-
plementations of simulink models” in ACM Transactions on Embedded
Computing Systems (TECS), 2008, 7 (3), 23.

[24] J.P. Lehoczky. ”Fixed priority scheduling of periodic task sets with
arbitrary deadline.” In Proceedings of the 11th IEEE Real-Time Systems
Symposium, 1990. Lake Buena Vista, FL USA, 201209.

[25] A. Metzner, and C. Herde, ”Rtsat an optimal and efficient approach to
the task allocation problem in distributed architectures”. In Proceedings

of the 27th IEEE International Real-Time Systems Symposium, 2006.
Washington, DC, USA, 147158.

[26] Q. Zhu, H. Zeng, W. Zheng, M. Di Natale, A. Sangiovanni-Vincentelli
”Optimization of task allocation and priority assignment in hard real-
time distributed systems”, in ACM Transactions on Embedded Computing
Systems, 2012, (TECS) 11 (4), 85.

[27] Q. Zhu, Y. Yang, M. Di Natale, E. Scholte, A. Sangiovanni-Vincentelli
”Optimizing the software architecture for extensibility in hard real-time
distributed systems”, in IEEE Transactions on Industrial Informatics, 6
(4), 621-636

[28] G. Wang, M. Di Natale, A. Sangiovanni-Vincentelli ”Improving the size
of communication buffers in synchronous models with time constraints”,
in IEEE Transactions on Industrial Informatics, 5 (3), 229-240.

[29] A. Mehiaoui, E. Wozniak, S. Tucci-Piergiovanni, C. Mraidha, M. Di
Natale, H. Zeng, J.-P. Babau, L. Lemarchand, S. Gerard, ”A two-step
optimization technique for functions placement, partitioning, and priority
assignment in distributed systems”, in Proceedings of the ACM/IEEE
LCTES Conference, 2013.

[30] H Zeng, M Di Natale, ”An efficient formulation of the real-time
feasibility region for design optimization”, in IEEE Transactions on
Computer, 2013, 62 (4), 644-661.

[31] Cervin, A., Henriksson, D., Lincoln, B., Eker, J., Arzen, K.E. ”How
does control timing affect performance? Analysis and simulation of
timing using Jitterbug and TrueTime”, in IEEE control systems 23(3),
1630 (June 2003).

1000

