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Abstract 

Synthesis of automotive architectures is a complex 
problem that needs an automated support. AUTOSAR, 
standard for the specification of automotive 
architectures, defines a synthesis process of software 
components and their connections in a set of fixed-
priority OS tasks distributed over a network of ECUs. 
During the synthesis process software components are 
allocated on ECU-s. Since each component 
encapsulates a set of so-called runnable entities, 
synthesis completes by partitioning runnable entities in 
OS tasks with assigned fixed priorities. This paper 
proposes an optimization approach for the synthesis of 
AUTOSAR architectures based on genetic algorithms 
and mixed integer linear programming techniques. 
Optimization criteria consider end-to-end timing 
responses and memory consumption.  

1. Introduction 

The AUTOSAR (AUTomotive Open System 
Architecture) [1] development process aligns to the 
MDE (Model Driven Engineering) principles as it is 
based on the use of models defined through meta-
models and provides a development process based on a 
progressive refinement of models. At the heart of the 
development process lays the synthesis of the 
functional architecture (encapsulating the system logic) 
in a real-time architecture made of fixed-priority tasks 
distributed over a network of ECU-s. The synthesis 
process according to the AUTOSAR can be divided in 
four main activities. The first one is called the 
allocation as it consists in placing the atomic software 
components on the ECU-s and the exchanged signals 
on the buses. Each software component encapsulates 
the implementation of a specific functionality which is 
exposed to the outside world by means of ports. 
Internal behaviour of each atomic software component 
is represented by a graph of runnable entities, which in 
turn represent schedulable units of computation. Let us 
remark that each atomic software component contains 
at least one runnable entity. Runnables of the same 
component cannot be split among different ECU-s, 
hence we can say that allocation of atomic software 
components determines the allocation of runnables. 

From now on, when discussing allocation we refer to 
the allocation of runnable entities and data signals.  

Second, third and fourth activity are partitioning, 
scheduling and ordering. Runnables and signals are 
being partitioned in OS tasks and messages which are 
then scheduled by the assignment of static priorities. 
Moreover the order of runnables inside a task is 
defined with respect to the functional constraints. 

It is common and recommended practice [2] in this 
demarche, to specify the end-to-end timing constraints 
at the highest level, between input and output ports of 
the highest level component of the architecture, usually 
representing the system under study (see Figure 1). For 
each external stimulus, consumed by an input port, the 
constraint specifies a deadline for the response to be 
produced on the output port. Each end-to-end 
constraint is progressively refined by specifying the 
end-to-end chain of runnable entities (traversing one or 
more atomic components) that are activated to produce 
a system response triggered by the given stimulus. 

Figure 1 Visualization of end-to-end chain 

By knowing runnables allocation their partitioning 
and order within the tasks as well as priorities of the 
tasks, the designer can now compute the response 
times of runnables end-to-end chains to see if end-to-
end timing constraints are met. If some deadlines are 
violated, the designer has to find another configuration. 
This is a cumbersome process as the synthesis is an 
NP-hard problem. Hence appropriate support is 
required. In the current state of practice, only partial 
solutions exist as none of them handle all four 
dimensions (allocation, partitioning scheduling and 
ordering) at once. Most common solutions take as 
input a task model which means that the partitioning is 
already known or is done manually based on an 
engineer’s expertise. This severely minimizes the 
design space to explore and therefore might exclude 
feasible solutions as shown later in this work.  

This paper presents two techniques for the synthesis 
of AUTOSAR architectures in its entire form. The first 
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technique is based on mixed integer linear 
programming (MILP). It returns the optimal solution 
but is limited to small size systems.  In order to 
improve scalability – to address industrial size systems 
- a second technique, based on the genetic algorithms 
(GA) is proposed. For both techniques optimization 
criteria relate to the end-to-end responses and 
consumed memory. As runnables on the same ECUs 
communicate asynchronously through shared variables, 
a protection mechanism is required to guarantee data 
consistency and behaviour predictability. Protection 
mechanisms either take time or consume memory. Our 
techniques will operate a choice between a time-
consuming and a memory-consuming protection 
mechanism, when optimizing response time and 
memory consumption.  

 This paper is organized as follows. The next section 
presents related work. Section 3 formalizes the system 
model, presents used schedulability analysis and 
memory consumption analysis, i.e. the way in which 
end-to-end responses and memory overhead are 
computed. Finally this section formulates the synthesis 
problem and optimization criteria. Section 4 presents 
the optimization technique, i.e. the Genetic Algorithms 
and the MILP formulation.  Section 5 evaluates our 
techniques. First, results of the GA technique are 
compared against the MILP results. Then the GA 
technique is evaluated against current approaches 
disregarding the partitioning dimension. Section 6 
concludes the paper and discusses the future work. 

2. Related Work 

The literature on the synthesis problem is rich. 
There are many approaches that consider only the 
allocation and task scheduling problems and relate to 
different optimization metrics (like the inter-ECU 
communication bandwidth) [3-6].   

Concerning the system model and the optimization 
objectives our approach is closely related to the 
following works [7-12]. The [7] and [8] similarly as in 
our approach consider periodic activation and end-to-
end responses as optimization criteria.  The main 
difference is that the authors are considering OS tasks 
as an allocation unit and hence partitioning and 
ordering is fixed for them. Ferrari et al. [9] is the first 
work discussing possible strategies to protect shared 
data items and memory/timing tradeoffs. The work in 
[10] proposes a two-step technique for the allocation of 
AUTOSAR software components to the ECUs, taking 
into account protection mechanism as a parameter to 
specify. However it considers neither partitioning nor 
ordering. Authors of [11] and [12] also relate to the 
periodic runnables in their model. They consider 
additional mechanisms that can assure data consistency 
like the absence of preemption. The last can be done by 
defining so called preemption thresholds or preemption 

groups. In their work the allocation is fixed and hence 
their approach is for local optimization. Interestingly, 
the order of runnables as the parameter to manipulate is 
considered. 

The main contribution of our work in relation to the 
current approaches ([13] gives an exhaustive survey on 
the existing methods for the optimization of real-time 
embedded systems) lies in a holistic deployment of the 
automotive architectures. None of the existing works is 
solving the four problems, i.e. allocation, partitioning, 
scheduling and ordering together, considering also 
assignment of a memory protection mechanism. 

3. Formalism 

3.1. System Model 
The input system model consists of two graphs. The 

first one is an AUTOSAR execution model represented 
by a directed graph ܩ = { ܸ,  } in which ܸ is the setܧ
of vertices representing runnables and ܧ is the set of 
edges related to the links between them. The second 
one is an undirected graph ܩ = { ܸ,  } that expressesܧ
hardware architecture. Nodes represent hardware 
resources and the edges represent communication links 
between them. The hardware resources are ECUs and 
communication buses. The remaining notions used 
throughout this work were gathered in the table below 
for a better readability. 

 
Concept Explanation ܧ Set of ECUs ݁ ECU ߚ Set of BUSes ܾ BUS ܧ(ܾ) 

This function returns set of the ECUs 
communicating through the bus ܾ  ܴ 

 

Set of runnable entities. In this work we restrict to 
periodic runnables, i.e. runnables that are activated 
in response to periodic timer events. ݎ Runnable entity ܲ  Period of a runnable entity ݀  Local deadline of the runnable entity ݎ ⃗ܥ ,భܥ) = ,మܥ ,  (,ܥ ,… ,

Worst case execution time of a runnable, 
characterized by a vector of WCETs, due to the 
heterogeneity of the hardware nodes. Later in the 
paper we omit the second index specifying the ECU, 
just for the simplicity of the notation. ܿݓݏ Atomic software component. Its behaviour is 
defined by the runnable entities. ܵܥ(ݎ) 
This function returns atomic software component of 
a runnable ݎ. ܲܵ  Communication ports of runnable ݎ ܲ Set of input ports of the runnable entity ݎ ,   ݆௧ input port of the  runnable ݎ  ܲ௨௧ Set of output ports of the runnable entity ݎ ,௨௧ ݆௧ output port of the  runnable ݎ  



ܵ Set of data signals  ݏ1 Data signal ܵܦ(ݏ) Size of the data signal ݏ Ω Set of shared resources ߪ Shared resource 

 (ߪ)௪ݎ

Set of writer runnables, writing to the shared 
resource ߪ. We consider one-to-many 
communication hence ݎ௪(ߪ) contains only one 
writer. ݎ(ߪ) Set of readers of the shared resource ߪ ߞ(ߪ) Data signal of the shared resource ߪ ߞ′(ݏ) Shared resource corresponding to the signal ݏ Ω  Set of all the shared resources accessed by the 
input/output ports of the runnable ݎ ߱ೝ,ೕ/߱ೝ,ೖೠ 
WCET of the runnable entity ݎ on the critical 
section used for accessing shared resources. The 
access is through the input/output port , ߦ ,௨௧/ = {Γଵ,  Γଶ, …, Γ} 

Set of the end-to-end chains that we call paths. Each 
path is defined as an ordered interleaving sequence 
of runnables and signals defined as Γ ,భݎ]= ,భݏ ,మݎ ,మݏ … , ,ೖషభݏ (Γ)ܿݎݏ .[ೖݎ =  భ is theݎ
path’s source and ݇݊ݏ(Γ) = ೖݎ  is the sink. Multiple 
paths may exist between each pair of source-sink. R Response time of the path Γ D Deadline of the path Γ ߬ OS task – the code of a runnable entity executes in a 
context of an OS task ݁(߬) ECU on which the task ߬ is allocated ݁(ݎ) ECU on which the runnable ݎ is allocated ݁(ߪ)  ECU on which shared resource ߪ is specified ߬(ݎ) Task in which ݎ is partitioned 

 (ݎ)ݔ݀݅

As multiple runnables can be partitioned in one task 
we specify the order by introducing the index of a 
runnable inside a task ݆ =  , meansݎ Hence .(ݎ)ݔ݀݅
that runnable ݎ is at the ݆௧ position in a task. ߨ  Priority of a runnable entity. It equals to the priority 
of ߬(ݎ)  which is defined as ߨఛ ܥఛ 
WCET of the task ߬. It equals to the sum of 
WCETs of all the runnables partitioned within this 
task, i.e. ܥఛ = ∑ ఛ൫ೕ൯ୀఛܥ . ݉ BUS message ݉(ݏ) Message that transmits the signal ݏ ⃗ܥ௦  (௦,ܥ ,… ,௦,మܥ ,௦,భܥ) =

WCTT (Worst Case Transmission Time) of the 
signal ݏ when transmitted on the BUS. Also here 
for the sake of simplicity, the second index 
indicating the bus is omitted when relating to the 
signal WCTT. ܥ WCTT of the message ݉. It is a sum of WCTT of 

                                                           
1  Runnables communicate by sharing data signals accessed through their 

ports. Data signal can be communicated either through a shared resource or 
via a message passing. The identification of shared resources uniquely 
depends on the runnables allocation and partitioning. For each identified 
data signal communicated between runnables of different tasks but of the 
same ECU we define a shared resource. Data signals communicated 
between runnables of the same task don’t require defining a shared 
resource. Also, for the inter-ECU communication no shared resource is 
required as in this case data signal is communicated by the BUS message.  

all the signals partitioned in this message, i.e. ܥ = ∑ ௦൫௦ೕ൯ୀܥ . 

௦ܲ  Period of the signal ݏ. It is equal to the period of a 
writer runnable. 

Table 1. Main Concepts of the System Model 

3.2. Memory 
The manner in which allocation and partitioning of 

runnables is done has an impact on the used memory. 
First, as it is specified in the AUTOSAR metamodel 
[14], runnable entity r has a stack memory usage that 
differs, depending on the ECU on which it is deployed. 
This is specified with the vector ܯሬሬ⃗  = ,,భܯ) ,మܯ , … ,  ,). The next factorܯ
affecting the used memory is the protection mechanism 
specified to protect the shared resources.  Protection 
mechanism has to be specified for each signal 
communicated between runnables of different tasks 
that are deployed on the same ECU. This is due to the 
asynchronous communication between periodic 
runnables and hence, mechanism to provide the data 
consistency is necessary. This work considers two 
mechanisms: 

 Wait-free access method such as Rate Transition 
(RT) block [15] – this mechanism behaves like a 
Zero-Order Hold block or a Unit Delay block plus 
a Hold block or Sample and Hold (for slow to fast 
transitions). Its implementation consists of a 
switched buffer. This mechanism incurs 
negligible time overhead but it consumes 
additional memory. 

 Semaphore Lock (SL) – in this work we assume 
immediate priority ceiling semaphores. Priority of 
a runnable that is accessing a shared resource is 
raised to the ceiling priority of a resource. The 
SL, opposite to the RT, imposes no additional 
memory overhead, however it suffers timing 
delays in the form of a blocking time.  

Function ߛ(ߪ) will return the value representing 
the protection mechanism used to protect a shared 
resource ߪ. Value ܵܮ concerns semaphore lock, 
whereas ܴܶ means Rate Transition block. Overall 
memory overhead ܯ  for ECU ݁ is computed 
according to (1).  

ܯ  = ∑ + ೕ൫ೕ൯ୀܯ  ∑ ఙೖ (ఙೖ)ୀܯ
The ܯఙೖ is a memory overhead caused by the RT 

and is computed according to [11] (see (2)). For this 
we define additional notation. We denote the set of 
readers with higher (lower) priority than the writer ݎ௪(ߪ) as ݎுோ(ߪ) (ݎோ(ߪ)). Our formula is a 
simplification of what is included in [11] as in this 
work we are not considering the preemption 
thresholds. ܯఙೖ = ൯݊(ߪ)ߞ൫ܵܦ



݊ఙೖ = ൝∑ ∈ೢ(ఙೖ),ೕ∈ಽೃ(ఙೖ)ݓ + (ߪ)ுோݎ݂݅ ݓ2 ≠ ∅ ∑ ∈ೢ(ఙೖ),ೕ∈ಽೃ(ఙೖ)ݓ + (ߪ)ுோݎ݂݅ ݓ = ∅
ఙೖݓ = ൜1 ݂݅ ߛ(ߪ) = (ߪ)ߛ ݂݅ 0ܴܶ = ܮܵ

3.3. Timing Analysis 
Timing analysis concerns computation of the 

response times for runnables and global signals and 
also computation of the end-to-end responses. It is 
based on the work presented in [8] and adapted to 
consider runnable entities. Adaptation is because the 
entities considered in the analysis of [8] focus on the 
OS tasks and doesn’t consider functional architecture 
as in our case. 

3.3.1. Schedulability of Runnable Entities 
Worst case response time of runnable ݎ, for which ݅݀ݔ(ݎ) = ݆, is represented with ܴ,ೕ and computed 

according to (5). The ܥఛ,ೕ (see eq. 6) is the worst case 
computation time of the task until the ݆௧ runnable 
partitioned in this task. Please note that we allow 
partitioning of the runnables with the harmonic periods 
in the same task. This means that when the task is 
executed not all of the runnables will be activated. 
Therefore the ܥఛ,ೕ  varies. However we assume the 
worst case scenario hence we account for all the 
runnables up till the ݆௧ when computing the ܥఛ,ೕ.  The ܤఛ  is a blocking time of a task ߬. Blocking time 
depends on the shared resources accessed by the task 
and the way in which the shared resources are 
protected from multiple accesses. If the shared resource 
is protected with a semaphore lock, it causes a blocking 
time. The semaphore lock in our case is realized 
through the Priority Ceiling Protocol (PCP) [16]. The 
same blocking time applies to all the runnables that are 
partitioned in the same task and therefore it is 
computed for a task. To compute the blocking time 
with the PCP few additional things have to be clarified. 
First, the shared resources of a task ߬ are specified 
with the set Ωఛ = ⋃ Ωೕఛ൫ೕ൯ୀ ఛ . This means that the 
task inherits the access to the shared resources from the 
runnables partitioned in this task. The WCET of a task ߬ for accessing (reading/writing) a critical section of a 
shared resource ߪ is represented with ߬൫߱ఙ൯ =max(߱ೝ,ೕ ) /߬൫߱ఙ൯ = max(߱ೝ,ೕೠ). Function ℎ(ݎ) returns all the runnable entities allocated on the 
same ECU as ݎ, with the priority higher than ݎ. ܴ,ೕ = ఛ()ܤ ఛ(),ܥ + ∑ ோೝ,ೕೝೖ ඈ ఛ,ೕܥ ೖೖ∈()ܥ = ∑  ೖఛ(ೖ)ୀఛ˄ஸܥ
3.3.2. Schedulability of Signals 

Worst case response time for a signal is computed 
in case when ݏ represents inter-ECU communication. 

We are considering an event triggered bus, such as the 
CAN bus. Similarly to (5) the computation of ܴ௦  
accounts for a blocking time ܤ. This blocking time 
characterizes entire bus ܾ. It is caused due to the non-
preemptive scheduler of a bus, such as the CAN. This 
blocking time ܤ applies to all the signals of a bus ܾ, 
except those partitioned in a message with the lowest 
priority. Function ℎ(݉) returns all the messages of 
the same bus as ݉ with a priority higher. ܴ௦ = ܤ (௦)ܥ + ∑ ோೞೞඈ  ೖೖ∈((௦))ܥ
3.3.3. End-to-end Responses Computation 

The worst case end-to-end latency ܴ  is computed 
for each path Γ by adding the worst case response 
times of all the runnables and global signals (i.e. 
signals representing intra-ECU communication), as 
well as the periods of all the global signals and their 
reader runnables on the path (see (8)). Set Φ represents 
all the global signals. The ݀ܽ݁ݎ௦ೖ,  is the reader 
runnable of ݏ on the specific path Γ. 
     ܴ = ∑ ܴ୰ೕ ୰ೕ∈ + ∑ ܴୱೖ + ௦ܲೖୱೖ∈˄ୱೖ∈ + ܲௗೞೖ,
3.4. Problem Formulation 

The main objective of this work is an automated 
support for the synthesis problem, i.e., the integration 
of functional architecture (represented by the 
communicating, periodic runnable entities and the 
exchanged data signals) with the execution platform, 
i.e. ECUs/BUSes and OS tasks/messages. This means 
that for each runnable/data signal, its hosting 
ECU/BUS has to be assigned (allocation), then 
runnables/data signals  allocated to the same ECU/BUS 
have to be partitioned in tasks/messages, for which the 
priorities needs to be defined. Also the order of 
runnables inside the task needs to be established as it 
has a significant impact on the runnables local 
responses and in consequence end-to-end responses as 
well. Additionally, to protect the shared resources the 
protection mechanism needs to be specified (either RT 
or SL). This process should also respect multiple 
constraints which are specified with our MILP 
formulation (see subsection 4.2). Finally and most 
importantly, the synthesis process is driven by 
predefined optimization criteria. We are defining four 
optimization metrics and for each, its importance can 
be specified by assigning a weight. Therefore our final 
fitness function ܨ(Ψ) where Ψ represents a final 
configuration, i.e. deployed architecture, is a weighted 
sum of four functions: ܨ(Ψ) = ଵfଶ(Ψ)ݓ ଶf(Ψ)ݓ+ + ଷf௧(Ψ)ݓ +   .ସf(Ψ) explained belowݓ
1) End-to-end Responses Optimization 

Optimization of the end-to-end responses (9) aims 
at minimizing the response times of paths, relatively to 
their deadlines. Their optimization improves the 
system performance. 



fଶ(Ψ) = 1 − ∑ ோೕୈೕೕ
2) Memory Optimization 

 Optimization of memory aims at minimizing the 
additional memory overhead that can be caused by 
using the Rate Transition blocks and inappropriate 
balancing when placing runnables on the ECUs.  The 
last is due to the heterogeneous nature of the ECUs. f(Ψ) = |ܧ| − ∑ ெೕ ெೕೌೣೕ

The ܯ௫ represents the worst case possible 
memory overhead caused for ݁; ܯ௫ =∑ ೕ,ܯ +ೕ ∑ ఙೖఙೖܯ . Its computation assumes that 
each runnable is partitioned in one task, writer has 
always higher priority than all its readers and all shared 
resources are protected with RT. 
3) Bus Throughput 

This objective concerns the increase of the buses 
throughput. For this (11) is used. Optimization of 
throughput is a common approach to provide higher 
extensibility of a bus. f(Ψ) = 1 − ∑ ௌ(ୱೕ)౩ೕ∈ಅ∑ ௌ(ୱೖ)౩ೖ∈
4) Runnables Local Deadlines 

The runnables local deadlines optimization aims at 
minimizing the response times of runnables, relatively 
to their local deadlines (if any). Local deadlines might 
result from the refinement of the end-to-end timing 
constraints. f(Ψ) = 1 − ∑ ோ౨ೕୈೝೕೕ
4. Optimization Technique 

This section presents the Genetic Algorithm and the  
MILP formulation used to solve the synthesis problem. 
The MILP assures provision of an optimal solution if 
the solver terminates with no error. This property 
makes it a good comparator for such heuristic approach 
as the GA. The shortcoming of the MILP is the 
difficulty in handling larger use-cases. This was the 
main rationale behind using the GA. The MILP 
formalizes also the constraints that have to be respected 
during the synthesis. The last are preserved by our 
implementation of the GA. 

4.1. Genetic Algorithm 
Genetic Algorithm is an optimization technique 

patterned after natural selection in biological evolution. 
Each possible solution i.e. Ψ is encoded using a string 
of bits that we call a chromosome. One or few bits 
encode a solution for a specific parameter, in our case 
runnable entity or data signal. Group of bits 
corresponding to one parameter is called a gene. Later 

in this paragraph we specify our encoding, generation 
of initial population and how it is evolved in the 
consecutive iterations until the stop criteria is met. We 
also describe the correction mechanism that keeps our 
population consistent in regard to the constraints. 

4.1.1. Encoding 
Each chromosome ܿℎ represents a specific 

deployment configuration. Gene ݃ relates either to 
runnable entity or a data signal. For the first, gene ݃ = ܿℎ(ݎ) stores the value ܸ(݃) representing 
runnable’s allocation and partitioning. For a data 
signal, value stored depends whether it is a global data 
signal or a data signal that is communicated locally. 
Value for a global data signal will hold information 
about the BUS and the message in which it is 
partitioned. If this is a local data signal ݏ, value 
depends on whether ݏ is communicated through the 
shared resource or no. For the first case, value 
represents one of the two mechanisms, either ܵܮ (value 
= 1) or ܴܶ (value = 2). For the second, value equals 0. 

The gene value ܸೕ(݃) for the runnable ݎ, this is 
one number but stores information about the ECU 
number on which runnable ݎ is allocated, the task 
number in which it is partitioned, and the position 
(order) inside the task. The ܸೕ(݃) for runnable ݎ for 
which selected ECU is ݁, task ߬ and position  is 
computed in a specific way, according to (13). The ݉ܽݔா  is the maximal number of runnables that can 
be allocated on one ECU and ்݉ܽݔ௦  is the maximal 
number or runnables that can be partitioned in one task. 
These values are automatically initialized before 
running the GA. The ݉ܽݔா is computed as a 
maximal number of runnables that can be hosted by 
one ECU without violation of utilization (for this 
WCETs and periods of runnables are used). The ்݉ܽݔ௦is computed based on the maximal number of 
runnables with harmonic periods. 

The gene value for a data signal, if transmitted on 
the bus, is computed in a similar way (see (14)). Figure 
2 presents an example of a chromosome for a specific 
deployment configuration. ܸೕ(݃) = (݇ − 1) ∗ ாݔܽ݉ ∗ ௦்ݔܽ݉ + (݈ − 1) ௦்ݔܽ݉∗ + ) − 1)௦ܸೕ(݃) = (݇ − 1) ∗ ௌݔܽ݉ ∗ ெ௦ݔܽ݉ + (݈ − 1) ெ௦ݔܽ݉∗ + ) − 1)

Figure 2 Example of a chromosome for 
specific configuration 



4.1.2. Initial Population 
The initial population is generated randomly but to 

generate correct chromosomes, possible range of 
values for each gene depends on the values already 
assigned to others. Correct means chromosome 
representing deployment configuration that respects the 
constraints formalized below with the MILP (see 
subsection 4.2). 

4.1.3. Evolution 
The evolution of a population is through the 

selection of chromosomes with good fitness and 
applying the crossover and mutation mechanism on 
them. The fitness is computed as presented in Section 
4. For the selection we are using tournament selector 
[17] with a tournament size equal to 5. The crossover 
operator this is OX3 [18]. It creates two child 
chromosomes from the two parents. The OX3 choses 
two random positions in parent chromosomes. Then the 
values between them are copied from the first/second 
parent to the second/first child. The rest is copied from 
the first/second parent to the first/second child. The 
mutation operator choses a random gene in a 
chromosome and changes its value to the new random 
value. The last is selected from the values that don’t 
violate the constraints. In addition it is possible to 
select the probability for applying the mutation 
operation. Mutation is done for the child chromosomes 
resulting from the crossover operation. 

4.1.4. Correction Mechanism 
When generating initial population or applying the 

mutation operator, the correctness of a new 
chromosome is preserved. This doesn’t hold for the 
chromosomes resulting from the crossover operation. 
Therefore on each child chromosome the correction 
mechanism is called. This is to fix the genes which 
represent the values violating the constraints. 

4.2. MILP Formulation 
In the MILP formulation, the problem is represented 

with parameters, decision variables, and constraints 
over the parameters and decision variables. Moreover, 
an objective function is defined to characterize the 
optimal solution.  

As we have a large number of parameters, decision    
variables and constraints, they are directly discussed 
along with the specific aspects of the problem, in the 
following sections.   
Runnables allocation: Runnables allocation is implicit 
through the allocation of components. Constraint (15) 
specifies that each software component is allocated on 
exactly one ECU. The ߝ(ܿݓݏ) is the set of ܿݓݏ  
candidate ECUs. The ܽ௦௪,ೕ  is a binary variable that is 
1 if the component ܿݓݏ  is allocated on ECU ݁.  

                               ∑ ܽ௦௪ ,ೕ∈ఌ(௦௪) = 1

Constraint (16) defines the binary variables ݔ௦௪,௦௪ೕ,ೖ  based on ܽ௦௪ ,ೖand ܽ௦௪ೕ ,ೖ   ௦௪,௦௪ೕ,ೖݔ.
is set to 1 if ܿݓݏ and ݓݏ ܿ are allocated on the same 
ECU ݁, otherwise, ݔ௦௪,௦௪ೕ,ೖ is 0. 

       0 ≤ ܽ௦௪ ,ೖ + ܽ௦௪ೕ ,ೖ − 2. ≥ ௦௪,௦௪ೕ,ೖݔ 1
Signals allocation: It is based on the allocation of 
runnables. Signal is either allocated on none or one 
bus. In constraint (17), the binary variable ݃௦  indicates 
if the signal ݏ is allocated on a bus (݃௦ = 1) or not (݃௦ = 0). The binary variable ܽ௦ ೖ indicates if the 
signal ݏ is allocated on the bus ܾ. Constraint (17) 
guarantees that if a signal represents inter-ECU 
communication, it is allocated on exactly one bus. ∑ ܽ௦ ,ೖೖ∈ఉ = ݃௦ 

Constraint (18) assures that a signal ݏ is allocated 
on a bus iff the components of its writer runnables and 
its reader runnables are allocated on different ECUs. ∀ ݎ ∈ ݎ   ,൯(ݏ)ᇱߞ௪൫ݎ :൯(ݏ)ᇱߞ൫ݎ ∋ 1 − ∑ ௦௪(ೝ) ,௦௪(ೝೕ),ೖೖ∈ாݔ = ݃௦ 

Constraint (19) expresses the condition that the 
signal ݏ is allocated on the bus ܾ iff its readers and 
writers are on the ECUs communicating via ܾ. ∀∈ೢቀᇲ(௦)ቁ,   ೕ∈ ೝቀᇲ(௦)ቁ: 0 ≤ ∑ ܽ௦௪ೝ , +∈ா(ೖ)∑ ܽ௦௪ೝೕ , +∈ா(ೖ)  ݃௦ − 3 ܽ௦ ,ೖ ≤ 2
Priority assignment: Constraints on priority 
assignment are specified in the same way for runnables 
and signals. Due to the lack of space, we give only the 
constraints for runnables. Constraint (20) defines the 
binary variable ߩ, that expresses the priority order 
between runnables.  ߩ, = 1 means that ݎ has higher 
priority than ݎ. If ߩ, = 0 and ߩ, = 0 then ݎ and ݎ have the same priority order. ߩ, + ,ߩ ≤ 1

Constraints (21), (22), (23), (24) and (25) ensure the 
observance of the symmetric, transitive and inversion 
properties of the priority order relation. ߩ, + ,ߩ − 1 ≤ ,ߩ,ߩ − ,ߩ) + (,ߩ ≤ ,ߩ,ߩ − ,ߩ) + (,ߩ ≤ ,ߩ,ߩ + ,ߩ + ,ߩ + ,ߩ ≥ ,ߩ,ߩ + ,ߩ + ,ߩ + ,ߩ ≥ ,ߩ

Runnables with non-harmonic periods are not 
allowed to have the same priority order. This is 
represented by the constraint (26). If ( ܲ ≥  ܲ) and 
( ܲ݉݀ ܲ ≠ 0): 1 = ,ߩ + ,ߩ



Runnables sequence order: A total order is defined 
for runnables to express the execution sequence order 
for runnables with the same priority. Constraint (27) 
defines the binary variable  ܵ, that represents the 
sequence order between  ݎ and  ݎ . The sequence order 
is total, i.e. either  ݎ is executed before  ݎ ,ܵ )  =1) or ݎ  before  ݎ ( ܵ, = ,ܵ  .(1 + =  ,ܵ   1
Constraint (28) guarantees the antisymmetric and 
transitive properties of the sequence order relation.  ܵ, + −  ,ܵ  1 ≤ ,ܵ 
Dependency constraints: Dependencies between 
runnables allow to set some sequence and priority 
orders i.e. when the execution of ݎ depends on the 
execution of ݎ, i.e. (ݎ →  ), it doesn’t make sense toݎ
give higher priority or sequence to ݎ (29). ݂݅ (ݎ → ,ߩ :(ݎ = ,ܵ  ݀݊ܽ  0  = 0

To express next constraints we are defining the 
following set of binary variables: ܵ݊ܪ,,ೖ =1 indicates that  ݎ and  ݎ  are allocated on the same 
ECU ݁ and  ݎhas higher priority than  ݎ  (30). 0 ≤ ,ߩ + ௦௪(ೝ) ,௦௪(ೝೕ),ೖݔ − ,,ೖܪ݊ܵ 2 ≤ ,,ೖܦ1ܵ݊ = 1 determines that  ݎ  and  ݎ  are 
allocated on the same ECU ݁ but they have different 
priority order (31). ܵ݊ܦ,,ೖ = ,,ೖܪ݊ܵ  + ,,ೖ,,ೖܵ݊ܵܪ݊ܵ  = 1 indicates that  ݎ and  ݎ  have the same 
priority and they reside on the same ECU ݁ (32).     

,,ೖܵ݊ܵ     + ,,ೖܦ݊ܵ  =  ௦௪(ೝ) ,௦௪(ೝೕ),ೖݔ 
Protection mechanism: Communication variables in 
inter-tasks communication within an ECU are either 
protected by RT blocks or semaphore locks. 
Constraints (33) and (34) determine the binary variable  ఙܻ  that says if the shared resource ߪ should be 
protected ( ఙܻ = 1) or not ( ఙܻ = 0). When all writer 
and reader runnables of a shared resource are on the 
same ECU and task (i.e. they have the same priority), 
the protection of the shared resource is not needed (33). 
Within the same ECU, if there is at least one reader 
runnable with different priority as one of the writer 
runnables, the shared resource needs to be protected 
(34). 

   ఙܻ ≤ ∑  ∈ೢ(ఙ) ∑  ೕ∈ೝ(ఙ) ∑ ,,ೖ ೖ∈ ாܦ݊ܵ ݎ∀   ∈ , (ߪ)௪ݎ ݎ ∈ ఙܻ : (ߪ)ݎ ≥ ∑ ,,ೖ ೖ ∈ ாܦ݊ܵ  
To specify the mechanism of protection, we define 

two binary variables  ݉݁݉ఙ and ݈݇ܿఙ . ݉݁݉ఙ = 1 
indicates that ߪ is protected using RT blocks and ݈݇ܿఙ=1 that the protection mechanism for ߪ is the 

semaphore lock. Constraint (35) gives the relationship 
between variables ఙܻ , ݉݁݉ఙ and ݈݇ܿఙ . ఙܻ = ݉݁݉ఙ + ఙ݈݇ܿ
Memory utilization: The additional memory cost in 
the MILP is defined using some variables. We define 
the binary variable  ఙܸ based on the priorities of writer 
and readers runnables. The ఙܸ = 0 means that for the 
shared resource ߪ there are no reader runnables with 
higher priority than the writer, the value of  ఙܸ in this 
case is fixed by constraint (36). If there is at least one 
reader runnable with higher priority than the writer 
runnable then the value of  ఙܸ is set to 1 in (37). ∀ ݅ݎ  ∈ (݅ߪ)ݓݎ ∶ ߪܸ  ≤  ∑ ∑ ݎ ∀ (݅ߪ)ݎݎ∋݆ݎ ,ೕ,݁݇݁݇ ∈ாܪ݊ܵ ∈ ,(݅ߪ)௪ݎ ݎ ∈ ∑ :(݅ߪ)ݎ ೖೖ ∈ா,݆ݎ,݅ݎܪ݊ܵ ≤  ఙܸ݅

The memory needed for each shared resource is 
computed as in constraint (38), where, ܼ݆ݎ,݅ݎ,ೖ  is a 
binary variable equal to ݆ܵ݊ݎ,݅ݎܪ,ೖ ∗ ݉݁݉ఙ . ܼఙᇱ is 
another binary variable set to 1 if both  ఙܸ  and ݉݁݉ఙare equal to 1, otherwise, it is equal to 0. ܼ݆ݎ,݅ݎ,ೖ and ܼఙᇱ are defined in the same way as the 
variable ܵ݊ܪ,,ೖin constraint (30). ∀ ݎ  ∈ (ߪ)௪ݎ ∶ ఙ݁ݖ݅ܵ݉݁݉ =∑ ∑ ೖೖ ∈ா,݆ݎ,݅ݎܼ    ∈୰ೝ(ఙ݅) + ݉݁݉ఙ + ܼఙᇱ
Semaphore lock: Memory consumption can be 
avoided by using semaphore locks. However, this will 
result in a blocking time for runnables (according to 
PCP) equal to the largest critical section of lower 
priority runnables sharing resources with higher or 
equal priority ceiling. Constraint (39) expresses the 
blocking time of ݎ based on the binary variable ܿ݀݊,,ఙ, which represents the necessary condition 
to consider ݎ during the computation of ܤ . The 
definition of this condition is given in constraint (40). 
It consists in the combination of three sub conditions: 
i) ݎ  is lower priority than ݎ, ii)ߪ is a shared variable 
protected by a lock  and  iii) the priority ceiling of ߪ is 
higher or equal to the priority of ݎ . The third condition 
is expressed by the binary variable ܲܥ,ఙ ܤ . ≥ ,,ఙ݀݊ܿ  ∗ ߱ೝೕ, 0 ≤ ݅ߪ,݅ݎܥܲ ߪ݈݇ܿ +  + ∑ +ೖ∈ா݇݁,݆ݎ,݅ݎܪ݊ܵ − 3. ݅ߪ,݆ݎ,݅ݎ݀݊ܿ  ≤ 2

As priority of runnables sharing directly a resource 
is always lower or equal to the priority ceiling of this 
resource, ∀ ݎ ∈ ൫ݎ௪(ߪ)  ∪ ,ఙܥܲ :൯(ߪ)ݎ   = ఙ݈݇ܿ  . 

For runnables ݎ  that do not share the resource ߪ, 
the value of ܲܥ,ఙ depends on the priority of all 
runnables ݎ  sharing ߪ i.e. if there is at least one 
runnable ݎ sharing ߪ with higher or equal priority than ݎ, ܲܥ,ఙ = 1 (41) otherwise if all runnables ݎ  sharing ߪ have lower priority than ݎ then ܲܥ,ఙ = 0 (42). 



∀∉൫ೢ(ఙ) ∪ ೝ(ఙ)൯ ܽ݊݀ ∀ೕ∈൫ೢ(ఙ) ∪ ೝ(ఙ)൯: ,ఙ݅ܥܲ ≥∑ ,,ೖ݁݇∈ாܵ݊ܵ + ∑ ,ఙ݅ܥܲ,,ೖ݁݇∈ா∀∉(ೢ(ఙ) ∪ ೝ(ఙ))ܪ݊ܵ ≤∑ (1 − ೕ∈( ೢ(ఙ) ∪ ೝ(ఙ))  ∑ ,,ೖ)݁݇∈ாܪ݊ܵ
Worst-case response time computation: The 
computation of runnables WCRT needs the definition 
of some variables, ܵ݊ܪ,,ೖ,  ܸ,and ܫ,,ೖ.  The 
binary variable  ܵ݊ܪ,,ೖ  indicates whether the 
runnable ݎ , that is allocated on the same ECU as ݎ 
and has the same priority as ݎ, has a higher execution 
order than ݎ. The definition of the integer 
variable ܸ݆ݎ,݅ݎ, which represents the number of possible 
interferences of ݎ on ݎ ൬ ܸ݆ݎ,݅ݎ = ோ݅ݎ݆ݎඈ൰, is captured by 
(43). 0 ≤ ݆ݎ,݅ݎܸ  − ݅ݎܴ) ⁄݆ݎܲ ) ≤ 1

The integer variable ܫ,,ೖ  is the number of 
possible interferences of ݎ on ݎwhen ݎ is higher 
priority than ݎ (ܫ,,ೖ. = ݆ݎ,݅ݎܸ  ∗  ,). We use in theߩ 
same way as previous the Big M method to linearize ܫ,,ೖ . Finally, (44) gives the computation of WCRT. ∑ ∑ ݆ݎ,,ೖೖ∈ாܪ݊ܵ . ೖ,݆ݎܥ + ∑ ∑ ݆ݎ,,ೖೖ∈ாܫ  . ݅ݎܤ +ೖ,݆ݎܥ +  ∑ ܽ௦௪(),ೖೖ∈ா . ೖ,݅ݎܥ = ܴ

The computation of signals WCRT is similar to 
runnables with the only difference that the blocking 
time ݆ݏܤ is computed as the largest WCTT of any group 
of equal priority signals sharing the same bus (45). ∀௦ೕஷ௦: ܤ௦ ≥  ∑ ௦,௦ೕ,ೖ.ೖ∈ఉܦ݊ܵ ௦ೕ,ೖܥ +  ∑ ∑ .௦ೕ,௦,ೖܵ݊ܵ .௦,ೖܥ ௦,௦,ೖ ೖ∈ఉ௦ܦ݊ܵ
5. Experiments 

There are two goals of the conducted experiments. 
The first one is to show the quality of results obtained 
with the GA (with respect to the optimal solutions 
given by the MILP) and the runtimes. Next, we 
compare our technique with the existing approaches 
that do not consider partitioning. The last has a high 
influence when optimizing the timing responses and 
the memory overhead. 

5.1. GA vs MILP 
In order to assess the quality of results obtained with 
the GA we compared it to the MILP. MILP assures 
optimality of the result in case if the solver finishes 
with no error. Unfortunately for the larger use-cases, 
solver that we used – CPLEX [19], although run on a 
powerful machine, is not able to provide an optimal 
result. It either finishes computation with an error 
message not providing any result or it stops with an out 
of memory message. In the second case, it returns a 
result, however it is not sure whether it is optimal. 
Therefore we have set use-cases for which we can infer 

optimal configurations (solutions). This has been done 
by first applying the weight 1 for the function 
responsible for optimizing end-to-end responses and 
fixing a simple use-case shown in the 
Figure 32. For this case, with the only optimization of 
response time, the set of optimal configurations 
contains any possible partitioning, and for each shared 
resource (if any) the protection mechanism is the RT. 
The left configuration presented in Figure 4 is an 
example of an optimal solution for the simple use-case. 

Figure 3 Non-replicated Use-Case 

 

 Figure 4 Optimal configurations  

Once the simple use-case has been fixed, other use-
cases were found by replicating the simple use-case. 
This means that, each path, runnable, ECU and BUS is 
replicated. Hence when replicating by 11 we obtained a 
use-case with 55 runnables, 11 ECUs and 11 BUS-es. 
Also, we connected each ECU to the original BUS and 
all the replicas. Let us remark that for the replicated 
use-cases, the set of optimal configurations is 
characterized by having each ECU containing only one 
path (no inter-ECU communication). Figure 5 shows 
the runtime for the MILP and the GA. Indexes on the 
horizontal axe express the factor for the replication. As 
can be seen, MILP on average gives the results in 
shorter time. However the Figure 6 shows that when 
architecture has been multiplied 6, 9, 10 and 11 times, 
the solver didn’t return any solution. This was due to 
the returned error. For the factor 5, 7 and 8, the CPLEX 
finished execution with “out of memory exception”. 
Nevertheless for the factor 5, returned result is optimal, 
which is not the case for 7 and 8. The GA for all the 
replication factors was able to return the optimal 
solution. We run similar tests but with weights 0.5 for 
the end-to-end responses and 0.5 for the memory 
optimization. Set of the optimal solutions for the non-
replicated use case contains only one configuration in 
which all the runnables are partitioned in one task. 

                                                           
2 For sake of simplicity, we omitted from the image the presentation of 

software components. In this case we assume one software component per 

runnable entity. 
 



Figure 5: Runtime for MILP and GA (.   ((શ)ࢋࢋ ∗

Figure 6: Results for MILP and GA (.   ((શ)ࢋࢋ ∗

For the replicated use-cases, each ECU must contain 
only one path. In this case, on average, MILP provides 
the results in a shorter time (see Figure 7). However, 
already for the replication factor 5 (see Figure 8) the 
returned result was not optimal and starting from 9, 
CPLEX didn’t provide any result. The degradation of 
the results given by the GA, started from factor 8. In 
general, the reason for this is that when using equal 
weights for the latency and memory optimization 
functions, the set of optimal configurations is smaller 
than if optimizing only end-to-end latencies. This is 
due to the fact that optimal solutions only have the 
runnables of the same path partitioned in the same task. 
The configuration on the right side of the Figure 4 
represents the only optimal configuration for the non-
replicated use-case. In all of those use-cases the GA 
was run with an initial population of 10000. The 
algorithm stops if during the 20 consecutive evolutions, 
the fittest chromosome doesn’t change. When we run 
the GA on the population of 100000 we were able to 
obtain the optimal solution for the second metric and 
the replication from 8 to 11. This however increased 
the runtime to around 12 hours on a 2.4 GHz single 
processor computer with 8GB of memory. 

5.2. Evaluation against approaches with none or 
partial Partitioning 
This set of tests shows the added value of considering 
the partitioning. Therefore we will compare the results 
obtained with the GA with those that doesn’t consider  

Figure 7: Runtime for MILP and GA (.  (શ)ࢋࢋ ∗ + .  ∗  ((શ)

Figure 8: Results for MILP and GA (.  (શ)ࢋࢋ ∗ + .  ∗  ((શ)

the partitioning (which is the case for [8]) or 
approaches that consider only partial partitioning, i.e. 
only runnables of the same period can be merged 
together (the case for [10]). The last two were 
implemented in MILP hence for them the obtained 
results are optimal in case when solver returned the 
result without error. The tests were run on a set of 
random input architectures. 

Figure 9 and 10 show that consideration of the 
partitioning has an impact on the optimization metrics. 
For the fitness 1.0 for the fଶ(Ψ) (Figure 9) the GA 
obtained results 34,87% better than those with no 
partitioning and 16,48% from those with partial 
partitioning. Please note that for all of the approaches 
the same schedulability test is used (see subsection 
3.3). Hence the metric improvement is a consequence 
of the constrained design space for the approach with 
partial and no partitioning. Possible, further 
improvement is to change the way in which ܥఛ,ೕ from 
the equation 6 is computed for the approach with full 
partitioning. For the moment it has pessimistic 
assumption that all the runnables, even those with 
harmonic but not the same periods will always be 
activated.   

Considering Figure 10, the results of the GA were 
6.8% better than those obtained with the approach 
disregarding partitioning, and 5.7% better from those 
which limit partitioning to the same periods. Let us 
note that for 35 runnables, CPLEX didn’t return any 
result. 



Figure 9: Comparison using fitness function 
(.  ∗  ((શ)ࢋࢋ 

Figure 10: Comparison using fitness function 
(.  ∗ (શ)ࢋࢋ  + .  ∗  ((શ)

6. Conclusions and Future Work 

We presented a method for the optimized synthesis 
of the AUTOSAR compliant architectures. We 
proposed two techniques, MILP and GA. The main 
contribution of this work lies in a holistic approach that 
considers allocation, partitioning, scheduling and 
ordering together. As shown in the experimental part, 
employment of partitioning that is neglected in the 
current works, improves the optimization metrics. In 
addition we have evaluated our heuristic, i.e. the GA 
against MILP (i.e. exact approach) in terms of runtimes 
and the quality of results. As a future work we 
envisage to further scale our technique by provision of 
the parallelism in the implementation of the GA.  
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