
HAL Id: cea-01810019
https://cea.hal.science/cea-01810019v1

Submitted on 7 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Optimization Approach for the Synthesis of
AUTOSAR Architectures

Ernest Wozniak, Asma Mehiaoui, Chokri Mraidha, Sara Tucci-Piergiovanni,
Sébastien Gerard

To cite this version:
Ernest Wozniak, Asma Mehiaoui, Chokri Mraidha, Sara Tucci-Piergiovanni, Sébastien Gerard. An
Optimization Approach for the Synthesis of AUTOSAR Architectures. Emerging Technologies &
Factory Automation (ETFA), 2013 IEEE 18th Conference on, Sep 2013, Cagliari, Italy. �cea-01810019�

https://cea.hal.science/cea-01810019v1
https://hal.archives-ouvertes.fr

An Optimization Approach for the Synthesis of AUTOSAR Architectures

Ernest Wozniak, Asma Mehiaoui, Chokri Mraidha, Sara Tucci-Piergiovanni and Sébastien Gerard
CEA, LIST, Laboratory of Model-Driven Engineering Applied to Embedded Systems

91191 Gif-sur-Yvette CEDEX, FRANCE
{name.lastname}@cea.fr

Abstract

Synthesis of automotive architectures is a complex
problem that needs an automated support. AUTOSAR,
standard for the specification of automotive
architectures, defines a synthesis process of software
components and their connections in a set of fixed-
priority OS tasks distributed over a network of ECUs.
During the synthesis process software components are
allocated on ECU-s. Since each component
encapsulates a set of so-called runnable entities,
synthesis completes by partitioning runnable entities in
OS tasks with assigned fixed priorities. This paper
proposes an optimization approach for the synthesis of
AUTOSAR architectures based on genetic algorithms
and mixed integer linear programming techniques.
Optimization criteria consider end-to-end timing
responses and memory consumption.

1. Introduction

The AUTOSAR (AUTomotive Open System
Architecture) [1] development process aligns to the
MDE (Model Driven Engineering) principles as it is
based on the use of models defined through meta-
models and provides a development process based on a
progressive refinement of models. At the heart of the
development process lays the synthesis of the
functional architecture (encapsulating the system logic)
in a real-time architecture made of fixed-priority tasks
distributed over a network of ECU-s. The synthesis
process according to the AUTOSAR can be divided in
four main activities. The first one is called the
allocation as it consists in placing the atomic software
components on the ECU-s and the exchanged signals
on the buses. Each software component encapsulates
the implementation of a specific functionality which is
exposed to the outside world by means of ports.
Internal behaviour of each atomic software component
is represented by a graph of runnable entities, which in
turn represent schedulable units of computation. Let us
remark that each atomic software component contains
at least one runnable entity. Runnables of the same
component cannot be split among different ECU-s,
hence we can say that allocation of atomic software
components determines the allocation of runnables.

From now on, when discussing allocation we refer to
the allocation of runnable entities and data signals.

Second, third and fourth activity are partitioning,
scheduling and ordering. Runnables and signals are
being partitioned in OS tasks and messages which are
then scheduled by the assignment of static priorities.
Moreover the order of runnables inside a task is
defined with respect to the functional constraints.

It is common and recommended practice [2] in this
demarche, to specify the end-to-end timing constraints
at the highest level, between input and output ports of
the highest level component of the architecture, usually
representing the system under study (see Figure 1). For
each external stimulus, consumed by an input port, the
constraint specifies a deadline for the response to be
produced on the output port. Each end-to-end
constraint is progressively refined by specifying the
end-to-end chain of runnable entities (traversing one or
more atomic components) that are activated to produce
a system response triggered by the given stimulus.

Figure 1 Visualization of end-to-end chain

By knowing runnables allocation their partitioning
and order within the tasks as well as priorities of the
tasks, the designer can now compute the response
times of runnables end-to-end chains to see if end-to-
end timing constraints are met. If some deadlines are
violated, the designer has to find another configuration.
This is a cumbersome process as the synthesis is an
NP-hard problem. Hence appropriate support is
required. In the current state of practice, only partial
solutions exist as none of them handle all four
dimensions (allocation, partitioning scheduling and
ordering) at once. Most common solutions take as
input a task model which means that the partitioning is
already known or is done manually based on an
engineer’s expertise. This severely minimizes the
design space to explore and therefore might exclude
feasible solutions as shown later in this work.

This paper presents two techniques for the synthesis
of AUTOSAR architectures in its entire form. The first

978-1-4799-0864-6/13/$31.00 ©2013 IEEE

technique is based on mixed integer linear
programming (MILP). It returns the optimal solution
but is limited to small size systems. In order to
improve scalability – to address industrial size systems
- a second technique, based on the genetic algorithms
(GA) is proposed. For both techniques optimization
criteria relate to the end-to-end responses and
consumed memory. As runnables on the same ECUs
communicate asynchronously through shared variables,
a protection mechanism is required to guarantee data
consistency and behaviour predictability. Protection
mechanisms either take time or consume memory. Our
techniques will operate a choice between a time-
consuming and a memory-consuming protection
mechanism, when optimizing response time and
memory consumption.

 This paper is organized as follows. The next section
presents related work. Section 3 formalizes the system
model, presents used schedulability analysis and
memory consumption analysis, i.e. the way in which
end-to-end responses and memory overhead are
computed. Finally this section formulates the synthesis
problem and optimization criteria. Section 4 presents
the optimization technique, i.e. the Genetic Algorithms
and the MILP formulation. Section 5 evaluates our
techniques. First, results of the GA technique are
compared against the MILP results. Then the GA
technique is evaluated against current approaches
disregarding the partitioning dimension. Section 6
concludes the paper and discusses the future work.

2. Related Work

The literature on the synthesis problem is rich.
There are many approaches that consider only the
allocation and task scheduling problems and relate to
different optimization metrics (like the inter-ECU
communication bandwidth) [3-6].

Concerning the system model and the optimization
objectives our approach is closely related to the
following works [7-12]. The [7] and [8] similarly as in
our approach consider periodic activation and end-to-
end responses as optimization criteria. The main
difference is that the authors are considering OS tasks
as an allocation unit and hence partitioning and
ordering is fixed for them. Ferrari et al. [9] is the first
work discussing possible strategies to protect shared
data items and memory/timing tradeoffs. The work in
[10] proposes a two-step technique for the allocation of
AUTOSAR software components to the ECUs, taking
into account protection mechanism as a parameter to
specify. However it considers neither partitioning nor
ordering. Authors of [11] and [12] also relate to the
periodic runnables in their model. They consider
additional mechanisms that can assure data consistency
like the absence of preemption. The last can be done by
defining so called preemption thresholds or preemption

groups. In their work the allocation is fixed and hence
their approach is for local optimization. Interestingly,
the order of runnables as the parameter to manipulate is
considered.

The main contribution of our work in relation to the
current approaches ([13] gives an exhaustive survey on
the existing methods for the optimization of real-time
embedded systems) lies in a holistic deployment of the
automotive architectures. None of the existing works is
solving the four problems, i.e. allocation, partitioning,
scheduling and ordering together, considering also
assignment of a memory protection mechanism.

3. Formalism

3.1. System Model
The input system model consists of two graphs. The

first one is an AUTOSAR execution model represented
by a directed graph ܩ = { ܸ, } in which ܸ is the setܧ
of vertices representing runnables and ܧ is the set of
edges related to the links between them. The second
one is an undirected graph ܩ = { ܸ, } that expressesܧ
hardware architecture. Nodes represent hardware
resources and the edges represent communication links
between them. The hardware resources are ECUs and
communication buses. The remaining notions used
throughout this work were gathered in the table below
for a better readability.

Concept Explanation ܧ Set of ECUs ݁ ECU ߚ Set of BUSes ܾ BUS ܧ(ܾ)

This function returns set of the ECUs
communicating through the bus ܾ ܴ

Set of runnable entities. In this work we restrict to
periodic runnables, i.e. runnables that are activated
in response to periodic timer events. ݎ Runnable entity ܲ Period of a runnable entity ݀ Local deadline of the runnable entity ݎ ⃗ܥ ,భܥ) = ,మܥ , (,ܥ ,… ,

Worst case execution time of a runnable,
characterized by a vector of WCETs, due to the
heterogeneity of the hardware nodes. Later in the
paper we omit the second index specifying the ECU,
just for the simplicity of the notation. ܿݓݏ Atomic software component. Its behaviour is
defined by the runnable entities. ܵܥ(ݎ)
This function returns atomic software component of
a runnable ݎ. ܲܵ Communication ports of runnable ݎ ܲ Set of input ports of the runnable entity ݎ , ݆௧ input port of the runnable ݎ ܲ௨௧ Set of output ports of the runnable entity ݎ ,௨௧ ݆௧ output port of the runnable ݎ

ܵ Set of data signals ݏ1 Data signal ܵܦ(ݏ) Size of the data signal ݏ Ω Set of shared resources ߪ Shared resource

 (ߪ)௪ݎ

Set of writer runnables, writing to the shared
resource ߪ. We consider one-to-many
communication hence ݎ௪(ߪ) contains only one
writer. ݎ(ߪ) Set of readers of the shared resource ߪ ߞ(ߪ) Data signal of the shared resource ߪ ߞ′(ݏ) Shared resource corresponding to the signal ݏ Ω Set of all the shared resources accessed by the
input/output ports of the runnable ݎ ߱ೝ,ೕ/߱ೝ,ೖೠ
WCET of the runnable entity ݎ on the critical
section used for accessing shared resources. The
access is through the input/output port , ߦ ,௨௧/ = {Γଵ, Γଶ, …, Γ}

Set of the end-to-end chains that we call paths. Each
path is defined as an ordered interleaving sequence
of runnables and signals defined as Γ ,భݎ]= ,భݏ ,మݎ ,మݏ … , ,ೖషభݏ (Γ)ܿݎݏ .[ೖݎ = భ is theݎ
path’s source and ݇݊ݏ(Γ) = ೖݎ is the sink. Multiple
paths may exist between each pair of source-sink. R Response time of the path Γ D Deadline of the path Γ ߬ OS task – the code of a runnable entity executes in a
context of an OS task ݁(߬) ECU on which the task ߬ is allocated ݁(ݎ) ECU on which the runnable ݎ is allocated ݁(ߪ) ECU on which shared resource ߪ is specified ߬(ݎ) Task in which ݎ is partitioned

 (ݎ)ݔ݀݅

As multiple runnables can be partitioned in one task
we specify the order by introducing the index of a
runnable inside a task ݆ = , meansݎ Hence .(ݎ)ݔ݀݅
that runnable ݎ is at the ݆௧ position in a task. ߨ Priority of a runnable entity. It equals to the priority
of ߬(ݎ) which is defined as ߨఛ ܥఛ
WCET of the task ߬. It equals to the sum of
WCETs of all the runnables partitioned within this
task, i.e. ܥఛ = ∑ ఛ൫ೕ൯ୀఛܥ . ݉ BUS message ݉(ݏ) Message that transmits the signal ݏ ⃗ܥ௦ (௦,ܥ ,… ,௦,మܥ ,௦,భܥ) =

WCTT (Worst Case Transmission Time) of the
signal ݏ when transmitted on the BUS. Also here
for the sake of simplicity, the second index
indicating the bus is omitted when relating to the
signal WCTT. ܥ WCTT of the message ݉. It is a sum of WCTT of

1 Runnables communicate by sharing data signals accessed through their

ports. Data signal can be communicated either through a shared resource or
via a message passing. The identification of shared resources uniquely
depends on the runnables allocation and partitioning. For each identified
data signal communicated between runnables of different tasks but of the
same ECU we define a shared resource. Data signals communicated
between runnables of the same task don’t require defining a shared
resource. Also, for the inter-ECU communication no shared resource is
required as in this case data signal is communicated by the BUS message.

all the signals partitioned in this message, i.e. ܥ = ∑ ௦൫௦ೕ൯ୀܥ .

௦ܲ Period of the signal ݏ. It is equal to the period of a
writer runnable.

Table 1. Main Concepts of the System Model

3.2. Memory
The manner in which allocation and partitioning of

runnables is done has an impact on the used memory.
First, as it is specified in the AUTOSAR metamodel
[14], runnable entity r has a stack memory usage that
differs, depending on the ECU on which it is deployed.
This is specified with the vector ܯሬሬ⃗ = ,,భܯ) ,మܯ , … , ,). The next factorܯ
affecting the used memory is the protection mechanism
specified to protect the shared resources. Protection
mechanism has to be specified for each signal
communicated between runnables of different tasks
that are deployed on the same ECU. This is due to the
asynchronous communication between periodic
runnables and hence, mechanism to provide the data
consistency is necessary. This work considers two
mechanisms:

 Wait-free access method such as Rate Transition
(RT) block [15] – this mechanism behaves like a
Zero-Order Hold block or a Unit Delay block plus
a Hold block or Sample and Hold (for slow to fast
transitions). Its implementation consists of a
switched buffer. This mechanism incurs
negligible time overhead but it consumes
additional memory.

 Semaphore Lock (SL) – in this work we assume
immediate priority ceiling semaphores. Priority of
a runnable that is accessing a shared resource is
raised to the ceiling priority of a resource. The
SL, opposite to the RT, imposes no additional
memory overhead, however it suffers timing
delays in the form of a blocking time.

Function ߛ(ߪ) will return the value representing
the protection mechanism used to protect a shared
resource ߪ. Value ܵܮ concerns semaphore lock,
whereas ܴܶ means Rate Transition block. Overall
memory overhead ܯ for ECU ݁ is computed
according to (1).

ܯ = ∑ + ೕ൫ೕ൯ୀܯ ∑ ఙೖ (ఙೖ)ୀܯ
The ܯఙೖ is a memory overhead caused by the RT

and is computed according to [11] (see (2)). For this
we define additional notation. We denote the set of
readers with higher (lower) priority than the writer ݎ௪(ߪ) as ݎுோ(ߪ) (ݎோ(ߪ)). Our formula is a
simplification of what is included in [11] as in this
work we are not considering the preemption
thresholds. ܯఙೖ = ൯݊(ߪ)ߞ൫ܵܦ

݊ఙೖ = ൝∑ ∈ೢ(ఙೖ),ೕ∈ಽೃ(ఙೖ)ݓ + (ߪ)ுோݎ݂݅ ݓ2 ≠ ∅ ∑ ∈ೢ(ఙೖ),ೕ∈ಽೃ(ఙೖ)ݓ + (ߪ)ுோݎ݂݅ ݓ = ∅
ఙೖݓ = ൜1 ݂݅ ߛ(ߪ) = (ߪ)ߛ ݂݅ 0ܴܶ = ܮܵ

3.3. Timing Analysis
Timing analysis concerns computation of the

response times for runnables and global signals and
also computation of the end-to-end responses. It is
based on the work presented in [8] and adapted to
consider runnable entities. Adaptation is because the
entities considered in the analysis of [8] focus on the
OS tasks and doesn’t consider functional architecture
as in our case.

3.3.1. Schedulability of Runnable Entities
Worst case response time of runnable ݎ, for which ݅݀ݔ(ݎ) = ݆, is represented with ܴ,ೕ and computed

according to (5). The ܥఛ,ೕ (see eq. 6) is the worst case
computation time of the task until the ݆௧ runnable
partitioned in this task. Please note that we allow
partitioning of the runnables with the harmonic periods
in the same task. This means that when the task is
executed not all of the runnables will be activated.
Therefore the ܥఛ,ೕ varies. However we assume the
worst case scenario hence we account for all the
runnables up till the ݆௧ when computing the ܥఛ,ೕ. The ܤఛ is a blocking time of a task ߬. Blocking time
depends on the shared resources accessed by the task
and the way in which the shared resources are
protected from multiple accesses. If the shared resource
is protected with a semaphore lock, it causes a blocking
time. The semaphore lock in our case is realized
through the Priority Ceiling Protocol (PCP) [16]. The
same blocking time applies to all the runnables that are
partitioned in the same task and therefore it is
computed for a task. To compute the blocking time
with the PCP few additional things have to be clarified.
First, the shared resources of a task ߬ are specified
with the set Ωఛ = ⋃ Ωೕఛ൫ೕ൯ୀ ఛ . This means that the
task inherits the access to the shared resources from the
runnables partitioned in this task. The WCET of a task ߬ for accessing (reading/writing) a critical section of a
shared resource ߪ is represented with ߬൫߱ఙ൯ =max(߱ೝ,ೕ) /߬൫߱ఙ൯ = max(߱ೝ,ೕೠ). Function ℎ(ݎ) returns all the runnable entities allocated on the
same ECU as ݎ, with the priority higher than ݎ. ܴ,ೕ = ఛ()ܤ ఛ(),ܥ + ∑ ோೝ,ೕೝೖ ඈ ఛ,ೕܥ ೖೖ∈()ܥ = ∑ ೖఛ(ೖ)ୀఛ˄ஸܥ
3.3.2. Schedulability of Signals

Worst case response time for a signal is computed
in case when ݏ represents inter-ECU communication.

We are considering an event triggered bus, such as the
CAN bus. Similarly to (5) the computation of ܴ௦
accounts for a blocking time ܤ. This blocking time
characterizes entire bus ܾ. It is caused due to the non-
preemptive scheduler of a bus, such as the CAN. This
blocking time ܤ applies to all the signals of a bus ܾ,
except those partitioned in a message with the lowest
priority. Function ℎ(݉) returns all the messages of
the same bus as ݉ with a priority higher. ܴ௦ = ܤ (௦)ܥ + ∑ ோೞೞඈ ೖೖ∈((௦))ܥ
3.3.3. End-to-end Responses Computation

The worst case end-to-end latency ܴ is computed
for each path Γ by adding the worst case response
times of all the runnables and global signals (i.e.
signals representing intra-ECU communication), as
well as the periods of all the global signals and their
reader runnables on the path (see (8)). Set Φ represents
all the global signals. The ݀ܽ݁ݎ௦ೖ, is the reader
runnable of ݏ on the specific path Γ.
 ܴ = ∑ ܴ୰ೕ ୰ೕ∈ + ∑ ܴୱೖ + ௦ܲೖୱೖ∈˄ୱೖ∈ + ܲௗೞೖ,
3.4. Problem Formulation

The main objective of this work is an automated
support for the synthesis problem, i.e., the integration
of functional architecture (represented by the
communicating, periodic runnable entities and the
exchanged data signals) with the execution platform,
i.e. ECUs/BUSes and OS tasks/messages. This means
that for each runnable/data signal, its hosting
ECU/BUS has to be assigned (allocation), then
runnables/data signals allocated to the same ECU/BUS
have to be partitioned in tasks/messages, for which the
priorities needs to be defined. Also the order of
runnables inside the task needs to be established as it
has a significant impact on the runnables local
responses and in consequence end-to-end responses as
well. Additionally, to protect the shared resources the
protection mechanism needs to be specified (either RT
or SL). This process should also respect multiple
constraints which are specified with our MILP
formulation (see subsection 4.2). Finally and most
importantly, the synthesis process is driven by
predefined optimization criteria. We are defining four
optimization metrics and for each, its importance can
be specified by assigning a weight. Therefore our final
fitness function ܨ(Ψ) where Ψ represents a final
configuration, i.e. deployed architecture, is a weighted
sum of four functions: ܨ(Ψ) = ଵfଶ(Ψ)ݓ ଶf(Ψ)ݓ+ + ଷf௧(Ψ)ݓ + .ସf(Ψ) explained belowݓ
1) End-to-end Responses Optimization

Optimization of the end-to-end responses (9) aims
at minimizing the response times of paths, relatively to
their deadlines. Their optimization improves the
system performance.

fଶ(Ψ) = 1 − ∑ ோೕୈೕೕ
2) Memory Optimization

 Optimization of memory aims at minimizing the
additional memory overhead that can be caused by
using the Rate Transition blocks and inappropriate
balancing when placing runnables on the ECUs. The
last is due to the heterogeneous nature of the ECUs. f(Ψ) = |ܧ| − ∑ ெೕ ெೕೌೣೕ

The ܯ௫ represents the worst case possible
memory overhead caused for ݁; ܯ௫ =∑ ೕ,ܯ +ೕ ∑ ఙೖఙೖܯ . Its computation assumes that
each runnable is partitioned in one task, writer has
always higher priority than all its readers and all shared
resources are protected with RT.
3) Bus Throughput

This objective concerns the increase of the buses
throughput. For this (11) is used. Optimization of
throughput is a common approach to provide higher
extensibility of a bus. f(Ψ) = 1 − ∑ ௌ(ୱೕ)౩ೕ∈ಅ∑ ௌ(ୱೖ)౩ೖ∈
4) Runnables Local Deadlines

The runnables local deadlines optimization aims at
minimizing the response times of runnables, relatively
to their local deadlines (if any). Local deadlines might
result from the refinement of the end-to-end timing
constraints. f(Ψ) = 1 − ∑ ோ౨ೕୈೝೕೕ
4. Optimization Technique

This section presents the Genetic Algorithm and the
MILP formulation used to solve the synthesis problem.
The MILP assures provision of an optimal solution if
the solver terminates with no error. This property
makes it a good comparator for such heuristic approach
as the GA. The shortcoming of the MILP is the
difficulty in handling larger use-cases. This was the
main rationale behind using the GA. The MILP
formalizes also the constraints that have to be respected
during the synthesis. The last are preserved by our
implementation of the GA.

4.1. Genetic Algorithm
Genetic Algorithm is an optimization technique

patterned after natural selection in biological evolution.
Each possible solution i.e. Ψ is encoded using a string
of bits that we call a chromosome. One or few bits
encode a solution for a specific parameter, in our case
runnable entity or data signal. Group of bits
corresponding to one parameter is called a gene. Later

in this paragraph we specify our encoding, generation
of initial population and how it is evolved in the
consecutive iterations until the stop criteria is met. We
also describe the correction mechanism that keeps our
population consistent in regard to the constraints.

4.1.1. Encoding
Each chromosome ܿℎ represents a specific

deployment configuration. Gene ݃ relates either to
runnable entity or a data signal. For the first, gene ݃ = ܿℎ(ݎ) stores the value ܸ(݃) representing
runnable’s allocation and partitioning. For a data
signal, value stored depends whether it is a global data
signal or a data signal that is communicated locally.
Value for a global data signal will hold information
about the BUS and the message in which it is
partitioned. If this is a local data signal ݏ, value
depends on whether ݏ is communicated through the
shared resource or no. For the first case, value
represents one of the two mechanisms, either ܵܮ (value
= 1) or ܴܶ (value = 2). For the second, value equals 0.

The gene value ܸೕ(݃) for the runnable ݎ, this is
one number but stores information about the ECU
number on which runnable ݎ is allocated, the task
number in which it is partitioned, and the position
(order) inside the task. The ܸೕ(݃) for runnable ݎ for
which selected ECU is ݁, task ߬ and position is
computed in a specific way, according to (13). The ݉ܽݔா is the maximal number of runnables that can
be allocated on one ECU and ்݉ܽݔ௦ is the maximal
number or runnables that can be partitioned in one task.
These values are automatically initialized before
running the GA. The ݉ܽݔா is computed as a
maximal number of runnables that can be hosted by
one ECU without violation of utilization (for this
WCETs and periods of runnables are used). The ்݉ܽݔ௦is computed based on the maximal number of
runnables with harmonic periods.

The gene value for a data signal, if transmitted on
the bus, is computed in a similar way (see (14)). Figure
2 presents an example of a chromosome for a specific
deployment configuration. ܸೕ(݃) = (݇ − 1) ∗ ாݔܽ݉ ∗ ௦்ݔܽ݉ + (݈ − 1) ௦்ݔܽ݉∗ +) − 1)௦ܸೕ(݃) = (݇ − 1) ∗ ௌݔܽ݉ ∗ ெ௦ݔܽ݉ + (݈ − 1) ெ௦ݔܽ݉∗ +) − 1)

Figure 2 Example of a chromosome for
specific configuration

4.1.2. Initial Population
The initial population is generated randomly but to

generate correct chromosomes, possible range of
values for each gene depends on the values already
assigned to others. Correct means chromosome
representing deployment configuration that respects the
constraints formalized below with the MILP (see
subsection 4.2).

4.1.3. Evolution
The evolution of a population is through the

selection of chromosomes with good fitness and
applying the crossover and mutation mechanism on
them. The fitness is computed as presented in Section
4. For the selection we are using tournament selector
[17] with a tournament size equal to 5. The crossover
operator this is OX3 [18]. It creates two child
chromosomes from the two parents. The OX3 choses
two random positions in parent chromosomes. Then the
values between them are copied from the first/second
parent to the second/first child. The rest is copied from
the first/second parent to the first/second child. The
mutation operator choses a random gene in a
chromosome and changes its value to the new random
value. The last is selected from the values that don’t
violate the constraints. In addition it is possible to
select the probability for applying the mutation
operation. Mutation is done for the child chromosomes
resulting from the crossover operation.

4.1.4. Correction Mechanism
When generating initial population or applying the

mutation operator, the correctness of a new
chromosome is preserved. This doesn’t hold for the
chromosomes resulting from the crossover operation.
Therefore on each child chromosome the correction
mechanism is called. This is to fix the genes which
represent the values violating the constraints.

4.2. MILP Formulation
In the MILP formulation, the problem is represented

with parameters, decision variables, and constraints
over the parameters and decision variables. Moreover,
an objective function is defined to characterize the
optimal solution.

As we have a large number of parameters, decision
variables and constraints, they are directly discussed
along with the specific aspects of the problem, in the
following sections.
Runnables allocation: Runnables allocation is implicit
through the allocation of components. Constraint (15)
specifies that each software component is allocated on
exactly one ECU. The ߝ(ܿݓݏ) is the set of ܿݓݏ
candidate ECUs. The ܽ௦௪,ೕ is a binary variable that is
1 if the component ܿݓݏ is allocated on ECU ݁.

 ∑ ܽ௦௪ ,ೕ∈ఌ(௦௪) = 1

Constraint (16) defines the binary variables ݔ௦௪,௦௪ೕ,ೖ based on ܽ௦௪ ,ೖand ܽ௦௪ೕ ,ೖ ௦௪,௦௪ೕ,ೖݔ.
is set to 1 if ܿݓݏ and ݓݏ ܿ are allocated on the same
ECU ݁, otherwise, ݔ௦௪,௦௪ೕ,ೖ is 0.

 0 ≤ ܽ௦௪ ,ೖ + ܽ௦௪ೕ ,ೖ − 2. ≥ ௦௪,௦௪ೕ,ೖݔ 1
Signals allocation: It is based on the allocation of
runnables. Signal is either allocated on none or one
bus. In constraint (17), the binary variable ݃௦ indicates
if the signal ݏ is allocated on a bus (݃௦ = 1) or not (݃௦ = 0). The binary variable ܽ௦ ೖ indicates if the
signal ݏ is allocated on the bus ܾ. Constraint (17)
guarantees that if a signal represents inter-ECU
communication, it is allocated on exactly one bus. ∑ ܽ௦ ,ೖೖ∈ఉ = ݃௦

Constraint (18) assures that a signal ݏ is allocated
on a bus iff the components of its writer runnables and
its reader runnables are allocated on different ECUs. ∀ ݎ ∈ ݎ ,൯(ݏ)ᇱߞ௪൫ݎ :൯(ݏ)ᇱߞ൫ݎ ∋ 1 − ∑ ௦௪(ೝ) ,௦௪(ೝೕ),ೖೖ∈ாݔ = ݃௦

Constraint (19) expresses the condition that the
signal ݏ is allocated on the bus ܾ iff its readers and
writers are on the ECUs communicating via ܾ. ∀∈ೢቀᇲ(௦)ቁ, ೕ∈ ೝቀᇲ(௦)ቁ: 0 ≤ ∑ ܽ௦௪ೝ , +∈ா(ೖ)∑ ܽ௦௪ೝೕ , +∈ா(ೖ) ݃௦ − 3 ܽ௦ ,ೖ ≤ 2
Priority assignment: Constraints on priority
assignment are specified in the same way for runnables
and signals. Due to the lack of space, we give only the
constraints for runnables. Constraint (20) defines the
binary variable ߩ, that expresses the priority order
between runnables. ߩ, = 1 means that ݎ has higher
priority than ݎ. If ߩ, = 0 and ߩ, = 0 then ݎ and ݎ have the same priority order. ߩ, + ,ߩ ≤ 1

Constraints (21), (22), (23), (24) and (25) ensure the
observance of the symmetric, transitive and inversion
properties of the priority order relation. ߩ, + ,ߩ − 1 ≤ ,ߩ,ߩ − ,ߩ) + (,ߩ ≤ ,ߩ,ߩ − ,ߩ) + (,ߩ ≤ ,ߩ,ߩ + ,ߩ + ,ߩ + ,ߩ ≥ ,ߩ,ߩ + ,ߩ + ,ߩ + ,ߩ ≥ ,ߩ

Runnables with non-harmonic periods are not
allowed to have the same priority order. This is
represented by the constraint (26). If (ܲ ≥ ܲ) and
(ܲ݉݀ ܲ ≠ 0): 1 = ,ߩ + ,ߩ

Runnables sequence order: A total order is defined
for runnables to express the execution sequence order
for runnables with the same priority. Constraint (27)
defines the binary variable ܵ, that represents the
sequence order between ݎ and ݎ . The sequence order
is total, i.e. either ݎ is executed before ݎ ,ܵ) =1) or ݎ before ݎ (ܵ, = ,ܵ .(1 + = ,ܵ 1
Constraint (28) guarantees the antisymmetric and
transitive properties of the sequence order relation. ܵ, + − ,ܵ 1 ≤ ,ܵ
Dependency constraints: Dependencies between
runnables allow to set some sequence and priority
orders i.e. when the execution of ݎ depends on the
execution of ݎ, i.e. (ݎ →), it doesn’t make sense toݎ
give higher priority or sequence to ݎ (29). ݂݅ (ݎ → ,ߩ :(ݎ = ,ܵ ݀݊ܽ 0 = 0

To express next constraints we are defining the
following set of binary variables: ܵ݊ܪ,,ೖ =1 indicates that ݎ and ݎ are allocated on the same
ECU ݁ and ݎhas higher priority than ݎ (30). 0 ≤ ,ߩ + ௦௪(ೝ) ,௦௪(ೝೕ),ೖݔ − ,,ೖܪ݊ܵ 2 ≤ ,,ೖܦ1ܵ݊ = 1 determines that ݎ and ݎ are
allocated on the same ECU ݁ but they have different
priority order (31). ܵ݊ܦ,,ೖ = ,,ೖܪ݊ܵ + ,,ೖ,,ೖܵ݊ܵܪ݊ܵ = 1 indicates that ݎ and ݎ have the same
priority and they reside on the same ECU ݁ (32).

,,ೖܵ݊ܵ + ,,ೖܦ݊ܵ = ௦௪(ೝ) ,௦௪(ೝೕ),ೖݔ
Protection mechanism: Communication variables in
inter-tasks communication within an ECU are either
protected by RT blocks or semaphore locks.
Constraints (33) and (34) determine the binary variable ఙܻ that says if the shared resource ߪ should be
protected (ఙܻ = 1) or not (ఙܻ = 0). When all writer
and reader runnables of a shared resource are on the
same ECU and task (i.e. they have the same priority),
the protection of the shared resource is not needed (33).
Within the same ECU, if there is at least one reader
runnable with different priority as one of the writer
runnables, the shared resource needs to be protected
(34).

 ఙܻ ≤ ∑ ∈ೢ(ఙ) ∑ ೕ∈ೝ(ఙ) ∑ ,,ೖ ೖ∈ ாܦ݊ܵ ݎ∀ ∈ , (ߪ)௪ݎ ݎ ∈ ఙܻ : (ߪ)ݎ ≥ ∑ ,,ೖ ೖ ∈ ாܦ݊ܵ
To specify the mechanism of protection, we define

two binary variables ݉݁݉ఙ and ݈݇ܿఙ . ݉݁݉ఙ = 1
indicates that ߪ is protected using RT blocks and ݈݇ܿఙ=1 that the protection mechanism for ߪ is the

semaphore lock. Constraint (35) gives the relationship
between variables ఙܻ , ݉݁݉ఙ and ݈݇ܿఙ . ఙܻ = ݉݁݉ఙ + ఙ݈݇ܿ
Memory utilization: The additional memory cost in
the MILP is defined using some variables. We define
the binary variable ఙܸ based on the priorities of writer
and readers runnables. The ఙܸ = 0 means that for the
shared resource ߪ there are no reader runnables with
higher priority than the writer, the value of ఙܸ in this
case is fixed by constraint (36). If there is at least one
reader runnable with higher priority than the writer
runnable then the value of ఙܸ is set to 1 in (37). ∀ ݅ݎ ∈ (݅ߪ)ݓݎ ∶ ߪܸ ≤ ∑ ∑ ݎ ∀ (݅ߪ)ݎݎ∋݆ݎ ,ೕ,݁݇݁݇ ∈ாܪ݊ܵ ∈ ,(݅ߪ)௪ݎ ݎ ∈ ∑ :(݅ߪ)ݎ ೖೖ ∈ா,݆ݎ,݅ݎܪ݊ܵ ≤ ఙܸ݅

The memory needed for each shared resource is
computed as in constraint (38), where, ܼ݆ݎ,݅ݎ,ೖ is a
binary variable equal to ݆ܵ݊ݎ,݅ݎܪ,ೖ ∗ ݉݁݉ఙ . ܼఙᇱ is
another binary variable set to 1 if both ఙܸ and ݉݁݉ఙare equal to 1, otherwise, it is equal to 0. ܼ݆ݎ,݅ݎ,ೖ and ܼఙᇱ are defined in the same way as the
variable ܵ݊ܪ,,ೖin constraint (30). ∀ ݎ ∈ (ߪ)௪ݎ ∶ ఙ݁ݖ݅ܵ݉݁݉ =∑ ∑ ೖೖ ∈ா,݆ݎ,݅ݎܼ ∈୰ೝ(ఙ݅) + ݉݁݉ఙ + ܼఙᇱ
Semaphore lock: Memory consumption can be
avoided by using semaphore locks. However, this will
result in a blocking time for runnables (according to
PCP) equal to the largest critical section of lower
priority runnables sharing resources with higher or
equal priority ceiling. Constraint (39) expresses the
blocking time of ݎ based on the binary variable ܿ݀݊,,ఙ, which represents the necessary condition
to consider ݎ during the computation of ܤ . The
definition of this condition is given in constraint (40).
It consists in the combination of three sub conditions:
i) ݎ is lower priority than ݎ, ii)ߪ is a shared variable
protected by a lock and iii) the priority ceiling of ߪ is
higher or equal to the priority of ݎ . The third condition
is expressed by the binary variable ܲܥ,ఙ ܤ . ≥ ,,ఙ݀݊ܿ ∗ ߱ೝೕ, 0 ≤ ݅ߪ,݅ݎܥܲ ߪ݈݇ܿ + + ∑ +ೖ∈ா݇݁,݆ݎ,݅ݎܪ݊ܵ − 3. ݅ߪ,݆ݎ,݅ݎ݀݊ܿ ≤ 2

As priority of runnables sharing directly a resource
is always lower or equal to the priority ceiling of this
resource, ∀ ݎ ∈ ൫ݎ௪(ߪ) ∪ ,ఙܥܲ :൯(ߪ)ݎ = ఙ݈݇ܿ .

For runnables ݎ that do not share the resource ߪ,
the value of ܲܥ,ఙ depends on the priority of all
runnables ݎ sharing ߪ i.e. if there is at least one
runnable ݎ sharing ߪ with higher or equal priority than ݎ, ܲܥ,ఙ = 1 (41) otherwise if all runnables ݎ sharing ߪ have lower priority than ݎ then ܲܥ,ఙ = 0 (42).

∀∉൫ೢ(ఙ) ∪ ೝ(ఙ)൯ ܽ݊݀ ∀ೕ∈൫ೢ(ఙ) ∪ ೝ(ఙ)൯: ,ఙ݅ܥܲ ≥∑ ,,ೖ݁݇∈ாܵ݊ܵ + ∑ ,ఙ݅ܥܲ,,ೖ݁݇∈ா∀∉(ೢ(ఙ) ∪ ೝ(ఙ))ܪ݊ܵ ≤∑ (1 − ೕ∈(ೢ(ఙ) ∪ ೝ(ఙ)) ∑ ,,ೖ)݁݇∈ாܪ݊ܵ
Worst-case response time computation: The
computation of runnables WCRT needs the definition
of some variables, ܵ݊ܪ,,ೖ, ܸ,and ܫ,,ೖ. The
binary variable ܵ݊ܪ,,ೖ indicates whether the
runnable ݎ , that is allocated on the same ECU as ݎ
and has the same priority as ݎ, has a higher execution
order than ݎ. The definition of the integer
variable ܸ݆ݎ,݅ݎ, which represents the number of possible
interferences of ݎ on ݎ ൬ ܸ݆ݎ,݅ݎ = ோ݅ݎ݆ݎඈ൰, is captured by
(43). 0 ≤ ݆ݎ,݅ݎܸ − ݅ݎܴ) ⁄݆ݎܲ) ≤ 1

The integer variable ܫ,,ೖ is the number of
possible interferences of ݎ on ݎwhen ݎ is higher
priority than ݎ (ܫ,,ೖ. = ݆ݎ,݅ݎܸ ∗ ,). We use in theߩ
same way as previous the Big M method to linearize ܫ,,ೖ . Finally, (44) gives the computation of WCRT. ∑ ∑ ݆ݎ,,ೖೖ∈ாܪ݊ܵ . ೖ,݆ݎܥ + ∑ ∑ ݆ݎ,,ೖೖ∈ாܫ . ݅ݎܤ +ೖ,݆ݎܥ + ∑ ܽ௦௪(),ೖೖ∈ா . ೖ,݅ݎܥ = ܴ

The computation of signals WCRT is similar to
runnables with the only difference that the blocking
time ݆ݏܤ is computed as the largest WCTT of any group
of equal priority signals sharing the same bus (45). ∀௦ೕஷ௦: ܤ௦ ≥ ∑ ௦,௦ೕ,ೖ.ೖ∈ఉܦ݊ܵ ௦ೕ,ೖܥ + ∑ ∑ .௦ೕ,௦,ೖܵ݊ܵ .௦,ೖܥ ௦,௦,ೖ ೖ∈ఉ௦ܦ݊ܵ
5. Experiments

There are two goals of the conducted experiments.
The first one is to show the quality of results obtained
with the GA (with respect to the optimal solutions
given by the MILP) and the runtimes. Next, we
compare our technique with the existing approaches
that do not consider partitioning. The last has a high
influence when optimizing the timing responses and
the memory overhead.

5.1. GA vs MILP
In order to assess the quality of results obtained with
the GA we compared it to the MILP. MILP assures
optimality of the result in case if the solver finishes
with no error. Unfortunately for the larger use-cases,
solver that we used – CPLEX [19], although run on a
powerful machine, is not able to provide an optimal
result. It either finishes computation with an error
message not providing any result or it stops with an out
of memory message. In the second case, it returns a
result, however it is not sure whether it is optimal.
Therefore we have set use-cases for which we can infer

optimal configurations (solutions). This has been done
by first applying the weight 1 for the function
responsible for optimizing end-to-end responses and
fixing a simple use-case shown in the
Figure 32. For this case, with the only optimization of
response time, the set of optimal configurations
contains any possible partitioning, and for each shared
resource (if any) the protection mechanism is the RT.
The left configuration presented in Figure 4 is an
example of an optimal solution for the simple use-case.

Figure 3 Non-replicated Use-Case

 Figure 4 Optimal configurations

Once the simple use-case has been fixed, other use-
cases were found by replicating the simple use-case.
This means that, each path, runnable, ECU and BUS is
replicated. Hence when replicating by 11 we obtained a
use-case with 55 runnables, 11 ECUs and 11 BUS-es.
Also, we connected each ECU to the original BUS and
all the replicas. Let us remark that for the replicated
use-cases, the set of optimal configurations is
characterized by having each ECU containing only one
path (no inter-ECU communication). Figure 5 shows
the runtime for the MILP and the GA. Indexes on the
horizontal axe express the factor for the replication. As
can be seen, MILP on average gives the results in
shorter time. However the Figure 6 shows that when
architecture has been multiplied 6, 9, 10 and 11 times,
the solver didn’t return any solution. This was due to
the returned error. For the factor 5, 7 and 8, the CPLEX
finished execution with “out of memory exception”.
Nevertheless for the factor 5, returned result is optimal,
which is not the case for 7 and 8. The GA for all the
replication factors was able to return the optimal
solution. We run similar tests but with weights 0.5 for
the end-to-end responses and 0.5 for the memory
optimization. Set of the optimal solutions for the non-
replicated use case contains only one configuration in
which all the runnables are partitioned in one task.

2 For sake of simplicity, we omitted from the image the presentation of

software components. In this case we assume one software component per

runnable entity.

Figure 5: Runtime for MILP and GA (. ((શ)ࢋࢋ ∗

Figure 6: Results for MILP and GA (. ((શ)ࢋࢋ ∗

For the replicated use-cases, each ECU must contain
only one path. In this case, on average, MILP provides
the results in a shorter time (see Figure 7). However,
already for the replication factor 5 (see Figure 8) the
returned result was not optimal and starting from 9,
CPLEX didn’t provide any result. The degradation of
the results given by the GA, started from factor 8. In
general, the reason for this is that when using equal
weights for the latency and memory optimization
functions, the set of optimal configurations is smaller
than if optimizing only end-to-end latencies. This is
due to the fact that optimal solutions only have the
runnables of the same path partitioned in the same task.
The configuration on the right side of the Figure 4
represents the only optimal configuration for the non-
replicated use-case. In all of those use-cases the GA
was run with an initial population of 10000. The
algorithm stops if during the 20 consecutive evolutions,
the fittest chromosome doesn’t change. When we run
the GA on the population of 100000 we were able to
obtain the optimal solution for the second metric and
the replication from 8 to 11. This however increased
the runtime to around 12 hours on a 2.4 GHz single
processor computer with 8GB of memory.

5.2. Evaluation against approaches with none or
partial Partitioning
This set of tests shows the added value of considering
the partitioning. Therefore we will compare the results
obtained with the GA with those that doesn’t consider

Figure 7: Runtime for MILP and GA (. (શ)ࢋࢋ ∗ + . ∗ ((શ)

Figure 8: Results for MILP and GA (. (શ)ࢋࢋ ∗ + . ∗ ((શ)

the partitioning (which is the case for [8]) or
approaches that consider only partial partitioning, i.e.
only runnables of the same period can be merged
together (the case for [10]). The last two were
implemented in MILP hence for them the obtained
results are optimal in case when solver returned the
result without error. The tests were run on a set of
random input architectures.

Figure 9 and 10 show that consideration of the
partitioning has an impact on the optimization metrics.
For the fitness 1.0 for the fଶ(Ψ) (Figure 9) the GA
obtained results 34,87% better than those with no
partitioning and 16,48% from those with partial
partitioning. Please note that for all of the approaches
the same schedulability test is used (see subsection
3.3). Hence the metric improvement is a consequence
of the constrained design space for the approach with
partial and no partitioning. Possible, further
improvement is to change the way in which ܥఛ,ೕ from
the equation 6 is computed for the approach with full
partitioning. For the moment it has pessimistic
assumption that all the runnables, even those with
harmonic but not the same periods will always be
activated.

Considering Figure 10, the results of the GA were
6.8% better than those obtained with the approach
disregarding partitioning, and 5.7% better from those
which limit partitioning to the same periods. Let us
note that for 35 runnables, CPLEX didn’t return any
result.

Figure 9: Comparison using fitness function
(. ∗ ((શ)ࢋࢋ

Figure 10: Comparison using fitness function
(. ∗ (શ)ࢋࢋ + . ∗ ((શ)

6. Conclusions and Future Work

We presented a method for the optimized synthesis
of the AUTOSAR compliant architectures. We
proposed two techniques, MILP and GA. The main
contribution of this work lies in a holistic approach that
considers allocation, partitioning, scheduling and
ordering together. As shown in the experimental part,
employment of partitioning that is neglected in the
current works, improves the optimization metrics. In
addition we have evaluated our heuristic, i.e. the GA
against MILP (i.e. exact approach) in terms of runtimes
and the quality of results. As a future work we
envisage to further scale our technique by provision of
the parallelism in the implementation of the GA.

7. References

[1] AUTOSAR Methodology, AUTOSAR Std. http://-
www.autosar.org/download/-
AUTOSARMethodology.pdf

[2] AUTOSAR Specification of Timing Extensions,
AUTOSAR Std. http://www.autosar.org/download/-
R4.0/AUTOSAR_ TPS_TimingExtensions.pdf

[3] I. Bate and P. Emberson, “Incorporating scenarios and
heuristics to improve flexibility in real-time embedded
systems,” in Proceedings of the 12th IEEE Real-Time
and Embedded Technology and Applications
Symposium, 2006, pp. 221–230.

[4] W. Peng, H. Li, M. Yao, and Z. Sun, “Deployment
optimization for autosar system configuration,” in

Computer Engineering and Technology (ICCET),
2010.

[5] R. Long, H. Li, W. Peng, Y. Zhang, and M. Zhao, “An
approach to optimize intra-ecu communication based
on mapping of autosar runnable entities,” in ICESS,
2009.

[6] R. Racu, M. Jersak, and R. Ernst, “Applying sensitivity
analysis in real-time distributed systems,” in
Proceedings of the 11th IEEE Real Time on Embedded
Technology and Applications Symposium, 2005, pp.
160–169.

[7] Q. Zhu, H. Zeng, W. Zheng, M. D. Natale, and
A. Sangiovanni-Vincentelli, “Optimization of task
allocation and priority assignment in hard real-time
distributed systems,” ACM Transactions on Embedded
Computing Systems, vol. 11, no. 4, pp. 85:1–85:30,
2012.

[8] Q. Zhu, Y. Yang, E. Scholte, M. Di Natale, and
A. Sangiovanni-Vincentelli, “Optimizing extensibility
in hard real-time distributed systems,” in Proceedings
of the 15th IEEE Real-Time and Embedded Technology
and Applications Symposium. IEEE, 2009, pp. 275–
284.

[9] A. Ferrari, M. D. Natale, G. Gentile, G. Reggiani, and
P. Gai, “Time and memory tradeoffs in the
implementation of autosar components,” in DATE,
2009, pp. 864–869.

[10] M. Zhang and Z. Gu, “Optimization issues in mapping
autosar components to distributed multithreaded
implementations,” in International Symposium on
Rapid System Prototyping, 2011, pp. 23–29.

[11] H. Zeng and M. D. Natale, “Efficient implementation
of autosar components with minimal memory usage,”
in SIES, 2012, pp. 130–137.

[12] H. Zeng, M. D. Natale, and Q. Zhu, “Optimizing stack
memory requirements for real-time embedded
applications,” in ETFA, 2012, pp. 1–8.

[13] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and
I. Meedeniya, “Software architecture optimization
methods: A systematic literature review,” IEEE
Transactions on Software Engineering, To appear.

[14] “Autosar system template,” http://www.autosar.org/-
download/R4.0/AUTOSAR_TPS_SystemTemplate.pdf

[15] The Mathworks Simulink and StateFlow User’s
Manuals. http://www.mathworks.com

[16] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority
inheritance protocols: An approach to real-time
synchronization,” IEEE Trans. Computers, vol. 39,
no. 9, 1990.

[17] B. L. Miller, B. L. Miller, D. E. Goldberg, and D. E.
Goldberg, “Genetic algorithms, tournament selection,
and the effects of noise,” Complex Systems, vol. 9, pp.
193–212, 1995.

[18] L. Davis, Ed., Handbook of Genetic Algorithms. Van
Nostrand Reinhold, 1991.

[19] http://www-01.ibm.com/software/integration/-
optimization/cplex-optimizer/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

