
HAL Id: cea-01809497
https://cea.hal.science/cea-01809497v1

Submitted on 6 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Value-based Memory Model for Deductive Verification
Quentin Bouillaguet, François Bobot, Mihaela Sighireanu, Boris Yakobowski

To cite this version:
Quentin Bouillaguet, François Bobot, Mihaela Sighireanu, Boris Yakobowski. A Value-based Memory
Model for Deductive Verification. Les vingt-neuvièmes Journées Francophones des Langages Applicat-
ifs (The 29th Francophone Days of Application Languages - JFLA 2018), Jan 2018, Banyuls-sur-mer,
France. �cea-01809497�

https://cea.hal.science/cea-01809497v1
https://hal.archives-ouvertes.fr

A Value-based Memory Model for Deductive Verification∗

Quentin Bouillaguet1,2, François Bobot1, Mihaela Sighireanu2, and
Boris Yakobowski1

1 CEA, LIST, Software Reliability Laboratory, France
firstname.lastname@cea.fr

2 IRIF, University Paris Diderot and CNRS, France
firstname.lastname@irif.fr

Abstract

Collaboration of verification methods is crucial to tackle the challenging problem of
software verification. This paper formalizes the collaboration between Eva, a static ana-
lyzer, and WP, a deductive verification tool, both provided by the Frama-C platform, and
concerned with the verification of C programs. The collaboration focuses on verification of
programs using pointers, where most deductive verification tools are limited to C programs
that do not contain union types, pointer arithmetics, or type casts. We remove some of
these limitations from WP by transferring information computed by Eva, which soundly
supports these features. We formalize this collaboration by defining a memory model that
captures the information on memory inferred by the points-to analysis of Eva, and com-
plies with the abstract memory model used by WP to generate verification conditions. The
memory model defined combines a raw memory model with a typed memory model. It
captures the low-level operations on pointers allowed by C and provides information about
the partition of the memory in disjoint memory regions. This expressivity increases the
realm of programs dealt by WP and its efficiency in generation of verification conditions.

1 Introduction
Software verification is a challenging problem for which different solutions have been proposed.
Two of these solutions are deductive verification (DV) and static analysis (SA). While deductive
verification is interested in checking precise and expressive properties of the input code, static
analysis targets checking a fixed class of properties. This loss in expressivity of properties
in static analysis is counterbalanced by its high degree of automation. Conversely, deductive
verification requires efforts from the user that has to specify the properties to be checked and
other annotations, e.g., loop invariants. Using these specifications, DV tools build verification
conditions which are formulas in various logic theories and send them to specialized solvers.
SA tools may also need to solve constraints, but they generally employ ad-hoc algorithms that
soundly decide the satisfiability of constraints.

The complementarity of the two methods have motivated to search new methods that com-
bine deductive verification and static analysis. One of the methods proposed, e.g., [1], consists
in first applying static analysis to check some fixed properties of the input code and to infer
invariants about the states of the program at each program point. The kind of invariants that
may be inferred are interval constraints on the integer or float variables, pointer aliasing, and
the shape of the memory. Then, these inferred invariants are injected in the specifications used
by the deductive verification tool in order to ease the specification task or to strengthen the
existing specifications.

∗This work was partially supported by ANR project VECOLIB, grant ANR-14-CE28-0018-03.

A Value-based Memory Model for Deductive Verification Bouillaguet et al.

Such a collaboration is possible when two conditions are met. The first condition is the
availability of a channel that eases the dialogue between such tools. The second condition is the
soundness of this dialogue, i.e., the translation of invariants inferred by static analysis into the
specification logic used by the deductive verification tool preserves the meaning of properties.
The Frama-C platform [19] satisfies the first constraint because it includes both static analysis
and deductive verification tools, Eva resp. WP plugins, for the verification of C programs.
These tools communicate by associating validity statuses (True, False, Unknown) to the alarms
present in the program. Alarms are logical assertions, written in the ACSL [5] specification
language, that eliminate the runs in which a statement leads to an undefined behavior (e.g.,
assert(d != 0); removes undefined behavior for the statement r = 1/d;). Collaboration by
alarms is sound due to the common semantics of program expressions, but it is not extensible
to more complex properties, e.g., separation of memory regions.

In this paper, we propose a solution that enables a more intimate collaboration of these
methods. The idea is to transfer information from SA to DV in the form of a logic formula that
encodes the state invariant inferred by the static analysis. This idea has been already applied in
the context of test generation in [1], but only for C programs without pointer manipulation. Our
solution may infer properties about pointers like aliasing, pointer restricted to a fixed memory
region, etc. These properties are valid in a model of the program memory that captures pointer
manipulation, e.g., pointer arithmetics, updates at arbitrary locations, type casts. One issue is
that this specific memory model is not currently available in WP.

Our work provides this missing link between Eva and WP. We propose a new memory model
that captures precisely the one used in Eva and satisfies the constraints of the abstract memory
model used by WP to generate verification conditions. A consequence of this connection is that
the points-to information computed by Eva is used by WP, like in [28], to know which memory
regions are separated. This information is important for WP to generate smaller verification
conditions. Indeed, WP may use different memory models for these regions, thus generating
smaller constraints, or avoiding their generation altogether.

The memory model defined in this work is actually independent of the static analyzer used.
Indeed, we define an interface that contains which information the memory model requires
from the abstract values computed by the static analyzer. We implemented this interface for
the abstract domain used by Eva, but it could be implemented for other abstract domains that
compute abstractions of points-to relations.

/∗@ requires \valid(&a[0..1]) && \valid(&b[0..1]);
2 ensures a[0] == \old(b[0]) && a[1] == \old(b[1]);

∗/
4 void copy(int∗ a, int∗ b) {

a [0] = b[0]; a [1] = b[1];
6 }

extern int t [4], u [5];
8 void main() {

copy(&t[0], &u[2]);
10 }

Figure 1: Verification in presence of aliasing

To motivate such a collaboration, let
us consider the C code from Figure 1.
The function copy copies the first two ele-
ments of the array pointed to by b into the
one pointed to by a. The ACSL specifica-
tion of the function requires the validity of
memory locations that are accessed, while
the postcondition expresses that a ends up
containing the initial contents of b. Notice
that this specification is incomplete: if the
cells a[0] and b[1] are not separated, the
post-conditions is not verified. However, in all the calls of copy from main, this separation
hypothesis is verified, and Eva is able to infer automatically the separation property for this
program. Hence, by injecting this information in WP, we could prove the post-condition.1

1Of course, we are weakening the overall verification, as the specification of the function copy is no longer
valid in all possible calling contexts. In essence, we assume the closed world hypothesis, where copy is supposed

2

A Value-based Memory Model for Deductive Verification Bouillaguet et al.

Related work Several memory models have been proposed to capture the semantics of pro-
grams manipulating pointers. All these models view the memory as a collection of disjoint
regions. Two main classes may be distinguished: (i) the regions are typed by the value stored,
which is a good abstraction for type-safe languages, (e.g., Java-like [2,4], HOL [23]) and (ii) the
regions are seen as raw arrays of bytes to capture low-level manipulations of memory in C and
it is used in static analyzers (e.g., HAVOC [10], VCC [6], MemCAD [9], Infer [8], SMACK [26],
Eva [7]) or in deductive verification tools, (e.g., Caduceus [15] or VeriFast [18]). Most of tools
based on the second class of memory models allow also typing of memory regions. The abstract
memory model of WP supports both classes of models and WP provides concrete implementa-
tions for both classes [13].

The use of abstract memory model to capture refinements of these models has been proposed
in the CompCert project [22]. The abstract memory model of WP is inspired by the second
version of this project [21], but the concrete model we propose has not been considered in
CompCert. In [27] is proposed a method to design static analyzers based on an abstract
memory model. Eva is not built following these principles for efficiency reasons.

In [17] is used a static analysis based on region inference for the partitioning of a memory
model. The analysis employed is less precise than the points-to analysis in Eva because the
loss of precision for one location could force many precise locations to be collapsed in the same
region. Recent work [28] proposes a precise points-to analysis to infer information about the
separation of memory regions in order to decrease the size of verification conditions generated
by deductive verification tools. Although Eva is doing a less precise analysis, it is still able to
infer such separation properties, and we define in addition a formalized channel to transfer such
information to WP. The authors of [6] explore different memory models to generate with VCC
a benchmark of problems for SMT solvers. By implementing an additional concrete memory
model for WP, we can use it to provide such benchmarks.

Separation Logic [24] is used in many verification tools for C (e.g., GRASSHoper [25],
HIP/Sleek [11], Infer, VeriFast) due to the simpler specification of disjointness between memory
regions. ACSL includes a separating conjunction operator (understood by WP and Eva), but it
is far weaker than the standard separating conjunction operator.

Paper organization Section 2 introduces a simple programming language that exhibits the
pointer features we are interested in. On this language, we illustrate the notions of abstract
memory model and verification condition generation based on this model. Section 3 provides
two memory model employed by WP for the verification of C programs and discusses their
advantages and limitations. Section 4 presents the Eva static analyzer and its memory model.
The memory model we formalized for Eva in WP is presented in Section 5. We conclude by
presenting the experimental results obtained in Section 6.

2 Deductive Verification for a Toy Language
To illustrate our contribution, we introduce in this section a toy programming language with
support for record types, pointer arithmetics, type casts, and updates at arbitrary locations in
the memory. We define its syntax and its semantics with respect to an abstract memory model.
Then, we sketch the generation of verification conditions for this language in a first order logic
based on a generic interface with the underlying memory model.

to be called only from the main function.

3

A Value-based Memory Model for Deductive Verification Bouillaguet et al.

n ∈ N, i ∈ Z integer constants arith arithmetic type in {i8, u8, i16, . . . , u64}
rt ∈ crec record type names f ∈ cfld field names
v ∈ cvar program variables op ∈ O unary and binary arithmetic operators

program types ctyp ∋ t ::= u | rt | t[n]
scalar types styp ∋ u ::= arith | t ptr

expressions expr ∋ e ::= i | lv | a | (arith)e | op e | e op e′

addresses addr ∋ a ::= &v | e | a.f | a[e]
left values lval ∋ lv ::= ∗ua
statements stmt ∋ s ::= lv = e | assert e

Figure 2: Syntax of our C-like toy language

2.1 A Toy Language

Figure 2 lists the constructs of this language. For simplicity, we consider only integer (signed
or unsigned) arithmetic types. User defined types are pointer types, static size array types,
and record types. A record type declares a list of typed fields with names from a set cfld;
for simplicity, we suppose that each field has a unique name. Expressions combine integer
constants and address expressions using operators in O (that includes arithmetic operations,
equality and relational comparisons, left and right shifts and bitwise operations), and casts into
an arithmetic type. Address expressions contains constant addresses (i.e., locations of program
variables), expressions in expr of pointer type, an address shifted by a field in a.f, and an
address shifted by a natural value obtained from the valuation of an integer expression in a[e].
A left value of some type t is obtained by dereferencing an address expression a of type t ptr in
∗ta. We consider only simple statements for assignment and assertion testing. Classic control
statements can be dealt using standard techniques in deductive verification.

We consider only well typed programs. In the following, we model the results of the type
checker on a program by a set of semantic functions as follows. For program types, |.| : ctyp→ N
maps each type to its size in bytes (like sizeof). Also, we consider the conversion function
convert(v, arith) for integer values v to some arithmetic type as defined, e.g., in [21]. For a
field f, offset(f) gives the offset of this field in its definition record. For any field, variable,
expression, or address, cty(.) returns its type in ctyp.

2.2 Abstract Dynamic Semantics

We define the small-step semantics of our language using an abstract memory model that is
reminiscent of the first abstract memory model defined in [21, 22] for CompCert, enriched with
some notations to increase readability of our presentation. Figure 3 summarizes the elements
of this abstract memory model. The states of the memory are represented by an abstract data
type mem. A memory state stores several memory blocks, each block being uniquely identified
by a value in block. The empty memory is denoted by the constant emp. Pointer values, called
locations, are represented by pairs (b, o) of block identifier b and a byte offset o inside the block.
We denote by loc the set of such pairs and provide two operations to build them: base(v) gives
the location of a program variable v, and shift(ℓ, n) computes the location obtained by shifting
the offset of location ℓ by n bytes. The shift operation abstracts pointer arithmetics. Memory
blocks store values of type val, which may be integer or location values. The typing function
cty(.) is extended to locations based on the typing of the program variable used as base of the

4

A Value-based Memory Model for Deductive Verification Bouillaguet et al.

Types mem, block,
loc ≜ block× N,
val ≜ Vint(Z) | Vptr(loc)

Constants emp : mem

Operations base : cvar→ loc
shift : loc→ N→ loc
load : mem→ styp→ loc ⇀ val
store : mem→ styp→ loc→ val ⇀ mem

Figure 3: Abstract memory model

[[i]](m) ≜ Vint(i)
[[∗ua]](m) ≜ load(m, u, [[a]](m))

[[a]](m) ≜ Vptr([[a]](m))

[[(arith)e]](m) ≜ convert([[e]](m), arith)

[[op e]](m) ≜ ôp([[e]](m))

[[e op e′]](m) ≜ ôp([[e]](m), [[e′]](m))

[[∗ua = e]](m) ≜ store(m, u, [[a]](m), [[e]](m))

[[assert e]](m) ≜ if [[e]](m) ̸∼ 0 then m else ⊥

[[&v]](m) ≜ base(v)
[[e]](m) ≜ ℓ if [[e]] = Vptr(ℓ)
[[a.f]](m) ≜ shift([[a]](m), offset(f))

[[a[e]]](m) ≜ shift([[a]](m), |cty(a[0])| × convert([[e]](m), u32))

Figure 4: Generic semantics of expressions ([[·]] : mem → expr ⇀ val), addresses ([[·]] :
mem→ addr ⇀ loc), and statements ([[·]] : mem→ stmt ⇀ mem); ôp denotes type dependent
operations, e.g., addition with pointer operand is done using shift.

location. The axiomatization of reading and storing operations is similar to the one in [21,22].
We use partial functions for them in order to denote potential failures; we denote by ⊥ the
undefined value.

Figure 4 defines the semantics of expressions, addresses, and statements with respect to a
memory state m, via the overloaded functions [[·]]. The semantic functions are partial: the
undefined case ⊥ cuts the evaluation.

2.3 Generating Verification Conditions

To fix ideas, we recall here the principle used to generate verification conditions (VC) and we
apply it to the above toy language. This general principle is adapted in WP as explained in [3].

Verification conditions are generated from Hoare’s triple {P} s {Q} with P and Q formulas
in some logic theory L used for program annotations and s a program statement. For this, WP
(and most deductive verification tools) employs the efficient weakest precondition computation
method proposed in [16, 20]. It computes a formula R(v⃗b, v⃗e) in L that specifies the relation
between the states of the program before and after the execution of s, which are represented by
the set of logic variables v⃗b (resp. v⃗e). The VC built is ∀v⃗b, v⃗e.

(
P (v⃗b) ∧R(v⃗b, v⃗e)

)
=⇒ Q(v⃗e)

and it is given to solvers for L to check its validity.
To compile a program statement s into a formula R(·, ·), the tool uses the dynamic semantics

of the language, given in Figure 4 for our toy language. The abstract memory model mem used
in this semantics is represented by a memory model environment (called simply environment)

5

A Value-based Memory Model for Deductive Verification Bouillaguet et al.

Types mem, loc
val ≜ Vint(EI) | Vptr(loc)

Constants emp : 2cvar → mem

Operations base : cvar→ loc
shift : loc→ EI → loc⊥
load : mem→ styp→ loc→ val⊥
store : mem→ styp→ loc→ val→ (mem× EB)⊥

Figure 5: Interface for memory model environments

that keeps the information required by the VC generation, for example the current set of
variables used for modeling the state at the current point. Figure 5 defines a signature for
memory model environments that captures the essential features required by the compilation
of statements in our toy language into VC formulas. In the next sections, we supply several
memory model environments that demonstrate the abstraction capabilities of this signature. In
particular, we provide in Section 5 an environment that is parameterized by the abstract domain
of Eva. Notice that, in WP, the VC generation follows a pass over the program syntax which
collects, for each program statement, the safety conditions, (called alarms in the introduction),
that eliminate the runs leading to undefined behaviors. For this reason, the VC generation
does not collect such constraints in R(·, ·) and focuses only on the encoding of the semantics of
statements.

The signature in Figure 5 should be compared with the abstract memory model from Fig-
ure 3. The environment shall define a type mem providing information about the state of the
memory and a type loc encoding information on memory locations. By omitting memory blocks
from this signature, we permit a more abstract relation between memory locations and program
variables, based only on the operation base. This abstraction allows to define an efficient en-
vironment for programs without pointer manipulation (see Section 3). The environment shall
provide a type for basic values stored in the memory: integers and locations. The integer values
are specified by integer terms in L, denoted by EI. The empty environment for a set V of active
program variables is provided by emp(V). The arithmetic operation on locations is encoded
in operation shift, if this operation is supported by the memory model. Indeed, we use an
error monad with error value ⊥ for the result type of some operations to point out that these
operations may be defined only under some conditions (e.g., no dereference, no alias, variable
used only by reference, ...). We provide in Section 3.1 an example of environment where the
operation shift is undefined. The updating of the memory environment store produces a new
environment and a formula in L, in the set EB.2

The logic theory used to compile VCs, L, shall satisfy the following constraints. It must
be a multi-sorted first order logic that embeds the logic theory used to annotate programs in
our toy language. (In Frama-C, the logic theory for annotations is defined using ACSL [5].)
It includes the boolean theory (sort B), the bit vector theory (sort V) for bit operations,
the integer arithmetic theory (sort I), the array theory (with polymorphic type array(α, β)
and classic operations for selection a[k] and update a[k ←− v]), abstract data types (or at
least polymorphic pairs with component selection by fst and snd), and uninterpreted functions.
We suppose that L includes a conditional operator if-then-else for term building denoted by

2In languages with conditionals, environments should also provide a function join : mem → mem → mem×EB
which is used to join execution paths. It returns the new environment to use and a set of equalities which make
the environments equal.

6

A Value-based Memory Model for Deductive Verification Bouillaguet et al.

ite(·, ·, ·). We denote by E the set of logic terms built in L using the constants, operations, and
variables in a set X . We also suppose that an infinite number of fresh variable can be generated.
For a logic sort τ , we denote by Eτ the terms of type τ . The expressivity of L determines the
precision of the VC generated, and the subset of the programming language constructs that
may be dealt precisely by the VC generator. We illustrate this problem in the next section,
where we present two memory model environments used by WP.

To ease the reading of environment definitions, we distinguish the logic terms by using the
mathematical style and by underlining the terms of L, e.g., x+ x. For example, the logic
term m[l]+x is built from a VC generator term m[l] that computes a logic term of integer
type and the logic sub-term · + x. For example, the VC generated for the Hoare’s triple
{P} ∗i8(&r.f) = 5 {Q} is P ∧ e1 =⇒ Q where:

m0 ≜ emp({r})
l0 ≜ shift(base(r), offset(f))
m1, e1 ≜ store(m0, i8, l0,Vint(5))
P generated from P using environment m0

Q generated from Q using environment m1

3 Memory Models in WP
This section presents two memory model environments employed by WP for the generation of
VCs. Notice that the logic theory L in which the VCs are encoded is the one provided by the
Qed [12] module. Qed includes a programmatic interface to L, several rewriters used to simplify
the encoded formulas and translators to the input language of different solvers.

The memory model environments presented here could be combined to obtain an environ-
ment that provides the best memory model for each location. For simplicity, we present them
separately in this section.

3.1 Simple Memory Model

mem ≜ array (cvar,X) loc ≜ cvar

emp(V) ≜
{
⊥ if any v of V has pointer type
[v1 ←− α1, · · · , vn ←− αn] with {v1, · · · , vn} = V and α1, · · · , αn fresh in X

base(v) ≜ v shift(l, e) ≜ ⊥

load(m, arith, l) ≜ m[l] load(m, t ptr, l) ≜ ⊥

store(m, t, l, Vint (e)) ≜ (m[l←− α], α = e) with α ∈ X a fresh variable

Figure 6: Simple memory model environment

int x = 10;

2 int y = 11;

/*@ assert x == 10; @*/

Figure 7: Simple program

The simplest memory model environment provided by WP is
limited to programs of our toy language (and of C) that does
not employ pointers. Only arithmetic type variables x are repre-
sentable and dereferences are present only in left values ∗(&x).
For this reason, the environment type mem associates each pro-
gram variable v to one logic variable from X . The locations
(in loc) are defined by the set of program variables cvar. The

7

A Value-based Memory Model for Deductive Verification Bouillaguet et al.

implementation of the interface defined in Figure 5 is given in Figure 6. Notice that some
operations are not implemented. The advantage of such a memory model is that read-over-
writes are statically separated for the prover. Therefore, the program in Figure 7 is compiled
into x0 = 10 ∧ y0 = 11 =⇒ x0 = 10 where x0 and y0 are logic variables (in X) to which the
memory model environment maps the variables x and y. The solver does not need to check
that the assignment of y does not have any effect on the value of x.

3.2 Typed Memory Model
The next environment is restricted to the well-typed subset of the C programming language,
which includes our toy language. The separation of memory regions is done per type, which is
similar to “components as array” model of Burstall-Bornat. The definition of this environment
is given in Figure 8. A location in this memory environment is a pair of integers (bv, o) where
bv models the base of program variable v and o models the offset. Therefore, the environment
type loc represents pairs of integer terms computing the base and the offset. The memory type
mem maps each scalar type u in styp to an array logic variable αu representing the memory
region storing values of type u. These arrays are indexed by a pair of integers representing
locations, i.e., type of αu is array(I× I, u).

mem ≜ array (styp,X) loc ≜ I× EI

emp(V) ≜ [u1 ←− α1, · · · , un ←− αn]
with {u1, · · · , un} scalar types in V

and α1, · · · , αn fresh array variables

base(v) ≜ (bv, 0) with bv ∈ I fixed for v

shift(l, eI) ≜ (fst(l), snd(l) + eI)

load(m, u, l) ≜
{

Vint(m[u][l]) if u ∈ arith

Vptr(m[u][l]) otherwise
store(m, u, l,Vint(e)) ≜ (m[u←− α], α =(m[u])[l←− e]) with α ∈ X a fresh array variable

store(m, u, l,Vptr(e)) ≜ (m[u←− α], α =(m[u])[l←− e]) with α ∈ X a fresh array variable

Figure 8: Typed memory model environment
Such a memory model is relevant for a larger class of programs, but the generated VCs are

more complex. For example, the formula obtained in this memory model for the program in Fig-
ure 7 is

(
α1 = α0[(bx, 0)←− 10] ∧ α2 = α1[(by, 0)←− 11]

)
=⇒ α2[(bx, 0)] = 10 where α0, α1, α2 ∈

X are logic arrays variables and bx and by are distinct constants fixed for program variables x

and y.

4 Value Analysis in Eva
The Eva plug-in implements a static value analysis based on the principles of abstract interpre-
tation [14]. Abstract interpretation links a concrete semantics, typically the set of all possible
executions of a program, to a more coarse-grained, abstract semantics. Any program trans-
formation must have an abstract encoding that captures all possible outcomes defined by the
concrete semantics. This ensures that the abstract semantics is a sound approximation of the
runtime behavior of the program. For each instruction of the program, the information inferred
by Eva includes two components:

8

A Value-based Memory Model for Deductive Verification Bouillaguet et al.

1. the status True/False/Unknown of each alarm generated for the instruction (recall that
these alarms prevent any undefined behavior from taking place) and

2. for each memory location involved in the instruction, an over-approximation of the values
it may contain.

In this work, both kinds of information above are useful, for different reasons. Firstly, the
alarms already proved (status True or False) by Eva are removed from the set of properties to
be proven by WP. Secondly, we use the over-approximation inferred for pointer values (which
is equivalent to a points-to information) to build the memory model environment (mainly the
set of memory blocks) used by WP uses to build VCs (Section 5).

4.1 Abstractions for values

memory abstraction mem# ∋ m#

extended integers i#∞ ::= i | −∞ | +∞
abstract integers I# ∋ i# ::= {i, . . . } | [i#∞ ..i#∞], n%n
abstract bases b# ::= v | 0
abstract locations loc# ∋ l# ::= {(b#, i#), . . . }
abstract values val# ∋ v# ::= l#

Figure 9: Abstractions used for memory and scalars in Eva

The abstractions used by Eva to represent integers and pointers are given in Figure 9 and
detailed below. We omit the details on the abstraction used for memory states (domain mem#)
which are highly technical and not relevant for this work.

Abstract integers values: If the over-approximation computed for an integer value is a small
set of constant values, the abstract value used is exactly this set. If the computed set is large (i.e.,
exceeds some threshold), it is represented as a potentially unbounded interval with congruence
information. For instance, x ∈ [3..255], 3%4 means that x is such that 3 ≤ x ≤ 255∧x ≡ 3mod 4.
The congruence information is very important to precisely encode alignment constraints for
pointer arithmetics.

Abstract location values: Eva assumes (and verifies) that the program performs no invalid
(e.g., out-of-bounds) array/pointer accesses. For this, pointers are seen as offsets with respect
to a symbolic block location called base b# and have no relation with the locations in the virtual
memory space used during the concrete execution. Blocks of different bases are implicitly sep-
arated: it is impossible to move from the block of one base to another using pointer arithmetic.
Base locations can be (1) the location assigned to a local or global variable, (2) the location of
the formal parameter of a function and (3) the 0 location, that stands for the NULL pointer.
Offsets are plain integers and abstracted by values in I#.

The abstraction of pointers as a set of pairs built from a base location and an offset is
slightly more precise than the traditional abstraction in which a pointer is mapped to the pair
of (i) the set of possible bases and (ii) the set of possible offsets for all bases. Hence, Eva can
represent precisely a pointer that could be either NULL, equal to the address of a variable x,
or equal to the addresses of the cells 3 to 10 of an array T of 16 bits integers. Expressed as
an element of loc#, and assuming that offsets represent a number of bytes, this set of possible
values for a pointer is abstracted by {(0, {0}); (x, {0}); (T, ([4..18], 0%2))}.
Abstract values: Abstract values v# are exactly abstract locations. The abstraction of integer
variables is given by the offset part of an abstract location with base 0.

9

A Value-based Memory Model for Deductive Verification Bouillaguet et al.

4.2 Abstract operations

[[i]]
#
(m#) ≜ {(0, {i})}

[[&v]]
#
(m#) ≜ {(v, {0})}

[[op(e1, e2)]]
#
(m#) ≜ ôp#([[e1]]

#
(m#), [[e2]]

#
(m#))

shift#({(b#k , i
#
k), . . . }, i#) ≜ {(b

#
k , i

#
k +# i#), . . . }

ct# : mem# → styp→ cvar× N→ val#

valid# : loc# → N→ loc#

load#(m#, u, l#) ≜ ⊔#
l∈γ(l#)

ct#(m#, u, l)

[[∗ua]]#(m#) ≜ load#(m#, u, valid#([[a]]
#
(m#), |u|))

Figure 10: Selected abstract operations

We give in Figure 10 the definition of most interesting abstract operations for the operations
of our language. Integers and addresses are injected into the abstractions described above in the
obvious way. Binary operators are handled using corresponding abstract operators ôp

#. We
omit arithmetic casts, that are handled by the integer abstraction. An abstract shift operation
shift# is used to shift pointers by an integer: it preserves the base and shifts the offset. The
semantics for [[a.f]]

and [[a[e]]]
are the same as in Figure 4, except they use shift#.

We omit the full definition of abstract semantics for memory reads and updates, because
of the complexity of the memory abstraction. We only sketch the semantics for a memory
access [[∗ua]]#m , based on three functions. The first function, ct#, has as input an abstract
memory m#, a scalar type u, and a concrete location (b, o). It reads the content of m# for
the base address b, at offset o, over |u| bytes, and returns it as an abstract value. The second
function, load#(m#, u, l#), joins (using the abstract join ⊔#) the abstract contents computed
by ct# at the concrete locations abstracted by l#. This operation requires that γ(l#), the
concretization of l#, is a set of finitely many locations. The last function, valid#, takes as
argument an abstract location l# and a size s. It selects from l# the pairs (b#, i#) that allow
a valid access of s bytes. In particular, this function trims the pairs of l# that would lead to
out-of-bound accesses, including those on the base 0. (These locations are ruled out by the
alarms that guarantee that the instruction executes without an undefined behavior.) Since our
abstract bases have a known C type, the number of concrete locations in valid#(l#, |u|) is
always finite. Hence, [[∗ua]]#m can be written in terms of load# operations.

4.3 Handling function calls

void f(int *p) {

2 *p = 1;

}

4 void main() {

int x;

6 f(&x);

}

Figure 11: Pointers to local
variables

Eva performs whole-program analyses. Function calls are treated
by symbolic inlining. The arguments of the functions are eval-
uated, assigned to the formal parameters of the callee, and the
body of the callee is analyzed. (Recursion is not supported.)
In particular, this means that the address of a local variable of
the caller can be used transparently in the callee, as shown in
Figure 11. The abstraction for p in f is {(x, {0})}, where x is a
variable which is not syntactically in scope in f. This is the main
difficulty in translating the results of Eva to another, modular
verification tool, e.g. WP, and the reason why we need a custom
memory model.

10

A Value-based Memory Model for Deductive Verification Bouillaguet et al.

5 Deriving a Memory Model from an Abstract Domain
In this section, we introduce our memory model environment based on a value analysis per-
formed by a static analyzer. The set of disjoint memory blocks building the memory is derived
from the bounded set of memory blocks computed by this analysis. We first provide a signature
defining what is required from the static analyzer, then define our generic environment on top
of this signature, and finally instantiate the signature with Eva.

5.1 Signature required from the static analyzer

sig Domain :
type V
base : cvar→ V
shift : V → EI → V
domain : V → 2cvar

type S
load : S → styp→ V → V

Figure 12: Domain signature

Figure 12 defines the signature that any static analyzer must implement in order to build
our memory model environment on top of its results. The analyzer shall provide a sort V for the
abstraction of values and another for its abstraction of memory states S. In addition, it shall
provide basic operations over those sorts, including shifting on abstract values (function shift),
querying the domain of a value (i.e., the blocks to which it refers given by function domain) and
reading the abstract value at a given abstract location in some abstract memory state (function
load). In order to ensure the soundness of our memory model, the static analyzer shall provide
sound approximations for the functions in the above signature. We suppose for the rest of this
section that this assumption is true.

5.2 Generic Model
Given a domain D satisfying the signature Domain, we define a memory model environment
in Figure 5. The separation of memory is statically encoded by the finite number of disjoints
blocks associated to bases. As in the typed model in Section 3.2, a pointer value is represented
by a pair (b, o) where b is the representation of a base into our logic theory (encoded as an
integer), and o is an offset in bits from this base. Locations are then encoded as a pair of a
pointer of our model, associated with its abstract location l# ∈ loc# counterpart. A possible
solution is to encode the memory into a single array indexed by base identifiers. This solution is
improved using the results provided by the static analysis, i.e., the finite set of bases a pointer
may points-to. Then, we do a static separation of the memory in a finite set of arrays, one
by base. Values stored at each base (block) are represented by an array array(I, t) with t, as
defined in Section 3.2.

mem ≜ array(cvar, X)
loc ≜ EI×I × loc#

emp(V) ≜ [v1 ←− α1, · · · , vn ←− αn]
with {v1, · · · , vn} the bases computed by SA tool
and α1, · · · , αn fresh array variables in X

base(v) = ((bv, 0), D.base(v))
shift(((b, o), l#), eI) = ((b, o+ eI), D.shift(l#, eI))

11

A Value-based Memory Model for Deductive Verification Bouillaguet et al.

Our generic model could be designed to use the different over-approximations of the abstract
state at each statement. For the simplicity of the presentation, we consider that the analysis
using the domain D is terminated and we use the over-approximation s# of the abstract state
for all the statements simultaneously.

Reading a value from an abstract memory state m is obtained by statically dispatching the
actual base value among the possible bases obtained from the domain.

load(m, t, ((b, o), l#)) =

{
Vint (e) if t ∈ arith

Vptr
(
e,D.load(s#, t, l#)

)
otherwise

where

{
e ≜ ite(b = bv1 ,m[v1][o], · · · , ite(b = bvn−1 ,m[vn−1][o],m[vn][o]) · · ·)
when D.domain(l#) = {v1, · · · , vn}

The store operation is implemented with a parallel conditional write on each chunk that
may be pointed-to. The generated formula is linear on the size of the set of chunks given by
the domain.

store(m, t, ((b, o), l#), v) = m′, e′

where

v = Vint(e′) or v = Vptr((e′, l#v))
m′ = m[v1 ←− α1, · · · , vn ←− αn]

e′ ≜
∧n

i=1 ite(b = bvi , αi = m[vi][o←− e′], αi = m[vi])

when D.domain(l#) = {v1, · · · , vn}
This use of ite in load and store is reminiscent of the encoding with arrays. Indeed, if the

points-to analysis always returns for D.domain the set of all variables, the VC generated does
not win any concision. On the other hand, if the points-to analysis always returns a singleton
for calls to D.domain, the model produces a formula as simple as the one obtained using the
simple memory model in Section 3.1, but for a larger class of programs that may use pointers.

5.3 An instance on top of Eva
We now show how to build an instance of the signature Domain of Section 5.1 using the value
analysis provided by Eva. The functions required in the signature are given below. Values are
simply abstract locations, making most operations immediate. When computing domain, we
skip the 0 base, because this corresponds to out-of-bounds accesses, implicitly forbidden by the
alarms generated for the instruction.

module Eva : Domain =

type V ≜ loc#

base(v) ≜ {(v, {0})}

shift(l#, eI) ≜
{

shift#(l#, {k}) if eI is a constant k

shift#(l#, ([−∞ ..+∞], 0%1)) otherwise
domain({(b#k , o

#
k), . . . }) ≜ {b

#
k , . . . } \ {0}

type S ≜ mem#

load(m#, t, l#) ≜ load#(m#, t, l#)

The over-approximations computed by Eva on values of expressions can also be used as
additional constraints to obtain more precise VCs, especially for integer variables or offsets.
However, this is not required by the signature of Figure 12, and is thus optional.

12

A Value-based Memory Model for Deductive Verification Bouillaguet et al.

6 Experiments
We have implemented in OCaml the proposed memory model. The implementation is available
as a plug-in of Frama-C. It includes 560 LoC for the module that encodes the memory model and
implements the interface (signature) required by the WP for the memory models. In addition,
the plug-in includes 65 LoC for the glue between Eva and WP, which calls Eva plug-in, interprets
its results using the memory model proposed, and launches the WP plug-in. The plug-in will
be released within the Frama-C platform once it will be more mature.

The plug-in presents additional features. For example, it transfers more informations from
Eva than the sound partitioning of the memory. Indeed, the static analysis of Eva returns also
the size of each element of the partition computed and an over-approximation of the set of
values for each variable, at each program point. Our plug-in transfers this information about
the contents of variables to WP, as additional assertions.

The interface provided by WP allows us to compare our memory model with existing memory
models. Unfortunately, most of examples in the test benchmark of WP use only features
supported by the existing memory models (i.e., the ones presented in Section 3), and the
points-to analysis does not improve the quality of VC generated. We are currently testing our
plug-in on the benchmark of the SV-COMP competition. One challenge with this benchmark is
to obtain code annotated for WP, because many interesting examples involve loops, for which
a loop invariant is often required for WP. We are currently experimenting with exporting the
results of Eva for the contents of variables as invariants in order to avoid manual annotations.

An example that is present in the benchmark of WP and which motivated this work is the
one presented in the introduction (see Section 1). In this example, the default memory model
of WP (see Section 3.2) cannot prove the post-condition of function copy. Since separation is
done per type, the model is not able to specify that parameters a and b, which have the same
type, cannot alias. Therefore, the following clause

(a+ sizeof(a) ≤ b) ∨ (b+ sizeof(b) ≤ a)

is added to the generated VC, unless specified as a pre-condition of the function. The invariants
inferred by the analysis with Eva for this example specify that a (resp. b) points-to a block of
memory indexed by variable t (resp. by u). From the declaration in main, Eva infers that those
blocks are disjoint. Our plug-in transfers this information to WP through our memory model,
and this is sufficient to automatically prove the post-condition.

7 Conclusion
To summarize our contributions, we have defined a framework that allows to transfer the knowl-
edge inferred by a static analyzer on the program memory regions to a deductive verification
tool that supports generation of verification conditions parameterized by a memory model. One
of the challenging point was to find a simple formalization of this framework, which is indepen-
dent of the specificities of tools employed. We implemented this framework in Frama-C, and
reported on preliminary experimental results.

We hope to be able to report on additional benchmark for which a collaboration of WP with
Eva is fruitful in the near future. We also envision various directions as potential future works.

First, one of the current limitations of WP lies in its handling of pointer casts and unions
(when used for type punning): most programs are statically rejected as impossible to be encoded
precisely within the typed memory model. But the low-level memory model of Eva gives us
precise memory information, which could be used to determine whether the casts endanger the

13

A Value-based Memory Model for Deductive Verification Bouillaguet et al.

soundness of using the typed memory model. Alternatively, we could define an entirely new
model for blocks whose contents are used in type-unsafe way.

Second, another interesting extension would be to support dynamic allocation and deallo-
cation. Currently, the model used by Eva for calls to malloc and free uses a weak update
semantics, while WP does not handle these functions. It is likely that some form of support on
the WP side, especially on the interface of memory models, will be required.

Third, we mentioned in Section 6 that we export more than the memory partitioning infor-
mation to WP. However, the information which is transferred remains limited to simple cases.
We believe it is possible to improve this exchange of information, typically for arrays that may
be represented very concisely by Eva.

Finally, we would also like to extend the information exchanged with WP w.r.t. pointers.
Currently, we rely on the fact that pointers pointing to different blocks are separated. However,
it would also be interesting to infer more fine-grained separation. Typically, two pointers
pointing to the same block, but in separate parts of this block. This would permit proving
that it is safe to call copy(&t[0],&t[2]); in the example of Figure 1. This information could
be inferred from the abstract offsets of the pointer values. Another interesting information to
exchange is the validity of pointers, so that the precondition of copy also becomes superfluous.
This should be quite straightforward, due to the validity information inferred by Eva and used
to check that pointer accesses are in bounds.

References

[1] S. Bardin, M. Delahaye, R. David, N. Kosmatov, M. Papadakis, Y. L. Traon, and J. Marion.
Sound and quasi-complete detection of infeasible test requirements. In ICST’15, pages 1–10.
IEEE Computer Society, 2015.

[2] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A modular
reusable verifier for object-oriented programs. In Proceedings of FMCO, number 4111 in LNCS,
pages 364–387. Springer, 2005.

[3] M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured programs. In Proceedings
of PASTE’05, pages 82–87. ACM, 2005.

[4] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview. In
Proceedings of CASSIS, LNCS, pages 49–69. Springer, 2004.

[5] P. Baudin, J. C. Filliâtre, T. Hubert, C. Marché, B. Monate, Y. Moy, and V. Prevosto. ACSL:
ANSI C Specification Language (preliminary design V1.2), preliminary edition, May 2008.

[6] S. Böhme and M. Moskal. Heaps and data structures: A challenge for automated provers. In
Proceedigns of CADE-23, volume 6803 of LNCS, pages 177–191. Springer, 2011.

[7] D. Bühler. Structuring an Abstract Interpreter through Value and State Abstractions. PhD thesis,
University of Rennes, 2017.

[8] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Beyond reachability: Shape abstraction in
the presence of pointer arithmetic. In SAS, volume 4134 of LNCS, pages 182–203. Springer, 2006.

[9] B.-Y. Chang, X. Rival, and G. Necula. Shape analysis with structural invariant checkers. In
Proceedings of SAS, volume 4634 of LNCS, pages 384–401. Springer, 2007.

[10] S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamarić. A low-level memory model and an
accompanying reachability predicate. STTT, 11(2):105–116, February 2009.

[11] W. Chin, C. David, H. H. Nguyen, and S. Qin. Automated verification of shape, size and bag
properties via user-defined predicates in separation logic. Sci. Comput. Program., 77(9):1006–1036,
2012.

14

A Value-based Memory Model for Deductive Verification Bouillaguet et al.

[12] L. Correnson. Qed. computing what remains to be proved. In Proceedings of NFM, volume 8430
of LNCS, pages 215–229. Springer, 2014.

[13] L. Correnson and F. Bobot. Exploring memory models with Frama-C/WP, 2017. Personal comu-
nication.

[14] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In POPL, pages 238–252. ACM, 1977.

[15] J. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deductive program verifi-
cation. In Proceedings of CAV, volume 4590 of LNCS, pages 173–177. Springer, 2007.

[16] C. Flanagan and J. B. Saxe. Avoiding exponential explosion: Generating compact verification
conditions. SIGPLAN Not., 36(3):193–205, Jan. 2001.

[17] T. Hubert and C. Marché. Separation analysis for deductive verification. In Proceedings of HAV,
pages 81–93, Braga, Portugal, Mar. 2007.

[18] B. Jacobs and F. Piessens. The VeriFast program verifier. Technical Report CW-520, Department
of Computer Science, Katholieke Universiteit Leuven, 2008.

[19] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-C: A software
analysis perspective. Formal Asp. Comput., 27(3):573–609, 2015.

[20] K. R. M. Leino. Efficient weakest preconditions. Inf. Process. Lett., 93(6):281–288, 2005.
[21] X. Leroy, A. W. Appel, S. Blazy, and G. Stewart. The CompCert Memory Model, Version 2.

Research Report RR-7987, INRIA, June 2012.
[22] X. Leroy and S. Blazy. Formal verification of a C-like memory model and its uses for verifying

program transformations. J. Autom. Reasoning, 41(1):1–31, 2008.
[23] F. Mehta and T. Nipkow. Proving pointer programs in higher-order logic. In Proceedings of

CADE-19, volume 2741 of LNCS, pages 121–135. Springer, 2003.
[24] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that alter data

structures. In Proceedings of CSL, volume 2142 of LNCS, pages 1–19. Springer, 2001.
[25] R. Piskac, T. Wies, and D. Zufferey. Automating separation logic with trees and data. In Pro-

ceedings of CAV, pages 711–728. Springer, 2014.
[26] Z. Rakamaric and A. J. Hu. A scalable memory model for low-level code. In Proceedings of

VMCAI, volume 5403 of LNCS, pages 290–304. Springer, 2009.
[27] P. Sotin, B. Jeannet, and X. Rival. Concrete memory models for shape analysis. Electr. Notes

Theor. Comput. Sci., 267(1):139–150, 2010.
[28] W. Wang, C. Barrett, and T. Wies. Partitioned memory models for program analysis. In Proceed-

ings of VMCAI, volume 10145 of LNCS, pages 539–558. Springer, 2017.

15

	Introduction
	Deductive Verification for a Toy Language
	A Toy Language
	Abstract Dynamic Semantics
	Generating Verification Conditions

	Memory Models in WP
	Simple Memory Model
	Typed Memory Model

	Value Analysis in Eva
	Abstractions for values
	Abstract operations
	Handling function calls

	Deriving a Memory Model from an Abstract Domain
	Signature required from the static analyzer
	Generic Model
	An instance on top of Eva

	Experiments
	Conclusion

