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Abstract

In this paper, an approach to determine the time constants and the
amplitudes of the mass loading effect and of the viscoelastic contribution
of SAW sensor’s frequency shift is proposed. This approach consists in
optimizing a function of these parameters which is independent of the con-
centration profile. Then, we show that these values are suitable features
for chemical compounds identification and concentration evaluation.
Keywords: SAW sensors, odour recognition, concentration evaluation.

1 Introduction

In this paper, we focus on a category of gas sensors called surfaces acoustic
waves (SAW) sensors. These sensors are based on the propagation of mechanical
waves produced by piezoelectric materials along a layer composed of a substrate
covered by chemically interactive materials. Volatile compounds are absorbed
onto the surface of the sensitive material, changing its properties and yielding
to a measurable frequency shift of the mechanical waves. It was established
that the frequency shift is the superposition of two main contributions (the
electro-acoustic one can be neglected) [1]:

1. a viscoelastic contribution due to changes in the coating’s Young modulus;
and

2. a mass loading effect due to changes of the coating film’s mass.

These contributions can be modelled by first order linear differential equations
[1]: {

τm
∂Fm
∂t + Fm = Kmc

τv
∂Fv
∂t + Fv = Kvc
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where Fm and Fv are respectively the frequency shift due to the mass loading
effect and to the viscoelastic contribution, Km and Kv are respectively their
gains, τm and τv are their time constants and c is the concentration profile
of the volatile compound. The total frequency shift is then given by F =
Fm + Fv [1]. Moreover, it was established that the mass loading effect involves
a positive frequency shift i.e. Km < 0. In this paper, we propose an approach
to determine the gains and the time constants of the mass loading effect and to
the viscoelastic contribution. We also show that these parameters are suitable
features for chemical compounds identification and concentration evaluation.
This work was motivated by the facts that these features are independent of
the concentration profile c and belong to an higher dimension space than the
traditional features (steady state amplitude of the response, rise time) used for
compounds identification and hence should carry more information about them.

2 Problem formulation

The problem addressed in this paper is to determine the parameters of the
sensors in a blind way, i.e. without any knowledge of the concentration profile.
The discretization of the differential equations using the backward difference
operator and the fact that such equations are linear and time invariant yield
to: Fi[n] = hi[n] ∗ c[n], i ∈ {m, v}, where hi is the impulse response of the
considered contribution. The impulse response of a dynamic system is its output
when its input is the Dirac function. Thus, they are given by

hi[n] = Ki
Ts

τi + Ts

(
τi

τi + Ts

)n

, i ∈ {m, v}.

Let’s define the new variables for i ∈ {m, v}:

Ti =
τi

τi + Ts
or τi =

TiTs
1− Ti

; and (1)

Ai = Ki(1− Ti) or Ki =
Ai

1− Ti
. (2)

to get a much simpler form of the impulse response: F [n] =
(
AmT

n
m +AvT

n
v

)
∗

c[n]. This relation shows that the parameters Am and Av can be identified up
to a multiplicative constant α 6= 0 since

F [n] =

(
Am

α
T n
m +

Av

α
T n
v

)
∗ (αc[n])

so without loss of generality we can assume that the amplitude of the concen-
tration profile c∗ is unitary

c∗ =
c

cSS
or c = cSSc

∗, (3)
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where cSS is the steady state value of the concentration profile. It involves

F [n] =
(
AmT

n
m +AvT

n
v

)
∗ c∗[n]; and

Am

1− Tm
+

Av

1− Tv
= FSS ,

FSS is the steady state value of F . As the presence of the convolution product in
the equations makes any further development arduous, we propose to transform
them using a generating function.

2.1 Generating functions

The generating function of a sequence a0, a1, ..., an is

G(a[n], x) =
∑
n≥0

a[n]xn, (4)

the main advantage of generating functions is their property to transform a
convolution product into a scalar product [2]:

G(a[n] ∗ b[n], x) = G(a[n], x)G(b[n], x).

Generating functions are defined only for the x where the sum (Eq. 4) converges.
The region of convergence (ROC) of a generating function is the set

ROC =

{
x :

∑
n≥0

a[n]xn converges

}
.

It can be shown that the generating function associated with the impulse re-
sponse h[n] = hm[n] + hv[n] is

G(h[n], x) =
Am

1− Tmx
+

Av

1− Tvx

and its ROC is

ROC(G(h[n], x)) =

{
x : |x| < min(

1

Tm
,

1

Tv
)

}
.

Moreover, we can easily prove the properties:

• {x : |x| < 1} ⊂ ROC(G(c∗[n], x)); and

• {x : |x| < 1} ⊂ ROC(G(F [n], x)).

In practice, the generating function of a digitalized signal F of length N can be
approximated with high precision for |x| < 10

ε
N where ε is the machine precision

if x belongs to the ROC of F .
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2.2 Optimization problem formulation

Since SAW sensor based electronic noses are composed of an array of sensors,
they can be modelled as a single input multiple outputs system. The e-nose is
driven by a single input sequence c[n] and yields to M output sequences Fi[n].
Computing the associated generating functions yields to the set of equations
i = 1..M :

G(Fi[n], x) =

(
Ai,m

1− Ti,mx
+

Ai,v

1− Ti,vx

)
G(c∗[n], x). (5)

One can determine G(c∗[n], x) using the equation associated with the first sensor
(i = 1)

G(c∗[n], x) =
G(F1[n], x)

A1,m

1−T1,mx +
A1,v

1−T1,vx

and substitute it to the others ones (i = 2..M)

G(Fi[n], x) =

(
Ai,m

1− Ti,mx
+

Ai,v

1− Ti,vx

)
G(F1[n], x)

A1,m

1−T1,mx +
A1,v

1−T1,vx

. (6)

So, by construction, the parameters A and T can be estimated by solving the
following optimization problem:

argmin
∑

x∈X

∥∥∥∥∥GH(x) GF (F1,x)
Am,1

1−Tm,1x
+

Av,1
1−Tv,1x

− F (x)

∥∥∥∥∥
2

2
subject to :

∀i Ti,m ∈]0..1[ and Ti,v ∈]0..1[

∀i Ai,m < 0

∀i Am,i
1−Tm,i +

Av,i
1−Tv,i = SSi

where GH(x) =


Am,2

1−Tm,2x +
Av,2

1−Tv,2x
...

Am,N
1−Tm,Nx +

Av,N
1−Tv,Nx

,

F (x) =

GF (F2, x)
...

GF (FN , x)

 and X is a finite subset of [−10
ε
N , 10

ε
N ].

3 Application to odours recognition and concen-
tration evaluation

In this section, we show that the estimates of the parameters of the impulse
response of the SAW sensors (Km, Kv, τm, τv) are suitable features for odours
recognitions and concentration evaluation.
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3.1 Outline of the electronic nose and of the optimization
process

The selected electronic nose system is based on an array of six functionalized
nano-diamond coated SAW sensors each with a fundamental frequency of 433.9
MHz [3]. The sensors were exposed to five different gases (NH3, SO2, H2S,
CH3OH and C7H8) at a concentration of 10 ppm, 8 ppm, 6 ppm, 4 ppm and
2 ppm. Nitrogen was used as the reference and carrier gas to transport the
volatile chemical compounds through the gas cell containing the sensors. The
temperature of the sensors (22o C) and the flow rate (200 ml/min) above them
were kept constant. Data acquisition was carried out at 10 Hz using the SAGAS
instrument [4]. Several cycles exposition (15 sec) - purge (30 sec) were done for
each gas at each concentration. The optimization problem was solved using the
particle swarm optimization algorithm [5], its parameters were set empirically,
its inertia weight was set to 0.729, its social and cognitive acceleration coefficient
were set to 1.49445. 100 particles were used. The algorithm was run for 250
iterations. The parameters Km, Kv, τm, τv were then retrieved using Eq. 1 and
Eq. 2.

3.2 Chemical compounds identification

To perform odours recognition, large margin nearest neighbour (LMNN) [6] was
implemented. We compared the performances obtained by using the amplitudes
(Km and Kv) of the two contributions as features versus the signal amplitude
during the steady state. The mean of the relative classification performance ob-
tain during a 5-fold cross-validation process were respectively 96.8% and 94.5%.
These results show that the amplitudes of the two contributions are suitable
features to perform odours recognition.

3.3 Chemical compound concentration evaluation

The sensor’s response, Fi(n), is given by

Fi[n] = hi[0]c∗[n] + hi[1]c∗[n− 1] + ...+ hi[N ]c∗[n−N ].

This equation can be written as Fi = Hic
∗ where

Hi =



hi[0] 0 · · · · · · 0

hi[1] hi[0] 0
...

hi[2] hi[1] hi[0] 0
...

...
. . .

. . .

hi[N ] hi[0]


.
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Stacking this equation for each sensor of the nose yield to:
F1

F2

...
FM

 =


H1

H2

...
HM

 c∗ or F = Hc∗

and c∗ = (HTH)−1HTF. However, the measured data F are noisy. In this
case the previous equation generally produces a noisy estimate of the concen-
tration profile. To improve the deconvolution, one can minimize the energy of
the second-order derivative of the concentration profile. Moreover, in some sit-
uation, it may be interesting to add prior knowledge about the concentration
profile, for instance c∗[0] = 0 i.e. sc∗ = 0 where s = [1 0..0]. So c∗ can be
estimated by solving the problem: argmin ||F −Hc∗||22 + k||Dc∗||22

subject to :
sc∗ = 0

where D is the second-order derivative matrix:

D =


1 −2 1 0 . . . 0

0 1 −2 1
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . 0 1 −2 1

 .

Building the Lagrangian, computing its gradient and nullifying it yields to:(
c∗

λ

)
=

(
2HTH + 2kDTD sT

s 0

)−1(
2HTF

0

)
,

where λ is the Lagrange’s multiplier. To obtain the real concentration profile,
we must determine the coefficient css (see Eq. 3). This is a traditional regression
problem. To solve it, we implemented the metric learning for kernel regression
algorithm (MLKR) [7] algorithm which gave a relative error of 17%. Fig. 1
shows the result of the concentration profile estimation process: the true con-
centration is 8 ppm (estimated 8.2 ppm) from 0 to 10 sec and 4 ppm (estimated
3.74) from 10 to 15 sec, (k was set to 106).

4 Conclusion

The optimization problem developed in this study enables the determination of
the parameters of the mass loading effect and oh the viscoelastic contribution to
SAW sensor’s frequency shift. This work was motivated by the facts that these
features are independent of the concentration profile c and belong to an higher
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Figure 1: Concentration setpoint and concentration profile estimate

dimension space than the traditional features used for compounds identification
and hence should carry more information about them. This assumption was
verified experimentally by comparing the classification rate obtained with these
features and the one obtained with the steady state amplitude. Moreover we
showed that the features we introduced, make possible the determination of the
temporal profile of the concentration by performing a deconvolution.
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