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ABSTRACT

We introduce a novel design for analyzing and approximating functions defined on the vertices of a directed
graph Γ in a multi-scale fashion. The starting point of our construction is the setting-up of a frequency notion
through the study of the Dirichlet energy of random walk operator’s eigenfunctions. By this alluring frequency
interpretation, the set of random walk’s eigenfunctions is considered as the Fourier basis for functions over
directed graphs. We are thus able to construct a multi-scale frame based on the bi-orthogonal basis of the
random walk on directed graphs. This multi-resolution frame paves thus the way to a generalization of the
diffusion wavelet framework to the directed scope.

Keywords: Directed graphs, Random walk operator, Multiresolution analysis, Signal processing on graphs.

1. INTRODUCTION

In the data deluge era, most of the data coming from a variety of sources, from biology to social medias services
exhibit a graph-structured living in a high dimensional space. Formally, the data depicting attributes which live
on the nodes or/and the edges of a graph depicting some entities. In order to analyze and understand such graph
data, mathematical and computational methods need to be created.

In the classical harmonic analysis framework, methods such as Fourier and wavelet transforms have demon-
strated their effectiveness for analyzing signals on regular domains such as time signals and images. Noticeably,
the efficiency of the wavelet transform on regular domains has motivated the extension of the wavelets on irreg-
ular domains such as manifolds and graphs. Most of these graphs have the particularity of being directed. For
instance, by analyzing data from the web, the direction of the links contains crucial information.

In this paper, we bring out a novel design of wavelet frames for functions defined over a directed graph and
generalize the diffusion wavelets framework to the directed setting.

A fundamental barrier in the extension of wavelets scope to the directed graph setting is the absence of an
appropriated notion of frequency. Without a desirable notion of frequency, we are not able to apply a directed
graph type Littlewood-Paley theory.

The essential idea behind the notion of frequency is the extension of the Fourier basis for functions over
directed graphs. Recently, various Fourier transforms for directed graphs have been proposed, from the adjacency
matrix,1,2 to the Laplacian,3,4 through optimization methods.5

We thus introduce a novel and alternative frequency analysis for functions defined on the vertices of functions
on directed graphs carried by the random walk operator. The main concept is to consider the eigenfunctions
of the random walk as a Fourier basis for functions defined on directed graphs through the Dirichlet energy
weighted by the transition probabilities of the random walk operator. From this attractive interpretation, we
are able to construct a multi-scale frame based on the bi-orthogonal basis of the random walk operator, typically
non-symmetric for functions on directed graphs, offering an alternative to the previous approach.6 This multi-
scale frame can be viewed as multi-bandpass graph filters,1,2 filtering functions according to the band-limited
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spectral frequencies. This construction thus generalizes the concepts from7–9 and their wavelet-like transforms
on undirected graphs onto the directed graph setting.

Our construction is built as follows. In the following section, we discuss the related work on which our paper
has been built. In section 2, we review the classical notions of signal processing on graphs. Then we introduce,
in section 3 the canonical operators defined on directed graphs. The section 4 is devoted to the interpretation of
a Fourier analysis based on a highlighted operator from 3, the random walk operator. From this Fourier analysis,
we present, in section 5, the multi-scale wavelet frame for directed graphs and its properties. Lastly, we propose
an extension of the diffusion wavelets frames to the directed scope in the section 6.

1.1 Related work

Over the last decade, there has been more interest in building and investigating wavelet-like transforms for
functions over irregular domains, such manifolds and graphs.6,9–20 The wavelet-like transforms can be divided
in two categories.

1.1.1 Vertex based transforms

Coifman et al.21 generalized the Haar wavelet transform to graphs. Szlam et al.22 utilized a successive partition-
ing of a graph to generate an orthonormal basis via the diffusion wavelet scope.10 Sharon and Shkolniksy23 used
a subset of the Laplacian eigenvectors and a recursive partitioning tree to construct a multi-resolution analysis
and consequently multiwavelet bases. Rustamov generalized the average interpolating transform of Donoho et
al. for manifolds and graphs.14 Rustamov also presented a graph wavelet construction16 based on the lifting
scheme whose update and prediction operators are adaptively learning from a given set of signals so that the
resulting wavelet coefficients of a signal belonging to the same signal class become sparse. Filterbanks have also
been developed on graphs (especially when relying on the case of bipartite graphs) to design wavelets, first in
the original works of24–27 then developed in more recent works .28–30 Lately, Irion and Saiko17,18 developed
multi-scale transforms on graphs utilizing a top-down recursive graph partitioning to construct the wavelet-like
basis functions.

1.1.2 Frequency based transforms

Coifman and Maggioni10,12,31 firstly introduced diffusion wavelets, a general theory for wavelet decompositions
based on compressed representations of powers of a diffusion operator, typically a Laplacian or a random walk
operator. Maggioni and Mhaskar8 developed the concept of diffusion polynomial frames, inspired from Mhaskar’s
previous work7 in the generality of arbitrary measure spaces whose scaling and wavelet transforms are an or-
thonormal basis {ϕj} and an increasing sequence of numbers {σi} of a given operator. Highly inspired by the
”diffusion polynomial frames” approach, Hammond, Vandergheynst and Gribonval9 elaborated a multi-scale ap-
proach by defining scaling and wavelet transforms based on the eigenfunctions of the graph Laplacian L. All these
significant constructions have been uniquely designed on undirected graphs where the Laplacian’s eigenfunctions
are considered as Fourier basis for functions over undirected graphs.

A natural extension would be to extend the wavelet-like transforms to the directed graph scope. Among the
graphs, directed graphs appear extensively in diverse real-world applications from social networks to computa-
tional biology where the edge directionality brings useful information. Nevertheless, it is more challenging to
study than undirected graphs. The study of multi-resolution analysis on directed graphs is often done from the
conversion of directed graphs to undirected ones via symmetrization. Such symmetrization treatments discard
the important structural information conveyed by edge directions, which inevitably impair the efficacy of sub-
sequent analysis. A question is still how to use a Laplacian on directed graphs, knowing the construction of a
symmetric Laplacian on directed graphs by Chung.32 Lastly, operators defined on directed graphs are naturally
non-symmetric and that yielding to non-orthogonal eigenspaces. From a numerical perspective, non-orthogonal
eigenspaces might be unstable and highly perturbed by noise unlike orthogonal ones.

It is therefore of great interest to develop a multi-scale directed graph analysis to make use of edge direction-
ality of a directed graph.



1.2 How to generalize multi-resolution analysis of functions over directed graphs?

In graph signal processing for undirected graphs, and in many of the wavelet-like transform found so far in the
literature, the orthogonal basis consisting of the eigenvectors of the Laplacian operator plays the role of Fourier
basis.33 In the scope of the directed graphs, we need to establish a corresponding Fourier basis. Recently,
diverse graph Fourier transforms for functions defined over directed graphs have been suggested. Sandryhaila
and Moura1,2 have proposed a graph Fourier transform based on the Jordan reduction of the adjacency matrix
W which plays the role of graph shift operator.2 Apart from the difficulty to deal with the Jordan reduction, the
frequency notion is determined a posteriori, by computing the total variation of the eigenvectors of W. Singh3

has proposed a Fourier basis construction based on the eigenfunctions of a directed Laplacian. Most newly,
Sardellitti et al.5 have created a directed graph Fourier basis built as the set of orthonormal vectors through the
resolution of a non-convex problem. Shafipour4 investigated a Fourier basis construction from the eigenfunctions
of the Laplacian operator.

As a slight extension of his previous work,8 Mhaskar has more recently proposed a multi-scale decomposition
for functions defined on a directed graph6 based on the singular value decomposition of a non-symmetric operator.
Specifically, this approach considers the polar decomposition of a non-self-adjoint operator on directed graph
A = SU where S is a positive semi-definite matrix and U a unitary matrix. Mhaskar thus establishes a multi-
resolution analysis of Uf .

The aim of our research is thus to propose an attractive alternative to the Mhaskar’s work by constructing
a novel harmonic analysis and multi-resolution framework from the random walk operator where the random
walk’s eigenfunctions are the Fourier basis for functions defined over directed graphs.

2. SIGNAL PROCESSING ON GRAPHS

Signal processing on graphs1,2, 33 extends the concepts of classical signal processing for time signals and images
to signals defined on the vertices of a graph. In this section, we introduce the main concepts of signal processing
on graphs framework relevant to our construction.

2.1 Preliminaries

A directed graph Γ is a couple (V, E) where V is a set of vertices, that is, an arbitrary set whose elements are
called vertices with |V| = n and E is a set of edges. Each edge is an ordered pair of nodes (u, v) representing a
directed connection from u to v. In a weighted directed graph, a weight function w : V × V → R+ is associated
with Γ, satisfying w(u, v) = 0 if and only if (u, v) ̸∈ E . Typically, we can equip a directed graph with a canonical
weight function by defining w(u, v) = 1 if and only if (u, v) ∈ E .

The in-degree dinu and out-degree doutu of a vertex u ∈ V, respectively are defined as

dinu =
∑
v∈V

w(v, u), doutu =
∑
v∈V

w(u, v).

2.2 Signals on graphs

We define a graph signal as a function from the set V to C, that is f : V → C. We write graph signals as vectors

f = [f(1), . . . , f(n)]⊤ ∈ Cn

We now define the function space for graph signals.

Definition 2.1. Let ν : V → (0,∞), a measure defined on the vertex set V. For p ∈ [1,∞), we denote ℓpν(V),
the space of functions f : V → C such that

||f ||ℓpν(V) =

(∑
v∈V

|f(v)|pν(v)
)1/p

<∞, p ∈ [1,∞)



We now focus on functions defined on ℓ2ν(V), squared integrable functions space which is the Hilbert space of
functions defined on graphs endowed with its inner product:

⟨f, g⟩ν =
∑
x∈V

f(x)g(x)ν(x),

where g(x) is the conjugate of g(x).

2.3 Filters on graphs

In traditional digital signal processing, signals are processed by filters, systems that take a signal as an input
and produce another signal as an output. We can develop the equivalent concept of filters for graph signals.
We consider linear shift-invariant filters, which are a generalization of linear time-invariant filters used in signal
processing for 1D or 2D signals.

We define a graph filter as a linear operator H ∈ Cn×n acting on a graph signal input s to produce an output
s̃ = Hs. If s1, s2 are two graphs signals and α, β are scalars, we have:

H(αs1 + βs2) = αHs1 + βHs2.

In this paper, we will focus on linear shift-invariant (LSI) graph filters. More precisely, linear shift invariant
graph filters are a class of linear operators invariant with respect to a reference operator on graphR, named graph
shift. We assume that R is diagonalizable. Formally an LSI graph filter H is characterized by the commutativity
property with respect to its reference operator R,

RH = HR.

The commutativity property implies that R and H share the same eigenspaces. Thus, H can be expressed
as :

H =
∑
i

γiGi, γi ∈ C,

where Gi are the spectral projectors of R.

H can also be expressed as a polynomial of R:

H =

L∑
i=0

hiR
i, hi ∈ C.

Remark 2.1. This last decomposition was used by Sandrihayla and Moura1 when R is taken as the adjacency
matrix.

2.3.1 Frequency response of a filter

We can define the frequency response h of a filter H as follows:

H =
∑
i

h(γi)Gi, γi ∈ C,

where γi are the frequencies attached to the Gi’s, the eigenspaces of R and h : C → C is the frequency
response of H, i.e. a function of frequency with desirable filtering properties.

3. OPERATORS ON DIRECTED GRAPHS

The operators that we introduce have the characteristic for being defined on directed graphs as well undirected
graphs. These operators are created from the random walk operator and will be the cornerstones of our multi-
scale construction.



3.1 Random walk operator on graphs

A random walk on a graph is a finite discrete Markov chain defined on the set of the vertices V endowed with
an invariant measure π. The associated Markov chain is characterized by a transition probability matrix P. P
can be expressed as P = D−1

outW where Dout is the diagonal matrix of the out-degree of Γ.

We assume throughout this paper that P is irreducible (i.e. V is strongly connected under P). It is a fact that
if P is aperiodic then Pn(x, .) approaches π as n → ∞, π being the left eigenvector of P such that π⊤P = π⊤,
with

∑
i π(i) = 1, π(i) ≥ 0, ∀i . We denote the time-reversal P∗ as the following identity

π(x)P ∗(x, y) = π(y)P (y, x), x, y ∈ V

It is called the adjoint of P in the standard inner product of ℓ2(π), that is ⟨f,Pg⟩π = ⟨P∗f, g⟩π where

⟨f, g⟩π =
∑
x∈V

π(x)f(x)g(x)π(x)

The matrix P acts on a function f ∈ ℓ2(V) as:

Pf(x) =
∑
y∈V

P (x, y)f(y).

If P∗ = P then P is said to be time reversible or to satisfy the balance condition. Given any Markov matrix
P, we have two natural reversible chains:34

1. the additive reversibilization P+P∗

2

2. the multiplicative reversiblization PP∗.

On directed graphs, the random walk is nonreversible, i.e the balance equation is not verified. We assume that
our random walk is defined on directed graphs, hence the non-reversibility is the general case that we assume.

Remark 3.1. We can also consider the convex class of additive reversibilization operators (1 − α)P + αP∗,
α ∈ [0, 1] as potential random walk operators on directed graphs. This class of operators is not linear shift
invariant to P, yet it may be useful in some practical situations.

3.2 Laplacian on directed graphs

The directed Laplacian matrix32 on a digraph Γ is defined as follows.

Definition 3.1. Let Γ = (VΓ, EΓ) be a digraph with |VΓ| = n. Let P be the transition probability matrix
associated to Γ. The normalized Laplacian on Γ is defined as

L = I− Π1/2PΠ−1/2 +Π−1/2P⊤Π−1/2

2
, (1)

where Π is the diagonal matrix with π on the diagonal.

The unnormalized directed Laplacian L of a directed graph is defined as

L = Π− ΠP+P⊤Π

2
. (2)

The random walk Laplacian Lrw is defined as follows:

Lrw = I− P+P∗

2
. (3)

The random walk Laplacian Lrw thus involves the additive reversibilization of the random walk operator.



Thus, the normalized Laplacian L can be written in terms of the unnormalized Laplacian L as follows:

L = Π−1/2LΠ−1/2.

The unnormalized Laplacian is also related to the random walk Laplacian via

L = ΠLrw.

We obtain the same relation as in the undirected case. Moreover, the following remarks make the link with the
undirected case.

Remark 3.2. For undirected graph G, the probability distribution π has a closed expression

π(v) =
dout(v)∑
u d

out(u)
. (4)

Remark 3.3. Using (4), we can show that (1), (2) and (3) are respectively the usual normalized, unnormalized
(up to a multiplicative factor) and rando walk Laplacian on undirected graphs.

4. FOURIER ANALYSIS OF FUNCTIONS ON DIRECTED GRAPHS

In order to analyze and filter signals on graphs, we need to define a proper Fourier transform for graphs. In the
classical signal processing, the Fourier transform is characterized by its Fourier modes (sine & cosine) to which
we associate frequencies.

On more complex domains such as manifolds and graphs, the Fourier transform is generalized from the
Laplacian where its eigenfunctions are the Fourier modes and its respective eigenvalues are the frequencies.
Although this definition of the Fourier transform based on the Laplacian is fruitful, it concerns only undirected
graphs. It thus becomes necessary to define a Fourier transform for directed graphs. Recently, numerous
approaches have been investigated for directed graphs.2–4,6

In this section, we propose a novel and alluring approach for constructing a Fourier basis for functions defined
on directed graphs. Our graph Fourier basis is obtained by the determination of the desired frequency notion
through the study of the Dirichlet energy of the random walk’s eigenfunctions. We make a connection between
eigenvectors of P and a notion of variation.

First we introduce the notion of regularity of functions over graphs. Second we define the Dirichlet energy
for functions over directed graphs and present the relation between the variations of the eigenfunctions of P and
its associated eigenvalues.

4.1 Global regularity of functions on graphs

The behavior of a function on a directed graph as well as an undirected graph can be analyzed by measuring
its regularity, analogously to the functional analysis setting. The global variation of a function over a graph is
defined as follows:

Definition 4.1. Let be µ : E → R+, a measure defined on the edge set E. The global variation of a function on
graph, f : V → C is:

||f ||E,2,µ =

( ∑
(u,v)∈E

|f(u)− f(v)|2µ(u, v)
)1/2

.



4.2 Frequency analysis on graphs

Let us consider the Dirichlet energy

S2
π,P(f) =

1

2

∑
(u,v)∈E

π(u)p(u, v)|f(u)− f(v)|2,

where p(u, v) is the (u, v) entry of the probability transition matrix P and π(u) the stationary distribution at
vertex u.

Remark 4.1. If we replace π(u) by (4), S2
π,P(f) becomes the quadratic variation defined for functions on

undirected graphs.

The following proposition establishes an appropriate connection between the Dirichlet energy S2
π,P of a

function f on a directed graph and a quadratic form consisting by Π,P and P⊤.

Proposition 4.1. The Dirichlet energy of a function f ∈ ℓ2π(V) is expressed as

S2
π,P(f) = ⟨f, Lf⟩, (5)

where L = Π− ΠP+P⊤Π
2 defined at (2).

This proposition enables us to express the Dirichlet energy of the function f with respect to L.

The following proposition is the key step allowing a link between the variations of the eigenfunctions of P
and its associated eigenvalues.

Proposition 4.2. Let be ζ : V → C, an eigenfunction of the random walk operator P associated to the eigenvalue
η ∈ C. The normalized Dirichlet energy of ζ is:

S2
π,P(ζ)

||ζ||2π
= 1−Re(η),

where Re(η) denotes the real part of η ∈ C.
Proof.

S2
π,P(ζ) = ⟨ζ,Πζ⟩ − 1

2
⟨ζ,ΠPζ⟩ − 1

2
⟨ζ,P⊤Πζ⟩

= ||ζ||2π − 1

2
η||ζ||2π − 1

2
η||ζ||2π

= (1−Re(η))||ζ||2π.

By dividing the last equation by ||ζ||2π, we obtain the desired equation.

This proposition establishes an association between the quadratic variation of an eigenfunction ζ of P and its
respective eigenvalue η. We thus propose a frequency ordering for eigenfunctions by naming frequency associated
to ζ:

ω = 1−Re(η), ω ∈ [0, 2].

In section 2, we have defined graph filters as a linear combination of spectral projectors of a reference operator
R. Moreover, we have defined a desirable frequency notion on directed graphs from the random walk operator
P. We can thus characterize LSI filters to P according their frequency response. A such filter can be written as
follows:

H =
∑
i

h(ωi)Gi,

where ωi is the frequency associated with the spectral projector of Gi of P, and h : R → R a function with
desirable filtering properties.



5. MULTIRESOLUTION ANALYSIS FRAMES FOR FUNCTIONS IN ℓ2(V).
In the previous section, we have defined a notion of frequency for functions on directed graphs from the Dirichlet
energy of the random walk’s eigenfunctions. We are thus able to construct frames for functions over directed
graphs from the bi-orthogonal basis of the random walk operator. This multi-scale frame construction is closely
inspired by.7–9

5.1 Scaling operator

Let P be the random walk operator associated to the directed graph Γ endowed with the ergodic property. P
admits a spectral decomposition as follows:

P =
∑
i

ηiGi,

with Gi the spectral projector associated to the eigenvalue ηi ∈ C.
In order to represent the low-frequency component of a function f on a directed graph, we introduce the

scaling operator Φ.

The scaling operator at a scale t Φt is LSI w.r.t P. It can be expressed as follows:

Φt =
∑
i

h(tωi)Gi,

where h : R → R is a function acting as a low-pass filter.

Φt thus acts as a linear low-pass graph filter on the function f . The scaling functions are given by ϕt,n = Φtδn,
that is the low-pass graph filter Φ acting on a Kronecker δ-function at vertex n.

5.2 Wavelet operator

Similarly to the scaling operator Φ, we are able to construct wavelet operators Ψ. The wavelet operator at a
scale t, Ψt is expressed as follows:

Ψt =
∑
i

g(tωi)Gi,

where g : R → R+ is a function acting as a band-pass filter.

Ψt acts as a linear band pass graph filter on the function f . The wavelet functions are given by ψt,n = Ψtδn.

5.3 Wavelet transform frame

Given a fixed set of scales {tj}Jj=1, the scaling and wavelet Φ and Ψ operators, we define the synthesis operator
W as

W =
(
ΦJ ,Ψ1, · · · ,ΨJ

)
where Ψj (resp. Φj) stands here and in the following for Ψtj (resp. Φtj ).

From W, we define the analysis operator W̄

W̄ =


Φ̄J

Ψ̄1

...
Ψ̄J


where Ψ̄j (resp. Φ̄j) are graph filters. Ψ̄t (resp. Φ̄t) are defined at a scale t as follows:

Ψ̄t =
∑
i

ḡ(tωi)Gi.



Φ̄t =
∑
i

h̄(tωi)Gi.

W̄ requires two conditions:

1. Φ̄ and Ψ̄ need to be graph filters.

2. The filters should guarantee the perfect reconstruction condition, i.e:

J∑
j=1

g(tjωi)ḡ(tjωi) + h(tJωi)h̄(tJωi) = 1.

These two conditions yield:
WW̄ = I.

Following what is done in9 we can construct a frame with desirable filter properties h and g (for instance by
using filters that combine so that they leave no Fourier modes be put at zero by their joint actions). This aspect
is not detailed here and we focus in the following on the construction of diffusion wavelets.

6. DIFFUSION WAVELETS ON DIRECTED GRAPHS

In the previous section, we have set the elements to construct a multi-scale frame, based on the bi-orthogonal
basis of the random walk operator P for functions defined over directed graphs. Among these scaling frames at
each scale, we can select a subset of basis elements representing the scaling space in a compact way. We thus
can go further through the extension of the diffusion wavelets framework10,11,35 to the directed graph setting.

In this section, we review the concept and construction of the diffusion wavelets and we introduce the
generalization of the diffusion wavelets to the directed graph setting.

6.1 Diffusion wavelets

Diffusion wavelets is a multi-scale representation allowing a fast multi-resolution analysis of functions on graphs,
generalizing the multi-resolution analysis in the classical setting. More specifically, the diffusion wavelets frame-
work allows the construction of well-localized scaling functions and wavelets from powers of a diffusion operator.

6.2 Notations

Here we define notations required for the construction of diffusion wavelets. Two notations are defined, one for
the representation of linear operators as matrices and another one for the representation of sets of vectors as
matrices with each columns corresponding to a vector. The same notations were used in10,31 except that we here
adopt a column vector convention whereas a row vector convention was used in.10,31

Let V0 be the space of signals on a graph G = (V, E). If L is a linear operator on V0, [L]
B2

B1
denotes the

matrix representing the linear operator L with respect to the basis B1 in the domain and B2 in the range. If
B1, B2, B3, B4 are arbitrary bases, the representation of an operator L in different bases verify

[L]B2

B1
= [I]B2

B4
[L]B4

B3
[I]B3

B1
. (6)

Furthermore, if B1 or B2 are linearly independent sets of vectors that do not span the whole space, then we will
still use the notation [L]B2

B1
, but in that case it will represent the restriction of the operator L to the domain and

range subspaces spanned by B1 and B2.

A set of vectors X represented on a basis B will be written as a matrix [X]B , with each column corresponding
to a vector in X. The columns of [X]B are the coordinates of the vectors of X in the basis B2. When the set of
vectors forms a basis B1, its representation on a basis B2, [B1]B2

verifies [B1]B2
= [I]B2

B1
. We will also abuse this

notation if B2 spans a subspace of the space spanned by B1. If B1 and B2 are two bases, the representations of
X in B1 and B2 are related as follows: [X]B2 = [I]B2

B1
[X]B1 .



6.2.1 Construction of Diffusion Wavelets

The construction of diffusion wavelets starts with a diffusion operator T defined on the directed graph G. In
the diffusion wavelet framework of Coifman and Maggioni, the graph is assumed undirected and they suggest
using the reversible random walk operator P as the diffusion operator. More generally, any operator T can be
used as long as it can be interpreted as a dilation operator when applied to localized functions on the graph.
In classical signal processing terms, T needs to behave like a low-pass filter. For a directed graph G, a sensible
choice with respect to the Fourier analysis we propose is to use a low-pass graph filter. More precisely, this is
a graph filter as defined in section 2 using the random walk P as the reference operator and with a low-pass
frequency response with respect to the definition of frequency we propose in section 4.

Assuming an ordering of vertices in V, T is initially represented on the canonical basis Φ0 = {δk}k∈V of
V0 where δk is the Kronecker δ-function at vertex k ∈ V, i.e δj = 1 if j = k and δj = 0 otherwise. With our

notations, [T]Φ0

Φ0
is the matrix representing the linear operator T with respect to the basis Φ0 in the domain and

Φ0 in the range.

The columns of [T]Φ0

Φ0
, can also be viewed as a set of functions Φ̃1 = {ϕ̃1,k}k∈V represented in the basis Φ0.

These correspond to the application of T to Dirac functions: [ϕ̃1,k]Φ0 = [T]Φ0

Φ0
δk.

Due to the low-pass property of T, each of the ϕ̃1,k is a function localized around vertex k whose support
extends to its close neighbors. In terms of the diffusion wavelets construction, these can therefore be interpreted
as scaling functions at scale 1. Because of their support covering a small neighborhood around vertices, these
functions ϕ̃1,k can generally be well approximated by a linear combination of the other functions ϕ̃1,l with

l ̸= k. The next step in the construction is to select a subset {ϕ̃1,k, k ∈ I1} such that all ϕ̃1,k are well-enough
approximated by linear combinations of the functions in the subset. This can be seen as the equivalent of the
decimation of a set of scaling functions in the classical discrete wavelet transform. Coifman and Maggioni used a
greedy approach to build the set I1 iteratively by using a modified Gram-Schmidt orthogonalization procedure.10

The subset {ϕ̃1,k, k ∈ I1} spans a subspace V1 which is the first approximation subspace of the multi-resolution

analysis. We will thus denote {ϕ̃1,k, k ∈ I1} as Φ1, where Φ1 is by definition a basis of V1 that is generally not
orthogonal. The vectors in Φ1 are the scaling functions at scale 1.

In order to define the next scales of scaling functions, we consider the restriction of the diffusion operator to
V1. The latter can be represented in Φ1 as

[T]Φ1

Φ1
= [I]Φ1

Φ0
[T]Φ0

Φ0
[I]Φ0

Φ1
.

where [I]Φ1

Φ0
represents the restriction of the signal space V0 to V1 (with bases Φ0 and Φ1) and [I]Φ1

Φ0
represents

the embedding of V1 in V0.

The next approximation space V2 ⊂ V1 and its basis Φ2 can be obtained in the same way as the definition of
V1 and its basis Φ1 except that we now consider the operator T2 restricted to V1 instead of T in V0. The columns
of [T2]Φ1

Φ1
= ([T]Φ1

Φ1
)2 can be interpreted as scaling functions at scale 2, Φ̃2 = {ϕ̃2,k}, represented in the basis Φ1.

From these functions we extract a subset Φ2 = {ϕ̃2,k, k ∈ I2} such that any function in Φ̃2 is well-approximated
by a linear combination of functions of Φ2.

After j iterations of this procedure we have defined j approximation subspaces Vj ⊂ Vj−1 ⊂ · · · ⊂ V1 with
corresponding bases Φj ,Φj−1, . . . ,Φ1. At each step the basis Φj is defined by its representation in the basis Φj−1

based on the restriction of the operator T2j to Vj−1. In order to represent these functions in the original basis
Φ0 of V0 we can use

[Φj ]Φ0
= [I]Φ0

Φj
= [I]Φ0

Φ0
[I]Φ0

Φ1
· · · [I]Φj−2

Φj−1
[I]

Φj−1

Φj
. (7)

Since every function in Φ0 is defined on V0, so is every function on Φj . Hence any function in the approximation
space Vj can be extended naturally to the whole space V0.

Regarding the construction of the wavelets, the wavelet bases Ψj for the subspaces Wj are built similarly to

the scaling functions by selecting a subset of the columns of [IVj
−Φj+1Φ

†
j+1]

Φj

Φj
which is the orthogonal projector

on the complement of Vj+1 into Vj . The wavelets capture the detail lost from going from Vj to Vj+1.



6.3 A generalization using more arbitrary scaling operators

We propose a generalization of the diffusion wavelet framework that enables it to be combined for instance with
the wavelet construction presented in section 5. The idea is merely to replace the powers of T as multiresolution
scaling operators by more arbitrary low-pass filters. More precisely, where the operator T2j is used to define the
approximation space Vj+1 in section 6.2.1, we propose to use instead a low-pass graph filter Hj . If the graph
filters Hj correspond to the scaling operators of section 5.1 with appropriately increasing scales, this approach
provides a way to reduce the redundancy of the sets of scaling functions. Similarly, the same approach could be
used to reduce the redundancy of the wavelet functions defined in section 5.2.

7. EXAMPLE

In this section, we illustrate the proposed multi-resolution construction on directed graphs, in the case of the
directed ring graph. We compare the orthogonal and bi-orthogonal construction of scaling functions and wavelets.

7.1 Multiresolution on the directed ring graph

We consider the directed ring graph C = (VC , EC) where VC is the vertex set EC , the edge set and |VC | = n. This
graph has an adjacency matrixC. The random walk operator on C is P = C. The matrix P is diagonalizable with
P = DFTnΛDFT∗

n. DFTn is the discrete Fourier transform matrix and Λ = diag(λ1, · · · , λn), the eigenvalue
matrix where λk = e−2iπk/n. The Markov chain characterized by the random walk operator P is periodic. By
this periodicity property, we are not able to obtain a unique limiting distribution π, necessary condition for our
framework.

In order to break the periodicity of the random walk on this very specific graph, we consider a lazy random
walk by adding self loops on the vertices of C. Formally, that amounts to consider P̃ = 1

2 (I+P). This choice of

adding self loops has no impact on the Fourier basis but only on the eigenvalues where λ̃k = 1
2 (1 + λk), for all

k, where Λ̃ = diag(λ̃1, · · · , λ̃n) is the eigenvalue matrix of P̃.

The associated frequency ωk yields:

ωk = 1−Re(λ̃k) =
1

2
(1− cos

2kπ

n
).

We are able to construct the low pass graph filter H as defined in the previous sections.

H = DFTnh(Ω)DFT∗
n.

where Ω = diag(ω1, · · · , ωn) and h : R → [0, 1] a function such that h(ωk) = cos 2kπ
n for all k.

We are able to apply the diffusion wavelet framework in the orthogonal and bi-orthogonal version, starting
from the graph filter H on directed ring graph. The number of scales of the multi-resolution is equal to 10. We
consider the powers H2j .

We illustrate the two constructions by comparing the scaling functions and the wavelets at different scales.
The figure 1 shows some bi-orthogonal scaling functions and wavelets at the scale 1, 3 and 6 over 10, localized
at different vertices. They look like what is expected for scaling functions (low-pass aggregation functions) and
wavelets (localized oscillating functions).

The figure 2 shows the orthogonal scaling functions and wavelets also at the scale 1,3 and 6. At each scale,
we represent 3 or 4 scaling and wavelets functions, selected w.r.t the highest ℓ2-norm.

We note that at each scale, the support of bi-orthogonal scaling functions appear to be the same size whatever
the vertex it is localized around, while for orthogonal scaling functions the support changes and some functions
oscillate. This is due to the orthogonalization procedure. As the orthogonalization process proceeds, the scaling
functions newly created become a linear combination of an increasing number of the columns previously selected.
This yields to an extension of the support of the scaling functions unlike to the bi-orthogonal ones. Although
the orthogonal scaling and wavelets basis have more advantages in a numerical perspective (they are more stable
than bi-orthogonal ones), they show some shortcomings in terms of spatial and frequency localization.



50 100 150 200 250

0

0.2

0.4

0.6
Bi-orthogonal scaling functions at scale 1

50 100 150 200 250

-0.4

-0.2

0

0.2

0.4
Bi-orthogonal wavelets functions at scale 1

50 100 150 200 250

-0.1

0

0.1

0.2

0.3
Bi-orthogonal scaling functions at scale 3

50 100 150 200 250

-0.4

-0.2

0

0.2

0.4
Bi-orthogonal wavelets functions at scale 3

50 100 150 200 250

-0.05

0

0.05

0.1
Bi-orthogonal scaling functions at scale 6

50 100 150 200 250

-0.2

-0.1

0

0.1

0.2
Bi-orthogonal wavelets functions at scale 6

Figure 1. Bi-orthogonal scaling and wavelets functions at different scales.
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Figure 2. Orthogonal scaling and wavelets functions at different scales.



8. CONCLUSION

We have presented a general framework for constructing a multi-resolution analysis for functions defined over
directed graphs. By constructing a frequency analysis on directed graphs from the Dirichlet energy of the random
walk’s eigenfunctions, we can consider random walk’s eigenfunctions as Fourier basis for functions on directed
graphs. This Fourier basis has the feature for not being orthogonal. Using this random walk Fourier basis, we
have been able to build scaling and wavelets operators in the frequency domain and the directed graph wavelets
(plus the last scaling function) form a frame. We also have been able to extend the diffusion wavelet framework to
the directed graph setting, and we have illustrated the orthogonal and bi-orthogonal constructions on a directed
ring graph. We show by relaxing the orthogonal requirement to bi-orthogonal, we obtain scaling and wavelets
functions better localized and smaller support.
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