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Abstract

Online fuzzy expert systems can be used to process data and event
streams, providing a powerful way to handle their uncertainty and their in-
accuracy. Moreover, human experts can decide how to process the streams
with rules close to natural language. However, to extract high level infor-
mation from these streams, they need at least to describe the temporal
relations between the data or the events.

In this paper, we propose temporal operators which relies on the math-
ematical definition of some base operators in order to characterize trends
and drifts in complex systems. Formalizing temporal relations allows ex-
perts to simply describe the behaviors of a system which lead to a break
down or an ineffective exploitation. We finally show an experiment of
those operators on wind turbines monitoring.

1 Introduction

Complex systems are now equipped with hundreds of sensors which deliver con-
tinuous signals. Sensors provide either measurements at a dynamic or constant
sampling rate (i.e. data streams, e.g. connected thermometers), either events
whenever they are detected (i.e. event streams, e.g. presence detectors). Such
streams are generally processed, filtered and combined to get higher level infor-
mation. These operations can be applied to predictive maintenance of complex
systems.

Predictive maintenance consists in monitoring an engineering system in or-
der to detect changes in its exploitation and prevent damages. Having a con-
tinuous report of in-service systems allows an optimal use of it, the avoidance
of important damages and early-stage failure detection. Moreover, it changes
the organization of maintenance services by replacing scheduled and periodic
maintenance and by minimizing the involvement of operators.
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Artificial intelligence plays an important role in predictive maintenance [4]
and provides system-specific solutions : signal processing and statistical learn-
ing techniques have been successfully applied to obtain a type of damage or a
type of risk. Predictive maintenance mainly relies on data from process sensors
(temperature, pressure, etc.) and test sensors (vibration, acoustic, humidity,
etc.) [3]. In order to better handle the sensors inaccuracy and the uncertainty
in the assessment of the system’s state, fuzzy logic has been applied to predictive
maintenance [8, 12].

Our work consists in developing an online fuzzy expert system which can
take data or event streams as input. The goal is to reinforce the expressivity of
such systems to let experts author their own rules with complex fuzzy relations.
Gathering the knowledge of different experts can be a suitable approach to
predictive maintenance, avoiding some difficulties of the techniques described
formerly:

• no past data are needed to build the models;

• the decision can be explained through the trace of activated rules.

In the case of predictive maintenance, the rules consist in detecting patterns
in time-series which lead to a damage. Numerous authors [1, 2, 11] state tem-
poral relations are a prerequisite to describe such patterns. One can distinguish
different approaches. On the one hand, fuzzy temporal relations [2, 5, 10] can
be used to describe the temporality of events but are not always relevant for
online causal reasoning. On the other hand, some papers suggest to linguisti-
cally describe time-series [6, 7] using fuzzy natural logic, specifically on complete
time-series, i.e. in an offline way.

In this article, we remind 3 base fuzzy temporal relations which are then
combined into more complex relations. The compositional paradigm we use
allows to create new intuitive relations because they combined simple operators.
The new operators are the first of a series of temporal operators which can be
used to describe time-series. In our work, we make the following assumptions:

• sensors give correct timestamps: there is no uncertainty in the acquisi-
tion timestamps, but we take into account the vagueness in the relations
between the timestamps;

• sensors values are fuzzified to both manipulate linguistic terms and man-
age their inaccuracy.

The article is organized as follows: the next section presents the previous
work and the notations. The new temporal operators are described in section 3.
In section 4, we describe their use by an application to wind turbine predictive
maintenance. Finally, section 5 draws the conclusions and perspectives of this
work.
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2 Previous work

In our previous work, we introduced a compositional paradigm which consists in
deriving specialized operators from base operators in the temporal domain [9].
In this paper, we take advantage from these operators to build new temporal
ones for online characterization of time-series.

The temporal operators use two concepts to deal with event streams [9].
On the one hand, expiration is the faculty for a temporal expression to yell
that its value has expired and must be re-evaluated. On the other hand, they
are applied on a scope. A scope is a fuzzy set defined on a temporal domain,
anchored at the present moment, and whose membership function gives the
importance of a moment in this temporal domain. For instance, figure 1(c)
shows such a scope representing “the last 10 seconds”. Both concepts ensure a
satisfying computational cost and allow an online execution.

Let E be a fuzzy expression, eval(E, t) be the value of E at time t. Let S be
a fuzzy scope and µS its membership function. In the remainder of this paper,
we will use the following temporal operators:

• The occurrence operator which indicates if an expression has a degree of
fulfillment strictly greater than 0 throughout the scope :

Occ(E,S, tnow) =
∨

t∈supp(S)

eval(E, t) ∧ µS(t) (1)

When its value is strictly greater than 0, it means that at least at one
moment of the scope, the operand expression has been observed. It is a
disjunction over all the moments ti in the scope of conjunctions of the
operand value at time ti and the value of the scope membership function
for ti.

• The ratio operator which aggregates the different degrees of fulfillment of
the operand expression E throughout a scope S:

Ratio(E,S, tnow) =

∫
t∈supp(S)

eval(E, t) ∧ µS(t)∫
t∈supp(S)

µS(t)
(2)

It aggregates the different values of the operand E on the scope S, divided
by the area under the scope membership function. It is related to Zadeh’s
relative count applied on a fuzzy scope.

• The persistence operator which indicates if at each moment of S, the
degree of fulfillment of E is strictly greater than 0:

StrictPers(E,S, tnow) = ¬Occ(¬E,S, tnow). (3)

It equals 0 if there exists a moment ti in the scope S such as eval(E, ti) = 0.
This is why we called it “strict”. To moderate its definition, we can either
replace the Occ operator by the Ratio inside its definition, or simply use
Ratio instead of StrictPers.
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(a) Signal of Input1 (b) Signal of Input2 (c) Fuzzy scope for the last
10 seconds

Figure 1: Examples of two signals and a fuzzy scope

In the next section, we use these operators to define new temporal operators
to both characterize trends of time-series and to compare two of them. Adopting
an iterative approach, we first define the following operators and we will add
new ones when are not sufficient anymore.

3 Signal characterization operators

To illustrate the behavior of the operators, we introduce some examples of input
signals and parameters we will use throughout this section.

For the sake of comprehension, figures 1(a) and 1(b) show two simple simu-
lated signals. We will use these signals to illustrate the behavior of the operators
and in the section 4, we will use more realistic signals.

In the remainder of this section, without loss of generality, the operators
are defined upon the Ratio operator. As a consequence of the use of the Ratio
operator, those operators are considered tolerant. Thus, if at some moment
the input signal is changing for a short while, the direct effect of its change is
smoothed. If a more strict behavior is needed, it is possible to replace the Ratio
by the StrictPers operator.

3.1 Growth, decline and variation

In predictive maintenance, it is important to be able to characterize drifts of
some sensors, because it can lead to the detection of a damage. The goal here
is to monitor the growth or the decline of an input value with operators such
as:

input 〈adverb〉 decreases/increases throughout S.

where adverb is a fuzzy set which represents, for example, “slowly” or “signifi-
cantly” and S is a fuzzy scope.

To compute a degree of fulfillment for such relations, saving all the values in
the scope is not necessary. We chose instead to compute the gradient between
the two last samples and then to characterize its direction with a fuzzy set
corresponding to the adverb. The fuzzy set is thus defined on a quarter of
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(a) Examples of “slowly” and “signifi-
cantly” membership functions

(b) “Input1 significantly decreases
throughout the last 10 seconds”

Figure 2: Examples of membership functions for the adverbs of the Decreases
operator and result on Input 1
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(a) Examples of “slowly” and “signifi-
cantly” membership functions

(b) “Input1 significantly increases
throughout the last 10 seconds”

Figure 3: Examples of membership functions for the adverbs of the Increases
operator and result on Input 1

the trigonometric circle (top-right quadrant for the growth and bottom-right
quadrant for the decline). Figures 2(a) and 3(a) show an example of membership
functions for adverbs “slowly” and “significantly” applied respectively to the
decline and the growth operator.

To aggregate the characterizations of the gradient over the scope, we can
use the Ratio. Thus, the Decreases operator can be defined as:

Decreases(I, S, µg, tnow) = Ratio(µg(grad(I, tnow)), S, tnow) (4)

where I is the real input of the system whose values change, grad is the
direction of the gradient, and µg is the membership function of the adverb
fuzzy set.

The Increases operator only differs from the Decreases operator because
of the definition domain and the membership function of the adverb fuzzy set.
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(b) “Input1 varies fewly
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Figure 4: Examples of membership functions for the adverbs of the V aries
operator and results on Input 1

Figures 2(b) and 3(b) show respectively the result of operators Decreases
and Increases on the first input whose signal is shown in figure 1(a).

In a similar way, it is useful to be able to tell that the value of an input
remains stable over time, with an operator like:

input varies 〈adverb〉 throughout S

where adverb is a fuzzy set which represents, for instance, “fewly” or “highly”.
The definition of the V aries operator is based on the variance of its signal over
S and on a fuzzy set which defines the adverb by characterizing the variance.
The V aries operator is defined by:

V aries(I, S, µv, tnow) = Ratio(µv(V ar(I, supp(S))), S, tnow) (5)

where I is an input of the system whose value changes, V ar is the variance
of the signal I(t) over S and µv is the membership function of the adverb fuzzy
set.

Figures 4(b) and 4(c) show the results of the V aries operator on the first
input (see figure 1(a)), using respectively the adverbs “fewly” and “highly”
described in figure 4(a).

3.2 Comparison

The last family of operators in this article concerns comparison between two
input values throughout a scope; one of them can be a fixed value, for instance
a threshold. For instance, an expert may want to express that the signal of an
input is extremely less than another value:

input1 is 〈adverb〉 less/greater/close than/to input2 throughout S.

The idea behind these operators is to compare at each time the two values
and to characterize the difference between them with a fuzzy set (the adverb).
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Then, we aggregate the point-to-point comparisons with the Ratio operator.
Thus, we can define LessThan, GreaterThan , CloseTo as:

LessThan(I1, I2, S, µlt, tnow) = Ratio(µlt(I1(tnow)− I2(tnow)), S, tnow)(6)

GreaterThan(I1, I2, S, µgt, tnow) = Ratio(µgt(I1(tnow)− I2(tnow)), S, tnow)(7)

ClosteTo(I1, I2, S, µct, tnow) = Ratio(µct(I1(tnow)− I2(tnow)), S, tnow)(8)

where µlt, µgt and µct are the membership functions of the adverb fuzzy set
which characterizes the difference between the two signals I1(t) et I2(t). The
operators differ by the definition of the adverb fuzzy set.

Figure 5(b) shows the application of the GreaterThan operator on the input
signals shown in figures 1(a) and 1(b) with the adverb “much”(figure 5(a)).
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(a) Example of “much” mem-
bership function for a compar-
ison with GreaterThan

(b) “Input1 is much greater
than input2 throughout the
last 10 seconds”

Figure 5: Example of membership function for the adverb of the GreaterThan
operator and result on Input 1 and Input 2

4 Application to a drift detection

The goal of the presented work is to apply fuzzy expert systems to predictive
maintenance of complex systems. As illustration, we developed a specific soft-
ware for wind turbines. Figures 6 show some screenshots of our tool. It provides
an overview of the system (figure 6(a)) and can locate with a circle the suspected
default. The tiles on the left indicate the state of each sub-system of the wind
turbine : a green tile indicates it is fully functional while a red tile indicates a
critical state. By clicking on a tile, it is possible to access a more detailed view
(figure 6(b)) with the signals, the output of the fuzzy expert system, and the
rules with their activation which give an explanation of the decision contrarily
to other approaches.

In this paper, we focus on the characterization of one of the sub-systems:
the rotor-side multicellular converter. It occasionally suffers from drifts which
are clues that the energy production is not optimal. It consists of serial cells,
each one containing two switches with complementary values. The combination
of the values of all the switches in the converter defines a “mode”. Among the
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(a) Screenshot of the system overview (b) Screenshot of the detailed view

Figure 6: Screenshots of the application for windturbines

other variables, the dynamics of the converter is also described by V Ci which is
the floating voltage of the capacitors Ci of each cell. An instance of a controlled
drift of V Ci is shown in figure 7(a). According to the mode, the drift can be
detected or not. It results in the computation of the new signal V Ci residuals by
subtracting the mean reference value to V Ci according to the mode as defined
in [13] (figure 7(b)). Then, we defined a rule base for detecting such a drift
composed of:

• First, rules for defining the nominal values of the system. To compute that,
we wait for a steady state during at least 20 seconds and we compare the
actual values of the amplitude of V Ci residuals to the values provided by
the constructor.

• Then, rules for monitoring a drift and, according to its importance and
its duration, to yield a suitable level of alarm.

Figures 8 show the membership functions used to compare the amplitude
of V C1 residuals (figure 7(c)) to its reference value and different expressions
computed to detect the drift. Once the steady state has been observed, the
expression verifying that the amplitude of V Ci residuals is very close to the
reference value (figure 8(b)) is associated with a null alert (figure 9(a)), and
the one verifying that it is much higher than the reference value (figure 8(c))
is associated with a high alert. The defuzzified value of the alert is shown by
a black curve in figure 9(b). The drift is applied between 40 and 80 seconds.
It begins to be detected after only 15 seconds which is the delay necessary to
compute the Ratio operator on the chosen temporal scope. Then, the alert
value gradually rises until it reaches its maximum value 40 seconds afterward.

Monitoring a system with fuzzy temporal rules enables both to estimate a
continuous value of the output (an alert here) and to know which rules are
activated and led to the results. All the membership functions used as well
as temporal scopes have to be chosen according to the application in order to
characterize a normal or abnormal behavior of each sub-system. They can be
learned when sufficient data of sub-systems are available.
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(a) V C1 values (b) V C1 residuals (c) Amplitude of V C1 resid-
uals over 20 seconds

Figure 7: Input example for floating voltage of capacitor C1
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Figure 8: Examples of membership functions for comparing the amplitude of
V C1 residuals to the reference value and results of comparison operators
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Figure 9: Example of membership functions for alerting a drift detection and
application of detection rules on V C1 signal

5 Conclusion

In this article, we use a compositional paradigm to build new temporal oper-
ators to characterize the kinetics of input values. From simple and intuitive
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operators like the ratio and the persistence, the temporal aspect is easily han-
dled. These operators can take into account both the temporal uncertainty and
the vagueness of the relation between the values.

With such operators, online fuzzy expert systems can play an important
role in predictive maintenance or health monitoring. Experts can describe their
knowledge about the systems and describe the clues which lead to damage de-
tection from sensors signals. The decision making process can then be justified
to the user by tracing activated rules. Moreover, such expert systems are inde-
pendent of the system on which they are applied, contrary to statistical models
which are system-dependent.

The perspectives of our work is to formalize more operators which are suit-
able for predictive maintenance, like online operators to characterize the sea-
sonality or the periodicity of time-series.
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Congreso Español sobre Tecnoloǵıas y Lógica Fuzzy (ESTYLF). pp. 507–
514. Langreo (Spain) (2008)

[2] Dubois, D., Hadj Ali, A., Prade, H.: Fuzziness and uncertainty in temporal
reasoning. Journal of Universal Computer Science 9(9), 1168–1194 (2003)

[3] Hashemian, H.M., Bean, W.C.: State-of-the-art predictive maintenance
techniques. IEEE Transactions on Instrumentation and Measurement
60(10), 3480–3492 (Oct 2011)

[4] Kobbacy, K.A.H.: Artificial Intelligence in Maintenance, pp. 209–231.
Springer London, London (2008)

[5] Manaf, N.A.A., Beikzadeh, M.R.: Crisp-fuzzy representation of allen’s tem-
poral logic. In: Proceedings of the 25th Conference on Proceedings of the
25th IASTED International Multi-Conference: Artificial Intelligence and
Applications. pp. 174–179. AIAP’07, ACTA Press, Anaheim, CA, USA
(2007)

[6] Moyse, G., Lesot, M.J.: Linguistic summaries of locally periodic time series.
Fuzzy Sets and Systems 285, 94 – 117 (2016), special Issue on Linguistic
Description of Time Series

[7] Novák, V.: Linguistic characterization of time series. Fuzzy Sets and Sys-
tems 285, 52 – 72 (2016), special Issue on Linguistic Description of Time
Series

[8] Pereira, R.R., da Silva, V.A.D., Brito, J.N., Nolasco, J.D.: On-line moni-
toring induction motors by fuzzy logic: A study for predictive maintenance

10



operators. In: 2016 12th International Conference on Natural Computa-
tion, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). pp. 1341–
1346 (Aug 2016)

[9] Poli, J.P., Boudet, L., Mercier, D.: Online temporal reasoning for event
and data streams processing. In: FUZZ-IEEE 2016. pp. 2257–2264 (July
2016)

[10] Schockaert, S., De Cock, M., Kerre, E.E.: Fuzzifying allen’s temporal in-
terval relations. Trans. Fuz Sys. 16(2), 517–533 (Apr 2008)

[11] Schockaert, S., Cock, M.D., Kerre, E.: Reasoning About Fuzzy Temporal
and Spatial Information from the Web, Intelligent Information Systems,
vol. 3. World Scientific (2010)

[12] da Silva Vicente, S.A., Fujimoto, R.Y., Padovese, L.R.: Rolling bearing
fault diagnostic system using fuzzy logic. In: 10th IEEE International Con-
ference on Fuzzy Systems. vol. 2, pp. 816–819 vol.3 (Dec 2001)

[13] Toubakh, H., Sayed-Mouchaweh, M.: Hybrid dynamic classifier for drift-
like fault diagnosis in a class of hybrid dynamic systems: Application to
wind turbine converters. Neurocomputing 171, 1496 – 1516 (2016)

11


