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Online fuzzy temporal operators for complex system monitoring

Online fuzzy expert systems can be used to process data and event streams, providing a powerful way to handle their uncertainty and their inaccuracy. Moreover, human experts can decide how to process the streams with rules close to natural language. However, to extract high level information from these streams, they need at least to describe the temporal relations between the data or the events.

In this paper, we propose temporal operators which relies on the mathematical definition of some base operators in order to characterize trends and drifts in complex systems. Formalizing temporal relations allows experts to simply describe the behaviors of a system which lead to a break down or an ineffective exploitation. We finally show an experiment of those operators on wind turbines monitoring.

Introduction

Complex systems are now equipped with hundreds of sensors which deliver continuous signals. Sensors provide either measurements at a dynamic or constant sampling rate (i.e. data streams, e.g. connected thermometers), either events whenever they are detected (i.e. event streams, e.g. presence detectors). Such streams are generally processed, filtered and combined to get higher level information. These operations can be applied to predictive maintenance of complex systems.

Predictive maintenance consists in monitoring an engineering system in order to detect changes in its exploitation and prevent damages. Having a continuous report of in-service systems allows an optimal use of it, the avoidance of important damages and early-stage failure detection. Moreover, it changes the organization of maintenance services by replacing scheduled and periodic maintenance and by minimizing the involvement of operators.

Artificial intelligence plays an important role in predictive maintenance [START_REF] Kobbacy | Artificial Intelligence in Maintenance[END_REF] and provides system-specific solutions : signal processing and statistical learning techniques have been successfully applied to obtain a type of damage or a type of risk. Predictive maintenance mainly relies on data from process sensors (temperature, pressure, etc.) and test sensors (vibration, acoustic, humidity, etc.) [START_REF] Hashemian | State-of-the-art predictive maintenance techniques[END_REF]. In order to better handle the sensors inaccuracy and the uncertainty in the assessment of the system's state, fuzzy logic has been applied to predictive maintenance [START_REF] Pereira | On-line monitoring induction motors by fuzzy logic: A study for predictive maintenance operators[END_REF][START_REF] Da Silva Vicente | Rolling bearing fault diagnostic system using fuzzy logic[END_REF].

Our work consists in developing an online fuzzy expert system which can take data or event streams as input. The goal is to reinforce the expressivity of such systems to let experts author their own rules with complex fuzzy relations. Gathering the knowledge of different experts can be a suitable approach to predictive maintenance, avoiding some difficulties of the techniques described formerly:

• no past data are needed to build the models;

• the decision can be explained through the trace of activated rules.

In the case of predictive maintenance, the rules consist in detecting patterns in time-series which lead to a damage. Numerous authors [START_REF] Barro | Fuzzy temporal rule-based systems: New challenges[END_REF][START_REF] Dubois | Fuzziness and uncertainty in temporal reasoning[END_REF][START_REF] Schockaert | Reasoning About Fuzzy Temporal and Spatial Information from the Web[END_REF] state temporal relations are a prerequisite to describe such patterns. One can distinguish different approaches. On the one hand, fuzzy temporal relations [START_REF] Dubois | Fuzziness and uncertainty in temporal reasoning[END_REF][START_REF] Manaf | Crisp-fuzzy representation of allen's temporal logic[END_REF][START_REF] Schockaert | Fuzzifying allen's temporal interval relations[END_REF] can be used to describe the temporality of events but are not always relevant for online causal reasoning. On the other hand, some papers suggest to linguistically describe time-series [START_REF] Moyse | Linguistic summaries of locally periodic time series[END_REF][START_REF] Novák | Linguistic characterization of time series[END_REF] using fuzzy natural logic, specifically on complete time-series, i.e. in an offline way.

In this article, we remind 3 base fuzzy temporal relations which are then combined into more complex relations. The compositional paradigm we use allows to create new intuitive relations because they combined simple operators. The new operators are the first of a series of temporal operators which can be used to describe time-series. In our work, we make the following assumptions:

• sensors give correct timestamps: there is no uncertainty in the acquisition timestamps, but we take into account the vagueness in the relations between the timestamps;

• sensors values are fuzzified to both manipulate linguistic terms and manage their inaccuracy.

The article is organized as follows: the next section presents the previous work and the notations. The new temporal operators are described in section 3. In section 4, we describe their use by an application to wind turbine predictive maintenance. Finally, section 5 draws the conclusions and perspectives of this work.

Previous work

In our previous work, we introduced a compositional paradigm which consists in deriving specialized operators from base operators in the temporal domain [START_REF] Poli | Online temporal reasoning for event and data streams processing[END_REF]. In this paper, we take advantage from these operators to build new temporal ones for online characterization of time-series.

The temporal operators use two concepts to deal with event streams [START_REF] Poli | Online temporal reasoning for event and data streams processing[END_REF]. On the one hand, expiration is the faculty for a temporal expression to yell that its value has expired and must be re-evaluated. On the other hand, they are applied on a scope. A scope is a fuzzy set defined on a temporal domain, anchored at the present moment, and whose membership function gives the importance of a moment in this temporal domain. For instance, figure 1(c) shows such a scope representing "the last 10 seconds". Both concepts ensure a satisfying computational cost and allow an online execution.

Let E be a fuzzy expression, eval(E, t) be the value of E at time t. Let S be a fuzzy scope and µ S its membership function. In the remainder of this paper, we will use the following temporal operators:

• The occurrence operator which indicates if an expression has a degree of fulfillment strictly greater than 0 throughout the scope :

Occ(E, S, t now ) = t∈supp(S) eval(E, t) ∧ µ S (t) (1) 
When its value is strictly greater than 0, it means that at least at one moment of the scope, the operand expression has been observed. It is a disjunction over all the moments t i in the scope of conjunctions of the operand value at time t i and the value of the scope membership function for t i .

• The ratio operator which aggregates the different degrees of fulfillment of the operand expression E throughout a scope S:

Ratio(E, S, t now ) = t∈supp(S) eval(E, t) ∧ µ S (t) t∈supp(S) µ S (t) (2) 
It aggregates the different values of the operand E on the scope S, divided by the area under the scope membership function. It is related to Zadeh's relative count applied on a fuzzy scope.

• The persistence operator which indicates if at each moment of S, the degree of fulfillment of E is strictly greater than 0:

StrictP ers(E, S, t now ) = ¬Occ(¬E, S, t now ). (3) 
It equals 0 if there exists a moment t i in the scope S such as eval(E, t i ) = 0. This is why we called it "strict". To moderate its definition, we can either replace the Occ operator by the Ratio inside its definition, or simply use Ratio instead of StrictP ers. In the next section, we use these operators to define new temporal operators to both characterize trends of time-series and to compare two of them. Adopting an iterative approach, we first define the following operators and we will add new ones when are not sufficient anymore.

Signal characterization operators

To illustrate the behavior of the operators, we introduce some examples of input signals and parameters we will use throughout this section.

For the sake of comprehension, figures 1(a) and 1(b) show two simple simulated signals. We will use these signals to illustrate the behavior of the operators and in the section 4, we will use more realistic signals.

In the remainder of this section, without loss of generality, the operators are defined upon the Ratio operator. As a consequence of the use of the Ratio operator, those operators are considered tolerant. Thus, if at some moment the input signal is changing for a short while, the direct effect of its change is smoothed. If a more strict behavior is needed, it is possible to replace the Ratio by the StrictP ers operator.

Growth, decline and variation

In predictive maintenance, it is important to be able to characterize drifts of some sensors, because it can lead to the detection of a damage. The goal here is to monitor the growth or the decline of an input value with operators such as:

input adverb decreases/increases throughout S.
where adverb is a fuzzy set which represents, for example, "slowly" or "significantly" and S is a fuzzy scope.

To compute a degree of fulfillment for such relations, saving all the values in the scope is not necessary. We chose instead to compute the gradient between the two last samples and then to characterize its direction with a fuzzy set corresponding to the adverb. The fuzzy set is thus defined on a quarter of the trigonometric circle (top-right quadrant for the growth and bottom-right quadrant for the decline). Figures 2(a) and 3(a) show an example of membership functions for adverbs "slowly" and "significantly" applied respectively to the decline and the growth operator.

To aggregate the characterizations of the gradient over the scope, we can use the Ratio. Thus, the Decreases operator can be defined as:

Decreases(I, S, µ g , t now ) = Ratio(µ g (grad(I, t now )), S, t now ) ( 4 
)
where I is the real input of the system whose values change, grad is the direction of the gradient, and µ g is the membership function of the adverb fuzzy set.

The Increases operator only differs from the Decreases operator because of the definition domain and the membership function of the adverb fuzzy set. In a similar way, it is useful to be able to tell that the value of an input remains stable over time, with an operator like: input varies adverb throughout S where adverb is a fuzzy set which represents, for instance, "fewly" or "highly". The definition of the V aries operator is based on the variance of its signal over S and on a fuzzy set which defines the adverb by characterizing the variance. The V aries operator is defined by: V aries(I, S, µ v , t now ) = Ratio(µ v (V ar(I, supp(S))), S, t now ) [START_REF] Manaf | Crisp-fuzzy representation of allen's temporal logic[END_REF] where I is an input of the system whose value changes, V ar is the variance of the signal I(t) over S and µ v is the membership function of the adverb fuzzy set.

Figures 4(b) and 4(c) show the results of the V aries operator on the first input (see figure 1(a)), using respectively the adverbs "fewly" and "highly" described in figure 4(a).

Comparison

The last family of operators in this article concerns comparison between two input values throughout a scope; one of them can be a fixed value, for instance a threshold. For instance, an expert may want to express that the signal of an input is extremely less than another value: input1 is adverb less/greater/close than/to input2 throughout S.

The idea behind these operators is to compare at each time the two values and to characterize the difference between them with a fuzzy set (the adverb).

Then, we aggregate the point-to-point comparisons with the Ratio operator. Thus, we can define LessT han, GreaterT han , CloseT o as:

LessT han(I 1 , I 2 , S, µ lt , t now ) = Ratio(µ lt (I 1 (t now ) -I 2 (t now )), S, t now ) (6)

GreaterT han(I 1 , I 2 , S, µ gt , t now ) = Ratio(µ gt (I 1 (t now ) -I 2 (t now )), S, t now ) (7)

ClosteT o(I 1 , I 2 , S, µ ct , t now ) = Ratio(µ ct (I 1 (t now ) -I 2 (t now )), S, t now ) [START_REF] Pereira | On-line monitoring induction motors by fuzzy logic: A study for predictive maintenance operators[END_REF] where µ lt , µ gt and µ ct are the membership functions of the adverb fuzzy set which characterizes the difference between the two signals I 1 (t) et I 2 (t). The operators differ by the definition of the adverb fuzzy set. 4 Application to a drift detection

The goal of the presented work is to apply fuzzy expert systems to predictive maintenance of complex systems. As illustration, we developed a specific software for wind turbines. Figures 6 show some screenshots of our tool. It provides an overview of the system (figure 6(a)) and can locate with a circle the suspected default. The tiles on the left indicate the state of each sub-system of the wind turbine : a green tile indicates it is fully functional while a red tile indicates a critical state. By clicking on a tile, it is possible to access a more detailed view (figure 6(b)) with the signals, the output of the fuzzy expert system, and the rules with their activation which give an explanation of the decision contrarily to other approaches.

In this paper, we focus on the characterization of one of the sub-systems: the rotor-side multicellular converter. It occasionally suffers from drifts which are clues that the energy production is not optimal. It consists of serial cells, each one containing two switches with complementary values. The combination of the values of all the switches in the converter defines a "mode". Among the other variables, the dynamics of the converter is also described by V C i which is the floating voltage of the capacitors C i of each cell. An instance of a controlled drift of V C i is shown in figure 7(a). According to the mode, the drift can be detected or not. It results in the computation of the new signal V C i residuals by subtracting the mean reference value to V C i according to the mode as defined in [START_REF] Toubakh | Hybrid dynamic classifier for driftlike fault diagnosis in a class of hybrid dynamic systems: Application to wind turbine converters[END_REF] (figure 7(b)). Then, we defined a rule base for detecting such a drift composed of:

• First, rules for defining the nominal values of the system. To compute that, we wait for a steady state during at least 20 seconds and we compare the actual values of the amplitude of V C i residuals to the values provided by the constructor.

• Then, rules for monitoring a drift and, according to its importance and its duration, to yield a suitable level of alarm.

Figures 8 show the membership functions used to compare the amplitude of V C 1 residuals (figure 7(c)) to its reference value and different expressions computed to detect the drift. Once the steady state has been observed, the expression verifying that the amplitude of V C i residuals is very close to the reference value (figure 8(b)) is associated with a null alert (figure 9(a)), and the one verifying that it is much higher than the reference value (figure 8(c)) is associated with a high alert. The defuzzified value of the alert is shown by a black curve in figure 9(b). The drift is applied between 40 and 80 seconds. It begins to be detected after only 15 seconds which is the delay necessary to compute the Ratio operator on the chosen temporal scope. Then, the alert value gradually rises until it reaches its maximum value 40 seconds afterward.

Monitoring a system with fuzzy temporal rules enables both to estimate a continuous value of the output (an alert here) and to know which rules are activated and led to the results. All the membership functions used as well as temporal scopes have to be chosen according to the application in order to characterize a normal or abnormal behavior of each sub-system. They can be learned when sufficient data of sub-systems are available. 

Conclusion

In this article, we use a compositional paradigm to build new temporal operators to characterize the kinetics of input values. From simple and intuitive operators like the ratio and the persistence, the temporal aspect is easily handled. These operators can take into account both the temporal uncertainty and the vagueness of the relation between the values. With such operators, online fuzzy expert systems can play an important role in predictive maintenance or health monitoring. Experts can describe their knowledge about the systems and describe the clues which lead to damage detection from sensors signals. The decision making process can then be justified to user by tracing activated rules. Moreover, such expert systems are independent of the system on which they are applied, contrary to statistical models which are system-dependent.

The perspectives of our work is to formalize more operators which are suitable for predictive maintenance, like online operators to characterize the seasonality or the periodicity of time-series.
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 5 b) shows the application of the GreaterT han operator on the input signals shown in figures 1(a) and 1(b) with the adverb "much"(figure 5(a)).
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