N

N
N

HAL

open science

Privacy Compliance via Model Transformations

Thibaud Antignac, Riccardo Scandariato, Gerardo Schneider

» To cite this version:

Thibaud Antignac, Riccardo Scandariato, Gerardo Schneider (Dir.). Privacy Compliance via Model

Transformations. In press. cea-01809076

HAL Id: cea-01809076
https://cea.hal.science/cea-01809076
Submitted on 6 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://cea.hal.science/cea-01809076
https://hal.archives-ouvertes.fr

Privacy Compliance via Model Transformations

Thibaud Antignac
French Atomic Energy Commission
Paris, France
Email: thibaud.antignac @cea.fr

Abstract—Due to the upcoming, more restrictive regulations
(like the European GDPR), designing privacy preserving ar-
chitectures for information systems is becoming a pressing
concern for practitioners. In particular, verifying that a design
is compliant with the regulations might be a challenging task
for engineers. This work presents an approach based on model
transformations, which guarantee that an architectural design
encompasses regulation-oriented principles such as purpose
limitation, or accountability of the data controller. Our work
improves the state of the art along two main dimensions. The
approach we propose (i) embeds privacy principles coming
from regulations, thus helping to bridge the gap between the
technical and the legal worlds, (ii) systematize the embedding of
the privacy principles coming from regulations, thus enabling
a constructive approach to privacy by design.

Keywords-privacy-by-design; GDPR; MDE;

I. INTRODUCTION

The upcoming European privacy regulation, the General
Data Protection Regulation (GDPR), illustrates well how
companies will be more and more subject to stringent obliga-
tions when it comes to user privacy in their digital products
and services. Online systems will need to be designed with
privacy in mind from the ground up (the so-called privacy by
design approach), privacy risk assessment will be mandatory
in most cases, and sanctions for data breaches will get
tougher.

On one hand, development teams are required to think
about privacy from the very beginning of each software
development project. On the other hand, the obligations
stated in the regulations cannot be easily translated into
technical solutions, it is hard for engineers to assess whether
a technical design is compliant with the law, and embedding
a lawyer in each software project is downright impractical.
Therefore, we identify the need to bridge the gap between
the two worlds of the technical design and the privacy
regulations, so that engineers would be more easily able to
tackle the concerns related to privacy and the compliance to
the law.

To this aim, this paper starts from the premise that Data
Flow Diagrams (DFDs), boxes-and-arrows models, are often
used during the conceptualization of digital systems, i.e.,
during the early phases of the software design. Further,
DFDs are commonly used to analyze security and privacy
issues of software systems [1], [2]. At the syntactical level,

Riccardo Scandariato
University of Gothenburg
Gothenburg, Sweden
Email: riccardo.scandariato@cse.gu.se

Gerardo Schneider
University of Gothenburg
Gothenburg, Sweden
Email: gerardo@cse.gu.se

we extend the DFD notation to include a few key privacy
concepts like the fact that some data is related to the users
(and hence is privacy relevant) or that data is processed
for a certain purpose, like marketing rather than service
provisioning.

This minimal level of annotation on top of a business-
oriented data flow diagram is used to identify the parts
(i.e., hotspots) of the design model that are impacted by the
principles stated in the regulations (and as an exemplification
we refer to the GDPR). Such hotspots in the design are
systematically transformed and, as a result, a more elabo-
rated, privacy-aware data flow diagram (PA-DFD) is created
automatically. In essence, we propose an approach to embed
privacy principles in a software design by construction and
by means of model-to-model transformations, which assure
compliance with the recommendations of, e.g., the GDPR
regulation. In future work, the semantic of the PA-DFD
elements will be formally defined and we will provide the
necessary formal proofs to show that the transformations
preserve the business functionality and, at the same time,
provide support for the intended privacy properties. How-
ever, this formal layer is hidden to the software designer.
In summary, this approach represents an attempt to make
it approachable to incorporate privacy principles into a
software design, even for ‘regular’ designers without neither
a formal nor privacy background.

This work follows the European GDPR as a guideline, as
it is more restrictive and, hence, more challenging for prac-
titioners than other regulations. Clearly, a regulation like the
GDPR is quite extensive. Therefore, this work necessarily
focuses on a subset of the privacy principles therein outlined.
In particular, we address the principles of purpose limitation
of the personal data processing, accountability of the data
controller, user right to erasure, and time-limited retention
of personal data.

The rest of this paper is organized as follows. In Section II
we describe the proposed approach, in Section III introduce
the notation, and in Section IV describe the model transfor-
mations. In Section V we discuss the related work. Finally,
in Section VI we present the conclusive remarks.

creates
- & 1T
N
It

Business-oriented Personal data flows
DFD classification

automatically
1 analyzed

Software
architect

automatically
transformed

Y "=

Privacy-aware
DFD

Transformations

Hotspots

Figure 1. The privacy-by-construction approach proposed in this paper.

II. AN OVERVIEW OF THE PROPOSED APPROACH

Figure 1 illustrates the approach proposed in this paper.
The designer (e.g., software architect) creates a model of
the system using the DFD notation described in Section III
and provides the classification of the data flows as personal
and non-personal. The model is analyzed and all the privacy-
sensitive operations are automatically identified as ‘hotspots’
in the model. There are 6 types of hotspots, which are
described in Section IV-A. In these locations, the appro-
priate model transformations are injected. As described in
Section IV-B, there is a specific transformation for each type
of hotspot. The transformations guarantee that the resulting
augmented model upholds important privacy properties by
construction. The properties are explicitly mentioned in the
GDPR and require, for instance, that (i) personal information
is processed according to the purpose specified in the user
consent, (ii) the system actions are accountable via event
logging, and (iii) personal information is disposed after the
retention time has expired or upon user request, and so on.
Clearly, we cannot address all the provisions mentioned in
the legislation. Rather, we focus on a selection of funda-
mental properties that can be enforced at a technical level.
Further, in this paper we do not address the automation
aspects related to identifying the hotspots and applying the
transformations, which is subject to future work.

III. BUSINESS-ORIENTED DFD

A data flow diagram (DFD) is used to represent a digital
system as a composition of functional parts that collaborate
in order to deliver the business service to the intended user.
As shown at the bottom of Figure 2, DFDs are composed
of two sorts of elements, which are activators and flows.
The activators can be external entities lying outside of
the digital system (like end users and 3rd party systems),
processes denoting the high-level computation applied to
the data in the system (e.g., in a sub-system or in a soft-
ware component), and data stores representing the locations
where the data is stored. Processes can be complex, meaning

credentials

Login and
Session
validation

Catalog
view

Catalog

catalog items

data i ref
Process Complex pata 3 *
entity process store Data flow |!

External

Standard notation Extension

Figure 2. Example of a business-oriented DFD. The ‘data deletion’ element
is an extension to the standard DFD notation.

that they represent a complex functionality that is detailed
in an additional DFD. This mechanism allows for model
refinement. Finally, data is exchanged among the above-
mentioned elements by means of data flows.

We extend the standard notation by adding a second type
of flow, called data deletion. 1t is used as an incoming flow
for data stores and representing the deletion of previously
stored data, whose reference is mentioned in the flow.

Composition of these elements must obey to well-
formedness rules that preserve the consistency of the dia-
gram [3]. For instance, there cannot be any isolated element
and each flow must start from or end at a process, i.e., there
cannot be a direct data flow between two external entities
or between two data stores. Also, both processes and data
stores must have at least a flow in and a flow out.

The example in Figure 2 shows an online shop that allows
customers (external entity) to browse a catalog of product
items, which is populated by an administrator (also an
external entity). In order to access the system functionality,
customers must first register via a management subsystem
and provide some personal information, including their
chosen credentials. Then, customers must login and obtain
a session ID, which is used as a means of identification for
any subsequent interaction.

Next to the DFD, the software architect must identify
which data flow is carrying personal data. In Figure 1, this
is referred to as the ‘personal data flows classification’. For
instance, in the example of Figure 2, the ‘registration info’
flows are certainly to be considered as personal (as well as
‘session id’ and ‘credentials’). For each personal data flow,
the architect must provide the following information: (i) the
data subject (i.e., external entity) to whom the personal data
belongs to, (ii) the purpose for the flow (to be checked
against the user consents), and (iii) the retention time for the

Table I
PRIVACY PROPERTIES ENFORCED AT EACH HOTSPOT (PART 1).

Privacy properties

Purpose limitation. Personal data can be collected only if the current
consent given by the data subject (external entity) covers the purpose
of this collection.

Accountability. Personal data can be collected only if this collection
is logged.

Right to change. At any moment, a data subject can request to change
their current consent for what concerns the purpose of collection of
their personal data.

Collection

Purpose limitation. Personal data can be disclosed only if the current
consent given by the data subject covers the purpose of this disclosure.
Accountability. Personal data can be disclosed only if this disclosure
is logged.

Policy propagation. Personal data can be disclosed only if the
purpose mentioned in the current consent (and retention time if
applicable) for collection, disclosure, usage, recording, retrieval, and
erasure is propagated.

Right to change. At any moment, a data subject can request to change
their current consent for what concerns the purpose of disclosure of
their personal data.

Disclosure

Purpose limitation. Personal data can be used only if the current
consent given by the data subject covers the purpose of this usage.
Accountability. Personal data can be used only if this usage is logged.
Right to change. At any moment, a data subject can request to change
their current consent for what concerns the purpose of usage of their
personal data.

Usage

personal data. As explained later, this information is used to
guide the identification of the hotspot and the transformation
of the model.

IV. MODEL TRANSFORMATIONS

Effective model transformations require to identify where
they should be performed. As a consequence, we first iden-
tify privacy hotspots before applying the transformations.

A. Privacy Hotspots

A conceptual model of privacy-sensitive operations with
regard to personal data processing has been defined by
Antignac et al. [4]. As shown on the left-hand side of
Figure 3, there are six operations in total, which correspond
to a step of the personal data life-cycle as described in
the regulations: data collection, disclosure, usage, recording,
retrieval, and erasure. These are considered hotspots for
potential privacy violations. As such, the model needs to be
modified at each hotspot so that certain privacy properties
are entailed by construction. Hence, the privacy hotspots
are the target of pre-defined model transformations. The
privacy properties of interest for each hotspot are listed and
described in Tables I and II. These properties are derived
from the GDPR, which is the reference regulation in this
work.

Finally, note that though the identification of the hotspots
in a DFD to be automated is a relatively easy task (it reduces
to matching the patterns sketched in Figure 3—Ileft-hand
side), the definition of what would be a good target model is

Hotspots Transformations
@ :
d,pol
External d External

entity entity Log

pol

Collection

d External External

entity entity

Disclosure

d ® d,pol @ d',pol /L:g\ o
o)

(

d'pol
d a
@ . =

pol

P

pol

d
—> Data

Recording

Data —9%»

Retrieval

m ref,pol m ref
e Limit

Log Data

f
—%>¢ Data

Erasure

~ @@

Figure 3. Privacy-sensitive parts (i.e., hotspots) of a DFD and correspond-
ing privacy-aware transformations.

not. Some of the sources for this not being trivial are: i) The
Process element needs to be split into different “subtypes”
to better capture the flow in a private way; ii) A “priority”
between flows needs to be added, again to enforce that
certain privacy principles are respected; iii) Besides “pre-
serving” the functionality of the original DFD, the generated

Table II
PRIVACY PROPERTIES ENFORCED AT EACH HOTSPOT (PART 2).

Privacy properties

Purpose limitation. Personal data can be recorded only if the current
consent given by the data subject covers the purpose of this recording.
Time retention. Personal data can be retained as recorded only if the
current retention time given by the data subject has not expired.
Accountability. Personal data can be recorded only if this recording
is logged.

Right to change. At any moment, a data subject can request to change
their current consent for what concerns the purpose and retention of
recording of their personal data.

Right to erasure. At any moment, a data subject can request to erase
their personal data.

Recording

Purpose limitation. Personal data can be retrieved only if the current
consent given by the data subject covers the purpose of this retrieval.
Accountability. Personal data can be retrieved only if this retrieval
is logged.

Right to change. At any moment, a data subject can request to change
their current consent for what concerns the purpose of retrieval of
their personal data.

Retrieval

Purpose limitation. Personal data can be erased only if the current
consent given by the data subject covers the purpose of this erasure.
Accountability. Personal data can be erased only if this erasure is
logged.

Right to change. At any moment, a data subject can request to change
their current consent for what concerns the purpose of erasure of their
personal data.

Erasure

privacy-aware DFDs need to be enhanced with additional
management and private structures, including logs, policy
flows, and additional checks. Briefly, the transformation is
the consequence of a careful thought on how to add privacy
issues and accountability while preserving the underlying
semantics of the original DFD. In the figure, ‘d’ is a personal
data in the data flows classification and ‘ref’ is a reference
to a piece of data.

B. Model Transformations and Privacy-Aware DFD

The model-to-model transformations on the right-hand
side of Figure 3 transform a business-oriented DFD (source
model) into a privacy-aware DFD (target model). In sum-
mary, there are two main differences in the privacy-aware
DFD w.r.t. the description of DFDs given earlier in Sec-
tion III. First, we define five subtypes for the process
element: Limit, Reason, Request, Log and Clean. Second,
processes can be decorated with a label (‘p’) indicating that
the process has to be executed before non-priority processes
in order to preserve the privacy properties. In this figure,
‘pol’ is a policy related to data ‘d’.

The transformations have many common elements. First,
a Limit process is always the first step through which
the personal data d should flow. This process limits data
processing to the purposes that the data subject of d has
given their consent. This, in turn, requires a policy pol to
have been given beforehand thanks to a Request process in
order to be able to perform this limitation. Another common
part of the transformations is the Log process. It is used to

log in the Log store a trace of the data processing on d in the
context of its pol. The personal data is then let flow towards
the rest of the data flow.

While relying on the common elements described above,
each transformation also has its specificities. A collection
receives the personal data d and its corresponding policy pol
(e.g., a consent) from an External entity and forwards them
to the next processing after application of the Request, Limit,
and Log processes as described previously. A disclosure
can be seen as the dual of a collection since it takes
both the personal data d and its corresponding policy pol
and forwards them to an External entity. A usage takes
the personal data d and its corresponding policy pol from
the system to apply to them the Process process to get a
computed data d’ and the Reason process to get an updated
policy pol’ corresponding to d’. These operations are also
mixed with the common pattern before d’ and its pol’ are
forwarded to the next operation. A recording takes the
personal data d and its policy pol and stores them in a
Data store and in a Policy store, respectively. Additionally,
a Clean process ensures that the personal data d (with
reference ref) is erased from the Data store, when required
by pol. This happens notably when the consent given by
the data subject of d changes and is no longer valid or
when the current retention time of d has expired. A retrieval
takes the personal data d and pol from a Data store and a
Policy store and forwards them to the rest of the system after
application of the common pattern of checking and logging.
Finally, an erasure takes a reference ref and the policy pol
corresponding to the referenced data and removes the data
from the Data store.

It can be noticed that apart from the Log store, the first
three transformations (i.e., collection, disclosure, and usage)
are stateless while the last three (i.e., recording, retrieval and
erasure) are stateful. In particular, there is no need to store
pol as long as its corresponding d is not stored in a data
store. A consequence is that processes mainly dedicated to
handle policies (Request, Reason, and Clean) have priority
over the processes dedicated at data handling (Limit, Process
and Log). This ensures that the Data stores are always up-
to-date with the current status of the policies.

In summary, the transformations are intended to provide
support for four regulation-oriented privacy principles: (i)
purpose limitation, (ii) accountability of the data controller,
(iii) retention time for personal data, and (iv) right to erasure.

Purpose limitation dictates that the data controller should
only process data in conformance to the consent given by
the data subject. To implement this, we attach a purpose to
personal data flows and check whether the purpose of the
data processing is compatible with the consent. To this aim,
the transformations introduce a ‘Limit’ process.

Accountability of the data controller can be improved
by means of events logging. To enable this feature, the
transformations add a ‘Log’ process dedicated to the logging

Business-oriented DFD

registration info

collection

registration info
recording
= <)

Customer Info

Customer
Info
Log 2

Policy 2

Request 1
p

Privacy-aware DFD

Figure 4. Example of privacy-aware DFD.

of events in the system.

Retention time is a privacy principle aiming at preventing
data from resting in data stores longer than allowed by the
data subject. To add this to our model, we enrich the personal
data flows with information concerning the retention time
and the transformations augment the data stores with ‘Clean’
processes, which are dedicated to performing the clean-up
as necessary.

Right to erasure refers to the possibility given to the data
subject to have their personal data erased. This is managed
via the withdrawal of the consent for the personal data to
be erased, which, in turn, triggers an automatic clean-up of
such data thanks to the priority given to the ‘Request’ and
‘Clean’ processes.

We remark that the GDPR is an extensive piece of regula-
tion and we have concentrated on a subset of its provisions,
namely on those aspects that more directly translate to
technical solutions. However, we argue that we cover, to
a sufficient extent, the most recurring issues with respect to
privacy compliance.

C. Example

In Figure 4, two transformations (collection and record-
ing) are applied to the business-oriented DFD of Figure 2,
of which, only a relevant subset is shown. Note that the
privacy-aware DFD can be generated automatically and is
not necessarily meant to be presented to the architect. Rather,
it could be used to drive the model-driven generation of a
blueprint of the system implementation. Further, it could be
presented to a privacy expert in charge of streamlining and
refactoring the generated model.

Note that the transformed model (i.e., after all transforma-
tions are applied) could be refactored in order to centralize
the logging. That is, the ‘Log 1’ and ‘Log 2’ data stores
could be unified. Further, the ‘Log 1’ and ‘Log 2’ processes
could be placeholders that delegate the actual event logging
activity to a central logging process. A similar strategy could
be applied to refactor the parts that enforce the purpose

limitation imposed by the user consents (see the ‘Limit 1’
and ‘Limit 2’ processes).

Although this paper does not cover such refactoring is-
sues, the transformations we propose suggest that a (service
oriented) reference architecture (i.e., a macro architectural
pattern) could be devised in order to have a unified solution
that deals with some recurring activities, like, for instance,
logging events, checking the consents, handling data subject
requests, and so on. The definition of such reference archi-
tecture is subject to future work. However, we remark that
such reference architecture would not diminish the value
of the transformations presented here, as they provide a
principled way to reason about where and how to ‘weave’
the reference architecture into the existing business-oriented
DFD.

V. RELATED WORK

This work lies at the intersection of the research areas of
privacy by design, privacy at architectural level, and privacy
threat analysis.

Privacy by Design: The most well-known principles of
privacy by design come from the proposal of Cavoukian [5].
They divide privacy into high-level non-functional proper-
ties a system should satisfy and do not give real insights
to architectural ways to meet these. However, Cavoukian
and her team proposed different (still high-level) generic
architectures and solutions for specific domains such as
geolocation services, smart grids, biometric solutions, and
cloud-computing [6], [7], [8], [9].

Technical committees at standardization organizations
proposed several frameworks or guidelines to help software
designers to embed privacy in their system. The OASIS
PbD-SE [10] brings more precise definitions and ways to
make real the seven foundational principles of privacy by
design as proposed by Cavoukian. The OASIS PMRM [11]
proposes a methodology to embed privacy in principles. On
the other hand, the ISO 29100 [12] keeps a very definitional
purpose but is nonetheless useful for the definitions of
privacy properties in principles as they are understood in
the industry.

A top-down approach for privacy by design is described
in [13] and relies on a layered approach from strategies to
technologies (such as PETs) with patterns as the intermedi-
ate step. These patterns can for instance be built by relying
on a catalog such as [14]. A top-down approach to derive
PETs from higher-level privacy goals is described in [15].

Finally, [16] details the link that can be made between
formal methods and privacy and how the former can help
to define and implement the latter. More particularly, the
connections between privacy and models, logics, policies,
abstractions and refinements, and static analysis are detailed.

Privacy at Architectural Level: Several authors mention
the importance of privacy engineering to build systems
conforming to personal data regulations (and customers’

expectations). The difference between privacy (provided) by
policy and privacy (provided) by architecture is explained
in [17] where the authors emphasize the importance of
the architecture to mitigate the privacy risks. The data
minimization principle is identified as one of the core
principles by Cavoukian and applied to different case studies
in [18]. The difficulty to get a satisfactory system make the
authors to conclude that such methodologies are not very
recommendable, and warn against the use of too simple ways
such as check-lists.

The software engineering method LIND(D)UN [2] has
been proposed as a systematic approach to model and help
a designer to build a system by choosing appropriate PETs
to mitigate the risks identified. Another method to build
systems with privacy in mind is PriS [19]. This is a goal-
oriented method to take into account privacy properties early
in the development cycle. Although they claim to rely on a
formal model, the semantics of their model only describes
their process instead of the privacy properties to be verified.
A comparison of PriS and LIND(D)UN, two methods having
a strong impact at the architectural level, is proposed in [20].

Some proposals have been given to exemplify how an
architecture and a system can be built in a specific domain
such as geolocation services for [21]. This work proposes
a conceptual architecture with a formalization of the k-
anonymity property and shows how the proposed algorithm
conforms to the policy. Another collection of work has
been performed to propose specific architectures in different
contexts, such as ubiquitous computing, vehicular ad-hoc
networks, or online social networks for instance [22], [23],
[24].

Privacy Threats: The main work in the definition of
privacy threats is Solove’s taxonomy [25]. The different way
by which the privacy of individuals can be endangered is
systematically analyzed for the collection, processing and
dissemination phases of the life cycle of data in a system.

More recently, new privacy threats and issues arising with
cloud-computing have been extensively studied [26], [27].
Both papers propose high-level solutions to mitigate the
identified threats that may have a strong impact on the
architecture of a system. The second work also deals with
legal requirements.

Risk-Based Analysis: The most general work on risk-
based analysis details how an iterative risk-based analysis
should be integrated in the development cycle of a sys-
tem [28]. Impacts at the architectural levels are mentioned
and detailed, especially concerning n-tier architectures.

An example of an application of a risk-based analysis
in the context of HIPAA conformant systems is provided
in [29] by the Department of Health and Human Services
of the US. This relies on the risk management guide (for
general purpose) established by the NIST [30]. Recently, the
NIST developed a risk management framework dedicated to
privacy analysis [31].

VI. CONCLUSION

We have enhanced the broadly used DFD models with
privacy-aware concepts with the objective of achieving
privacy by design and privacy-by-construction in software
systems. We called such extended models Privacy-Aware
DFDs (or PA-DFDs). We started with the assumption that
software architects are in general more inclined to focus
on the business-oriented functionality of the system under
construction and not on other properties, like privacy, which
require a high level of expertise. Thus, our solution has
focused on providing an automatic translation from quasi-
standard DFDs into PA-DFDs, where the checking of a
number of privacy aspects (e.g., purpose limitation and ac-
countability of the data controller) are added by construction
in a transparent way.

Future Work: In future work, we will formally prove
that the transformations preserve the functionality of the
original DFD as well as a number of privacy principles
that are prominent in the upcoming European GDPR. Also,
we plan on providing tool support for the presented ap-
proach. Additionally, we will investigate an extension of the
transformations in order to encompass additional user rights
mentioned in the GDPR, like the right of access, the right
to correct inaccurate data, and the right to data portability.
Finally, we are interested in defining suitable heuristics for
the refactoring of the resulting transformed model, e.g.,
by means of a privacy-aware reference architecture or by
applying other architectural patterns.

ACKNOWLEDGMENT

This research has been supported by the Swedish funding
agency VINNOVA under the grant HoliSec: Holistic Ap-
proach to Improve Data Security and by the Swedish funding
agency SSF under the grant DataBIn: Data Driven Secure
Business Intelligence.

REFERENCES

[1] A. Shostack, Threat Modeling: Designing for Security. Wi-
ley, 2014.

[2] K. Wuyts, R. Scandariato, and W. Joosen, “Empirical eval-
uation of a privacy-focused threat modeling methodology,”
Journal of Systems and Software, vol. 96, pp. 122-138, 2014.

[3] E. Falkenberg, R. V. D. Pols, and T. V. D. Weide,
“Understanding process structure diagrams,” Information
Systems, vol. 16, no. 4, pp. 417 - 428, 1991.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/0306437991900325

[4] T. Antignac, R. Scandariato, and G. Schneider, “A privacy-
aware conceptual model for handling personal data,” in In-
ternational Symposium on Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA), ser. LNCS, vol.
9952. Springer, 2016, pp. 942-957.

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

(15]

[16]

(17]

(18]

(19]

[20]

A. Cavoukian, “Privacy by design: The 7 foundational prin-
ciples,” Information and Privacy Commissioner of Ontario,
Canada, 2009.

——, “Redesigning ip geolocation: Privacy by design and
online targeted advertising,” Information and Privacy Com-
missioner, Ontario, Canada, 2010.

——, “Operationalizing privacy by design: the ontario smart
grid case study,” Information and Privacy Commissioner,
Ontario, Canada, 2011.

A. Cavoukian and A. Stoianov, Privacy by Design Solutions
for Biometric One-to-Many Identification Systems, 2014.

K. Zeng, A. Cavoukian, and N. D. K. Kaisha, Modelling
cloud computing architecture without compromising privacy:
A privacy by design approach. Information and Privacy
Commissioner of Ontario, 2010.

0. Committee, “Privacy by design documentation for software
engineers (pbd-se),” Tech. Rep., 2014.

——, “Privacy management reference model and methodol-
ogy (pmrm),” Tech. Rep., 2013.

I. Committee, “Privacy framework (iso 29100),” Tech. Rep.,
2011.

J.-H. Hoepman, “Privacy design strategies,” in ICT Systems
Security and Privacy Protection. Springer, 2014, pp. 446—
459.

M. Hafiz, “A collection of privacy design patterns,” in Pro-
ceedings of the 2006 conference on Pattern languages of
programs. ACM, 2006, p. 7.

K. Wuyts, R. Scandariato, B. D. Decker, and W. Joosen,
“Linking privacy solutions to developer goals,” in Interna-
tional Conference on Availability, Reliability and Security
(ARES), 2009.

M. Tschantz and J. Wing, “Formal methods for privacy,” in
FM 2009: Formal Methods, ser. Lecture Notes in Computer
Science, A. Cavalcanti and D. R. Dams, Eds. Springer
Berlin Heidelberg, 2009, vol. 5850, pp. 1-15. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-05089-3_1

S. Spiekermann and L. F. Cranor, “Engineering privacy,’
Software Engineering, IEEE Transactions on, vol. 35, no. 1,
pp. 67-82, 2009.

S. Giirses, C. Troncoso, and C. Diaz, “Engineering privacy
by design,” Computers, Privacy & Data Protection, vol. 14,
2011.

C. Kalloniatis, E. Kavakli, and S. Gritzalis, “Addressing
privacy requirements in system design: the pris method,”
Requirements Engineering, vol. 13, no. 3, pp. 241-
255, 2011. [Online]. Available: http://dx.doi.org/10.1007/
s00766-008-0067-3

K. Beckers, “Comparing privacy requirements engineering
approaches,” in Availability, Reliability and Security (ARES),
2012 Seventh International Conference on, Aug 2012, pp.
574-581.

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

B. Gedik and L. Liu, “Protecting location privacy with per-
sonalized k-anonymity: Architecture and algorithms,” Mobile
Computing, IEEE Transactions on, vol. 7, no. 1, pp. 1-18,
Jan 2008.

J. I. Hong and J. A. Landay, “An architecture for
privacy-sensitive ubiquitous computing,” in Proceedings of
the 2Nd International Conference on Mobile Systems,
Applications, and Services, ser. MobiSys 04. New York,
NY, USA: ACM, 2004, pp. 177-189. [Online]. Available:
http://doi.acm.org/10.1145/990064.990087

K. Plossl, T. Nowey, and C. Mletzko, “Towards a security
architecture for vehicular ad hoc networks,” in Availability,
Reliability and Security, 2006. ARES 2006. The First Inter-
national Conference on. 1EEE, 2006, pp. 8—pp.

S. Jahid, S. Nilizadeh, P. Mittal, N. Borisov, and A. Kapadia,
“Decent: A decentralized architecture for enforcing privacy in
online social networks,” in Pervasive Computing and Com-
munications Workshops (PERCOM Workshops), 2012 IEEE
International Conference on. 1EEE, 2012, pp. 326-332.

D. J. Solove, “A taxonomy of privacy,” University of Penn-
sylvania law review, pp. 477-564, 2006.

H. Takabi, J. B. Joshi, and G.-J. Ahn, “Security and privacy
challenges in cloud computing environments,” IEEE Security
& Privacy, no. 6, pp. 24-31, 2010.

S. Pearson and A. Benameur, “Privacy, security and trust
issues arising from cloud computing,” in Cloud Computing
Technology and Science (CloudCom), 2010 IEEE Second
International Conference on. 1EEE, 2010, pp. 693-702.

D. Verdon and G. McGraw, “Risk analysis in software de-
sign,” Security & Privacy, IEEE, vol. 2, no. 4, pp. 79-84,
2004.

D. Committee, “Basics of risk analysis and risk management
for hipaa,” Tech. Rep., 2005.

N. Committee, “Guide for conducting risk assessments (nist
800-30),” Tech. Rep., 2012.

——, “Privacy risk management for federal information sys-
tems (nistir 8062),” Tech. Rep., 2015.

